시장보고서
상품코드
1767026

세계의 웨어러블 기술 시장(2026-2036년)

The Global Wearable Technology Market 2026-2036

발행일: | 리서치사: Future Markets, Inc. | 페이지 정보: 영문 1,240 Pages, 261 Tables, 4467 Figures | 배송안내 : 즉시배송

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

웨어러블 기술 환경은 단순한 피트니스 트래커에서 일상 생활에 자연스럽게 녹아드는 정교한 기기로 진화하고 있습니다. 빠르게 성장하는 이 분야는 기술과 패션의 경계를 허무는 혁신을 통해 우리가 건강을 모니터링하고, 디지털 정보와 상호 작용하며, 생산성을 향상시키는 방식을 재구성하고 있습니다. 현대의 웨어러블은 기본적인 만보계를 넘어 종합적인 건강 모니터링 시스템으로 진화하고 있습니다. 웨어러블 기기는 심박수 모니터링, 수면의 질, 혈압, 콜레스테롤 수치, 산소 농도, 칼로리 소모량 등 일상적인 헬스케어에 필요한 정보를 제공합니다.

최근 센서 기술의 비약적인 발전으로 인해 이전에는 임상 현장에 국한되었던 지속적인 모니터링이 가능해졌습니다. 혈압 모니터링은 기존에는 임상적 시술였습니다. 그러나 웨어러블은 이제 지속적 이고 비침습적인 혈압 추적을 제공합니다. 이러한 발전은 예방의학으로의 패러다임 전환을 의미하며, 잠재적으로 위험한 건강 상태에 대해 위험에 처하기 전에 실시간으로 경고를 받을 수 있습니다.

업계를 재편하는 가장 중요한 동향 중 하나는 초박형 기기, 특히 스마트 링의 등장이며, 2025년 가장 큰 동향 중 하나는 미니멀리즘과 기능성의 추구이며, 특히 스마트 링은 다음 필수품이 되고 있습니다. 이 작고 강력한 장비는 일상적인 주얼리와 같은 폼팩터로 종합적인 건강 추적을 제공함으로써 기존 스마트 워치의 우위에 도전하고 있습니다. 스마트 링은 현재 심박수, 걸음 수, 수면, 심지어 혈중 산소 농도까지 추적합니다. 자연스럽게 알림을 보내주기 때문에 사용자는 화면을 보지 않고도 항상 연결 상태를 유지할 수 있습니다. Oura, Samsung, Ultrahuman과 같은 주요 브랜드는 비접촉식 결제 및 스마트홈 제어까지 기능을 확장하여 이 분야의 혁신을 주도하고 있습니다. 이 분야의 혁신을 주도하고 있습니다.

AI의 통합으로 웨어러블은 수동적인 데이터 수집기에서 지능형 개인 비서로 변모하고 있으며, AI를 통해 웨어러블은 개별 사용자의 요구에 적응할 수 있게 되었습니다. 이 기기들은 사용자의 데이터로부터 학습하고 행동을 예측하여 개인화된 경험을 제공합니다. 이러한 진화를 통해 웨어러블은 원시 데이터가 아닌 실용적인 인사이트를 제공하여 사용자가 건강 상태와 라이프스타일에 대한 정보에 입각한 의사결정을 내릴 수 있도록 돕습니다. 2024년, Realme는 ChatGPT의 AI 어시스턴트인 Realme Watch S2를 발표했습니다. Realme Watch S2를 발표했습니다. 이는 기술을 보다 친숙하고 직관적으로 만드는 대화형 인터페이스에 대한 광범위한 추세를 보여줍니다.

아마도 웨어러블에서 가장 혁신적인 발전은 AR(증강현실) 안경의 성숙일 것입니다. AR 웨어러블은 오랫동안 인터랙티브 기술의 미래로 여겨져 왔지만, 높은 비용, 투박한 디자인, 제한된 실제 사용처로 인해 보급이 늦어졌습니다. 그러나 2025년은 AR 글래스와 MR(혼합현실) 헤드셋이 크게 도약하는 해가 될 것으로 보입니다. 주요 테크 기업은 AR 글래스를 보다 실용적이고 스타일리시하게 만들기 위해 많은 투자를 하고 있으며, Meta와 Ray-Ban의 제휴는 패션과 기능성을 완벽하게 결합한 스마트 글래스를 만들어 냈습니다. 우리가 테스트한 AI 웨어러블 중 단연 돋보이는 AI 웨어러블이며, AI가 꺼진 날(또는 충전이 끊긴 날)에도 매우 스타일리시한 선글라스가 될 수 있습니다. 이러한 장비는 엔터테인먼트 용도를 넘어 강력한 생산성 툴로 전환되고 있습니다. 사무직 종사자들은 몰입형 회의, 멀티스크린 컴퓨팅, 실시간 작업 관리에 AR 글래스를 사용하여 기존 디스플레이에 대한 의존도를 낮출 수 있습니다. 산업 환경에서는 AR 웨어러블이 교육, 원격 지원, OTJ 교육에 도움이 되고 있습니다.

세계의 웨어러블 기술 시장에 대해 조사분석했으며, CE(Consumer Electronics), 의료 용도, 산업 부문에 걸친 시장 역학, 신기술, 향후 성장 기회에 관한 인사이트를 제공하고 있습니다.

목차

제1장 개요

  • 전자의 진화
  • 웨어러블 혁명
  • 웨어러블 기술 시장
  • 웨어러블 시장 리더
  • 지속적 모니터링
  • 웨어러블 기술의 주요 동향
  • 웨어러블 일렉트로닉스와 센서의 시장 맵
  • 경질로부터 유연하고 신축성 있는 것으로의 이동
  • 웨어러블에서 유연하고 신축성 있는 전자기기
  • 신축성 있는 인공 피부
  • 메타버스에서의 역할
  • 텍스타일 산업에서의 웨어러블 일렉트로닉스
  • 새로운 전도성 재료
  • 엔터테인먼트
  • 유연하고 신축성 있는 전자 시장의 성장
  • CES에서의 혁신(2021-2025년)
  • 투자 자금조달과 바이아웃(2019-2025년)
  • 플렉서블 하이브리드 일렉트로닉스(FHE)
  • 웨어러블 기술에서의 지속가능성

제2장 서론

  • 서론
  • 폼팩터
  • 웨어러블 센서

제3장 생산 방식

  • 비교 분석
  • 프린티드 일렉트로닉스
  • 3D 일렉트로닉스
  • 아날로그 인쇄
  • 디지털 인쇄
  • 인몰드 일렉트로닉스(IME)
  • 롤 투 롤(R2R)

제4장 재료와 컴포넌트

  • 컴포넌트 설치 재료
  • 전도성 잉크
  • 인쇄 가능한 반도체
  • 인쇄 가능한 센싱 재료
  • 플렉서블 기판
  • 플렉서블 IC
  • 인쇄회로기판
  • 박막 배터리
  • 에너지수확기술

제5장 CE(Consumer Electronics)용 웨어러블 기술

  • 시장 촉진요인과 동향
  • 웨어러블 센서
  • 웨어러블 액추에이터
  • 최근 시장의 발전
  • 손목 장착형 웨어러블
  • 스포츠, 피트니스
  • 히어러블
  • 수면 트래커, 웨어러블 모니터
  • 애완동물·동물용 웨어러블
  • 군용 웨어러블
  • 산업·직장 모니터링
  • 세계 시장 예측
  • 시장이 해결해야 할 과제
  • 기업 개요(기업 131사의 개요)

제6장 의료용 웨어러블 기술

  • 시장 성장 촉진요인
  • 현재 최첨단 기술
  • 웨어러블, 헬스 모니터링, 재활
  • 전자 피부 패치
  • 웨어러블 약물전달
  • 코스메틱 패치
  • 펨테크 디바이스
  • 헬스 모니터링용 스마트 신발
  • 시각 장애인용 스마트 콘택트렌즈, 스마트 글래스
  • 스마트 창상관리
  • 스마트 기저귀
  • 웨어러블 로봇-엑소스켈레톤, 바이오닉 의지, 엑소슈트, 신체 장착형 협동 로봇
  • 세계 시장 예측
  • 시장이 해결해야 할 과제
  • 기업 개요(기업 341사의 개요)

제7장 게임·엔터테인먼트용 웨어러블 기술(VR/AR/MR)

  • 서론
  • VR, AR, MR, XR의 분류
  • 세계 시장 예측
  • 기업 개요(기업 96사의 개요)

제8장 전자 텍스타일(E-TEXTILES)과 스마트 의류

  • 매크로 동향
  • 시장 성장 촉진요인
  • SWOT 분석
  • E-TEXTILES의 성능 요건
  • 전자 텍스타일의 성장 전망
  • IoT용 텍스타일
  • E-TEXTILES 제품의 유형
  • 재료와 컴포넌트
  • 용도 시장, 제품
  • 세계 시장 예측
  • 시장이 해결해야 할 과제
  • 기업 개요(기업 152사의 개요)

제9장 웨어러블 기술용 에너지 저장·하베스팅

  • 매크로 동향
  • 시장 성장 촉진요인
  • SWOT 분석
  • 배터리 개발
  • 프린티드 일렉트로닉스와 플렉서블 일렉트로닉스의 응용
  • 전자기기용 유연하고 신축성 있는 배터리
  • 유연성에 대한 어프로치
  • 플렉서블 배터리 기술
  • 플렉서블 배터리의 주요 컴포넌트
  • 성능 지표와 특성
  • 프린티드 슈퍼커패시터
  • 태양광발전
  • 투명하고 유연한 히터
  • 열전 에너지수확기술
  • 시장이 해결해야 할 과제
  • 세계 시장 예측
  • 기업(45사 기업 개요)

제10장 조사 방법

제11장 참고 문헌

KSA 25.07.18

The wearable technology landscape has undergone a remarkable transformation, evolving from simple fitness trackers to sophisticated devices that seamlessly integrate into our daily lives. This rapidly expanding sector is reshaping how we monitor health, interact with digital information, and enhance our productivity, driven by innovations that blur the lines between technology and fashion. Modern wearables have transcended basic step counting to become comprehensive health monitoring systems. Wearable devices provide information on heartbeat monitoring, quality of sleep, blood pressure, cholesterol levels, oxygen levels, calorie burn, and other information required to keep track of health on a daily basis.

Recent breakthroughs in sensor technology have enabled continuous monitoring capabilities that were previously confined to clinical settings. Blood pressure monitoring has traditionally been a clinical procedure. However, wearables are now offering continuous, non-invasive blood pressure tracking. This advancement represents a paradigm shift toward preventive healthcare, allowing users to receive real-time alerts about potentially dangerous health conditions before they become critical.

One of the most significant trends reshaping the industry is the emergence of ultra-discreet devices, particularly smart rings. One of the biggest trends in 2025 is the push toward minimalism and functionality, particularly with smart rings, which are increasingly becoming the next must-have wearable. These tiny yet powerful devices challenge the dominance of traditional smartwatches by offering comprehensive health tracking in a form factor that resembles everyday jewelry. Smart rings now track heart rate, steps, sleep, and even blood oxygen levels. They provide subtle notifications, allowing users to stay connected without looking at a screen. The appeal lies in their ability to provide continuous monitoring without the bulk or visual distraction of larger devices. Leading brands like Oura, Samsung, and Ultrahuman are driving innovation in this space, with features extending to contactless payments and smart home control.

The integration of artificial intelligence has transformed wearables from passive data collectors to intelligent personal assistants. With AI, wearables now adapt to individual user needs. These devices learn from user data to predict behavior and offer personalized experiences. This evolution enables wearables to provide actionable insights rather than raw data, helping users make informed decisions about their health and lifestyle. In 2024, Realme launched its Realme Watch S2, enabled with AI assistant powered by ChatGPT, which distinguishes this watch from other smartwatches by delivering intelligent answers and assistance directly on the wrist . This represents a broader trend toward conversational interfaces that make technology more accessible and intuitive.

Perhaps the most transformative development in wearables is the maturation of augmented reality glasses. AR wearables have long been seen as the future of interactive tech, but adoption has remained slow up until now due to high costs, clunky designs, and limited real-world uses. However, 2025 is shaping up to be the year when AR glasses and mixed-reality headsets take a significant leap. Major technology companies are investing heavily in making AR glasses more practical and stylish. Meta's collaboration with Ray-Ban has produced smart glasses that seamlessly blend fashion with functionality. The Ray-Ban Meta smart glasses are by far the best AI wearable we've tested, and even on the AI's off-days (or when they're out of charge) the glasses will always be an exceptionally stylish pair of sunglasses. These devices are moving beyond entertainment applications to become powerful productivity tools. Office workers can use AR glasses for immersive meetings, multi-screen computing, and real-time task management, reducing their dependence on traditional displays. In industrial settings, AR wearables are proving valuable for training, remote assistance, and on-the-job guidance.

The convergence of technology and fashion is creating new opportunities for wearable adoption. Tech brands are partnering with fashion designers to make wearables more stylish. Smart rings, bracelets, and fabrics will be designed not just for performance-but also for aesthetics. This trend addresses one of the primary barriers to wearable adoption: the reluctance to wear devices that look overtly technological. Smart textiles and flexible electronics are emerging as new frontiers, promising wearables that conform naturally to the human body. Future developments might include: Flexible and stretchable devices: Wearables that conform to the human body for ultimate comfort. These innovations could lead to entirely new categories of wearables integrated into clothing and accessories.

Wearables are increasingly serving as gateways to digital services, particularly in commerce and smart home control. Contactless payment devices like NFC-enabled rings and bands are replacing wallets. Expect broader adoption of secure, wearable payment tech integrated with banking apps. This functionality transforms wearables from monitoring devices into essential tools for daily interactions.

Despite rapid advancement, the wearable industry faces significant challenges. Privacy and data security concerns remain paramount as devices collect increasingly sensitive biometric information. Battery life continues to be a limiting factor, particularly for feature-rich devices like AR glasses. Additionally, the industry must address sustainability concerns as the number of connected devices grows exponentially. The future promises even more ambitious innovations. Advanced biometrics: Wearables capable of detecting diseases or infections early could revolutionize preventive medicine. Implantable devices may offer continuous monitoring without the need for external hardware, though they raise new questions about privacy and bodily autonomy.

"The Global Wearable Technology Market 2026-2036" is a comprehensive 1,200-page market report providing an exhaustive analysis of the wearable technology ecosystem from 2026 to 2036, offering unprecedented insights into market dynamics, emerging technologies, and future growth opportunities across consumer electronics, medical applications, and industrial sectors. As the industry evolves beyond traditional fitness trackers and smartwatches, new form factors including smart rings, AR glasses, electronic textiles, and flexible sensors are reshaping market landscapes. This report delivers critical intelligence on market drivers, technological innovations, competitive positioning, and regulatory challenges that will define the next decade of wearable technology development.

Our in-depth analysis covers flexible and stretchable electronics, advanced materials including graphene and MXenes, energy harvesting solutions, and breakthrough manufacturing techniques such as 3D printing and roll-to-roll processing. With detailed company profiles of over 700 industry leaders and emerging players, comprehensive market forecasts, and technology roadmaps, this report serves as an essential resource for investors, manufacturers, healthcare providers, and technology developers seeking to capitalize on the $500+ billion wearable technology opportunity.

Report contents include:

  • Market Leadership Analysis: Comprehensive evaluation of market leaders by segment and shipment volume
  • Continuous Monitoring Trends: Real-time health tracking capabilities and remote patient monitoring evolution
  • Market Mapping: Complete ecosystem mapping of wearable electronics and sensor technologies
  • Flexible Electronics Transition: From rigid circuit boards to stretchable, conformable electronic systems
    • Artificial Skin Development: Emerging technologies for gesture recognition and tactile sensing
  • Metaverse Integration: Role of wearables in virtual and augmented reality ecosystems
  • Textile Industry Convergence: Integration of electronics into traditional textile manufacturing
  • Advanced Materials Innovation: Graphene, carbon nanotubes, and next-generation conductive materials
  • Market Growth Projections: Detailed forecasts for flexible and stretchable electronics segments
  • Investment Analysis: Funding trends, acquisitions, and strategic partnerships 2019-2025
  • Sustainability Initiatives: Environmental impact and circular economy approaches
  • Technology Analysis:
    • Wearable Technology Definitions: Comprehensive classification and sensing capabilities overview
    • Form Factor Evolution: Smart watches, bands, glasses, clothing, patches, rings, hearables, and head-mounted devices
    • Advanced Sensor Technologies: Motion sensors, optical sensors, force sensors, strain sensors, chemical sensors, biosensors, and quantum sensors
    • Cutting-Edge Manufacturing: Printed electronics, 3D electronics, digital/analog printing, in-mold electronics, and roll-to-roll processing
    • Materials Innovation: Conductive inks, printable semiconductors, flexible substrates, thin-film batteries, and energy harvesting solutions
    • Component Integration: Flexible ICs, printed PCBs, sustainable materials, and bio-compatible solutions
  • Consumer Electronics Market Analysis:
    • Market Drivers: Health consciousness, IoT integration, and lifestyle enhancement trends
    • Wearable Sensors: Comprehensive analysis of sensor types, technologies, and market opportunities
    • Consumer Acceptance: Adoption patterns, user preferences, and behavioral insights
    • Wrist-Worn Devices: Smartwatches, fitness trackers, and health monitoring innovations
    • Advanced Biometric Sensing: Blood pressure monitoring, glucose tracking, and respiratory analysis
    • Sports & Fitness Applications: Performance optimization and real-time coaching systems
    • Hearables Market: Audio enhancement, hearing assistance, and biometric monitoring capabilities
    • Sleep Technology: Smart rings, headbands, and comprehensive sleep analysis systems
    • Emerging Segments: Pet wearables, military applications, and industrial monitoring solutions
    • Market Forecasts: Volume and revenue projections by product category 2026-2036
    • Competitive Landscape: Detailed profiles of 131 leading companies and emerging players
  • Medical & Healthcare Applications:
    • Digital Health Revolution: Regulatory frameworks and clinical validation requirements
    • Electronic Skin Patches: Electrochemical biosensors, temperature monitoring, and drug delivery systems
    • Glucose Monitoring: Continuous monitoring technologies, minimally-invasive sensors, and market outlook
    • Cardiovascular Monitoring: ECG sensors, PPG technology, and remote cardiac care solutions
    • Specialized Applications: Pregnancy monitoring, hydration tracking, and sweat analysis systems
    • Wearable Robotics: Exoskeletons, prosthetics, and rehabilitation technologies
    • Smart Healthcare Devices: Contact lenses, wound care, digital therapeutics, and femtech innovations
    • Market Projections: Healthcare wearables volume and revenue forecasts through 2036
    • Regulatory Challenges: FDA approval processes, data privacy, and clinical trial requirements
    • Company Analysis: 341 detailed profiles of medical device manufacturers and technology innovators
  • Gaming, Entertainment & AR/VR Technologies:
    • Extended Reality Evolution: VR, AR, MR, and XR technology classifications and applications
    • Display Technologies: OLED microdisplays, miniLED, microLED, and transparent display innovations
    • Optical Systems: Combiners, waveguides, and advanced lens technologies for immersive experiences
    • Motion Tracking: Controllers, sensing systems, and spatial computing capabilities
    • Market Forecasts: Gaming and entertainment wearables growth projections 2026-2036
    • Industry Players: 96 company profiles covering major platforms and emerging technologies
  • Electronic Textiles & Smart Apparel:
    • Market Transformation: Integration of electronics into traditional textile manufacturing
    • Manufacturing Innovation: Conductive yarns, inks, polymers, and advanced materials integration
    • Applications Portfolio: Temperature regulation, therapeutic products, sports performance, and military applications
    • Power Solutions: Energy harvesting, flexible batteries, and wireless charging technologies
    • Market Forecasts: E-textiles volume and revenue projections with detailed segmentation
    • Industry Analysis: 152 company profiles spanning textile manufacturers and technology providers
  • Energy Storage & Harvesting Solutions:
    • Battery Innovation: Flexible lithium-ion, printed batteries, solid-state technologies, and stretchable power systems
    • Energy Harvesting: Photovoltaics, thermoelectric, piezoelectric, and triboelectric energy generation
    • Manufacturing Techniques: 3D printing, roll-to-roll processing, and advanced fabrication methods
    • Performance Metrics: Energy density, power density, cycle life, and flexibility characteristics
    • Market Projections: Energy solutions market sizing and growth forecasts
    • Technology Leaders: 45 detailed company profiles covering battery manufacturers and energy harvesting innovators
  • Market Intelligence & Strategic Analysis:
    • Technology Roadmaps: 10-year development timelines for key wearable categories
    • Investment Landscape: Venture capital trends, merger & acquisition activity, and strategic partnerships
    • Regional Analysis: Market development across North America, Europe, Asia-Pacific, and emerging markets
    • Competitive Dynamics: Market share analysis, pricing strategies, and competitive positioning
    • Regulatory Environment: Standards development, safety requirements, and international compliance
    • Supply Chain Analysis: Component sourcing, manufacturing locations, and logistics considerations
    • Risk Assessment: Technology risks, market risks, and regulatory challenges
    • Strategic Recommendations: Market entry strategies, investment priorities, and growth opportunities

The report profiles >700 companies across the wearable technology value chain, from component manufacturers to end-product developers. It provides detailed analysis of market leaders and innovative startups advancing the field through technological breakthroughs and novel applications. Companies profiled include Abbott Diabetes Care, AIKON Health, Artinis Medical Systems, Biobeat Technologies, Biosency, BLOOM43, Bosch Sensortec, Cala Health, Cerca Magnetics, Cosinuss, Datwyler, Dexcom, DigiLens, Dispelix, Doublepoint, EarSwitch, Emteq Limited, Epicore Biosystems, Equivital, HTC, IDUN Technologies, IQE, Infi-Tex, Jade Bird Display, Know Labs, Kokoon, Lenovo, LetinAR, Liquid Wire, Lumus, Lynx, Mateligent GmbH, MICLEDI, MICROOLED, Mojo Vision, Nanoleq, Nanusens, NeuroFusion, Oorym, Optinvent, OQmented, Orpyx, Ostendo Technologies, Output Sports, PKVitality, PragmatIC, PROPHESEE, Pulsetto, Quantune, RayNeo (TCL), Raynergy Tek, Rebee Health, Rhaeos Inc, Sefar, Segotia, Sony, STMicroelectronics, StretchSense, Tacterion, TDK, Teveri, The Metaverse Standards Forum, TriLite Technologies, TruLife Optics, UNA Watch, Valencell, Vitality, VitreaLab, VividQ, Wearable Devices Ltd., WHOOP, Wisear, Withings Health Solutions, XSensio, Xpanceo, Zero Point Motion, Zimmer and Peacock and more......

This comprehensive report combines quantitative market data with qualitative insights, featuring over 400 figures and tables, detailed SWOT analyses, and expert commentary on emerging trends. Essential for stakeholders across the wearable technology value chain seeking to understand market dynamics and capitalize on growth opportunities in this rapidly evolving industry.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. The evolution of electronics
  • 1.2. The wearables revolution
  • 1.3. The wearable technology market
  • 1.4. Wearable market leaders
  • 1.5. Continuous monitoring
  • 1.6. Key trends in wearable technology
    • 1.6.1. The Rise of Biointegrated Computing
    • 1.6.2. Neural Interface Evolution and Brain-Computer Symbiosis
    • 1.6.3. Ambient and Invisible Computing Integration
    • 1.6.4. Precision Health and Predictive Analytics
    • 1.6.5. Extended Reality and Spatial Computing
    • 1.6.6. Emotional and Mental State Monitoring
    • 1.6.7. Sustainable and Biodegradable Wearables
    • 1.6.8. Collective Intelligence and Swarm Computing
    • 1.6.9. Advanced Materials and Flexible Electronics
    • 1.6.10. Privacy-Preserving and Edge Computing
    • 1.6.11. Integration with Smart Environments
  • 1.7. Market map for wearable electronics and sensors
  • 1.8. From rigid to flexible and stretchable
  • 1.9. Flexible and stretchable electronics in wearables
  • 1.10. Stretchable artificial skin
  • 1.11. Role in the metaverse
  • 1.12. Wearable electronics in the textiles industry
  • 1.13. New conductive materials
  • 1.14. Entertainment
  • 1.15. Growth in flexible and stretchable electronics market
    • 1.15.1. Recent growth in Printed, flexible and stretchable products
    • 1.15.2. Future growth
    • 1.15.3. Advanced materials as a market driver
    • 1.15.4. Growth in remote health monitoring and diagnostics
  • 1.16. Innovations at CES 2021-2025
  • 1.17. Investment funding and buy-outs 2019-2025
  • 1.18. Flexible hybrid electronics (FHE)
  • 1.19. Sustainability in wearable technology

2. INTRODUCTION

  • 2.1. Introduction
    • 2.1.1. What is wearable technology?
      • 2.1.1.1. Wearable sensing
        • 2.1.1.1.1. Types
        • 2.1.1.1.2. Market trends in wearable sensors
        • 2.1.1.1.3. Markets
  • 2.2. Form factors
    • 2.2.1. Smart Watches
    • 2.2.2. Smart Bands
    • 2.2.3. Smart Glasses
    • 2.2.4. Smart Clothing
    • 2.2.5. Smart Patches
    • 2.2.6. Smart Rings
    • 2.2.7. Hearables
    • 2.2.8. Head-Mounted
    • 2.2.9. Smart Insoles
  • 2.3. Wearable sensors
    • 2.3.1. Motion Sensors
      • 2.3.1.1. Overview
      • 2.3.1.2. Technology and Components
        • 2.3.1.2.1. Inertial Measurement Units (IMUs)
          • 2.3.1.2.1.1. MEMs accelerometers
          • 2.3.1.2.1.2. MEMS Gyroscopes
          • 2.3.1.2.1.3. IMUs in smart-watches
        • 2.3.1.2.2. Tunneling magnetoresistance sensors (TMR)
      • 2.3.1.3. Applications
    • 2.3.2. Optical Sensors
      • 2.3.2.1. Overview
      • 2.3.2.2. Technology and Components
        • 2.3.2.2.1. Photoplethysmography (PPG)
        • 2.3.2.2.2. Spectroscopy
        • 2.3.2.2.3. Photodetectors
      • 2.3.2.3. Applications
        • 2.3.2.3.1. Heart Rate Optical Sensors
        • 2.3.2.3.2. Pulse Oximetry Optical Sensors
          • 2.3.2.3.2.1. Blood oxygen measurement
          • 2.3.2.3.2.2. Wellness and Medical Applications
          • 2.3.2.3.2.3. Consumer Pulse Oximetry
          • 2.3.2.3.2.4. Pediatric Applications
          • 2.3.2.3.2.5. Skin Patches
        • 2.3.2.3.3. Blood Pressure Optical Sensors
          • 2.3.2.3.3.1. Commercialization
          • 2.3.2.3.3.2. Oscillometric blood pressure measurement
          • 2.3.2.3.3.3. Combination of PPG and ECG
          • 2.3.2.3.3.4. Non-invasive Blood Pressure Sensing
          • 2.3.2.3.3.5. Blood Pressure Hearables
        • 2.3.2.3.4. Non-Invasive Glucose Monitoring Optical Sensors
          • 2.3.2.3.4.1. Overview
          • 2.3.2.3.4.2. Other Optical Approaches
        • 2.3.2.3.5. fNIRS Optical Sensors
          • 2.3.2.3.5.1. Overview
          • 2.3.2.3.5.2. Brain-Computer Interfaces
    • 2.3.3. Force Sensors
      • 2.3.3.1. Overview
        • 2.3.3.1.1. Piezoresistive force sensing
        • 2.3.3.1.2. Thin film pressure sensors
      • 2.3.3.2. Technology and Components
        • 2.3.3.2.1. Materials
        • 2.3.3.2.2. Piezoelectric polymers
        • 2.3.3.2.3. Temperature sensing and Remote Patient Monitoring (RPM) integration
        • 2.3.3.2.4. Wearable force and pressure sensors
    • 2.3.4. Strain Sensors
      • 2.3.4.1. Overview
      • 2.3.4.2. Technology and Components
      • 2.3.4.3. Applications
        • 2.3.4.3.1. Healthcare
        • 2.3.4.3.2. Wearable Strain Sensors
        • 2.3.4.3.3. Temperature Sensors
    • 2.3.5. Chemical Sensors
      • 2.3.5.1. Overview
      • 2.3.5.2. Optical Chemical Sensors
      • 2.3.5.3. Technology and Components
        • 2.3.5.3.1. Continuous Glucose Monitoring
        • 2.3.5.3.2. Commercial CGM systems
      • 2.3.5.4. Applications
        • 2.3.5.4.1. Sweat-based glucose monitoring
        • 2.3.5.4.2. Tear glucose measurement
        • 2.3.5.4.3. Salivary glucose monitoring
        • 2.3.5.4.4. Breath analysis for glucose monitoring
        • 2.3.5.4.5. Urine glucose monitoring
    • 2.3.6. Biosensors
      • 2.3.6.1. Overview
      • 2.3.6.2. Applications
        • 2.3.6.2.1. Wearable Alcohol Sensors
        • 2.3.6.2.2. Wearable Lactate Sensors
        • 2.3.6.2.3. Wearable Hydration Sensors
        • 2.3.6.2.4. Smart diaper technology
        • 2.3.6.2.5. Ultrasound technology
        • 2.3.6.2.6. Microneedle technology for continuous fluid sampling
    • 2.3.7. Quantum Sensors
      • 2.3.7.1. Magnetometry
      • 2.3.7.2. Tunneling magnetoresistance sensors
      • 2.3.7.3. Chip-scale atomic clocks
    • 2.3.8. Wearable Electrodes
      • 2.3.8.1. Overview
      • 2.3.8.2. Applications
        • 2.3.8.2.1. Skin Patches and E-textiles
      • 2.3.8.3. Technology and Components
        • 2.3.8.3.1. Electrode Selection
        • 2.3.8.3.2. E-textiles
        • 2.3.8.3.3. Microneedle electrodes
        • 2.3.8.3.4. Electronic Skins
      • 2.3.8.4. Applications
        • 2.3.8.4.1. Electrocardiogram (ECG) wearable electrodes
        • 2.3.8.4.2. Electroencephalography (EEG) wearable electrodes represent
        • 2.3.8.4.3. Electromyography (EMG) wearable electrodes
        • 2.3.8.4.4. Bioimpedance wearable electrodes

3. MANUFACTURING METHODS

  • 3.1. Comparative analysis
  • 3.2. Printed electronics
    • 3.2.1. Technology description
    • 3.2.2. SWOT analysis
  • 3.3. 3D electronics
    • 3.3.1. Technology description
    • 3.3.2. SWOT analysis
  • 3.4. Analogue printing
    • 3.4.1. Technology description
    • 3.4.2. SWOT analysis
  • 3.5. Digital printing
    • 3.5.1. Technology description
    • 3.5.2. SWOT analysis
  • 3.6. In-mold electronics (IME)
    • 3.6.1. Technology description
    • 3.6.2. SWOT analysis
  • 3.7. Roll-to-roll (R2R)
    • 3.7.1. Technology description
    • 3.7.2. SWOT analysis

4. MATERIALS AND COMPONENTS

  • 4.1. Component attachment materials
    • 4.1.1. Conductive adhesives
    • 4.1.2. Biodegradable adhesives
    • 4.1.3. Magnets
    • 4.1.4. Bio-based solders
    • 4.1.5. Bio-derived solders
    • 4.1.6. Recycled plastics
    • 4.1.7. Nano adhesives
    • 4.1.8. Shape memory polymers
    • 4.1.9. Photo-reversible polymers
    • 4.1.10. Conductive biopolymers
    • 4.1.11. Traditional thermal processing methods
    • 4.1.12. Low temperature solder
    • 4.1.13. Reflow soldering
    • 4.1.14. Induction soldering
    • 4.1.15. UV curing
    • 4.1.16. Near-infrared (NIR) radiation curing
    • 4.1.17. Photonic sintering/curing
    • 4.1.18. Hybrid integration
  • 4.2. Conductive inks
    • 4.2.1. Metal-based conductive inks
    • 4.2.2. Nanoparticle inks
    • 4.2.3. Silver inks
    • 4.2.4. Particle-Free conductive ink
    • 4.2.5. Copper inks
    • 4.2.6. Gold (Au) ink
    • 4.2.7. Conductive polymer inks
    • 4.2.8. Liquid metals
    • 4.2.9. Companies
  • 4.3. Printable semiconductors
    • 4.3.1. Technology overview
    • 4.3.2. Advantages and disadvantages
    • 4.3.3. SWOT analysis
  • 4.4. Printable sensing materials
    • 4.4.1. Overview
    • 4.4.2. Types
    • 4.4.3. SWOT analysis
  • 4.5. Flexible Substrates
    • 4.5.1. Flexible plastic substrates
      • 4.5.1.1. Types of materials
      • 4.5.1.2. Flexible (bio) polyimide PCBs
    • 4.5.2. Paper substrates
      • 4.5.2.1. Overview
    • 4.5.3. Glass substrates
      • 4.5.3.1. Overview
    • 4.5.4. Textile substrates
  • 4.6. Flexible ICs
    • 4.6.1. Description
    • 4.6.2. Flexible metal oxide ICs
    • 4.6.3. Comparison of flexible integrated circuit technologies
    • 4.6.4. SWOT analysis
  • 4.7. Printed PCBs
    • 4.7.1. Description
    • 4.7.2. High-Speed PCBs
    • 4.7.3. Flexible PCBs
    • 4.7.4. 3D Printed PCBs
    • 4.7.5. Sustainable PCBs
  • 4.8. Thin film batteries
    • 4.8.1. Technology description
    • 4.8.2. SWOT analysis
  • 4.9. Energy harvesting
    • 4.9.1. Approaches
    • 4.9.2. Perovskite photovoltaics
    • 4.9.3. Applications
    • 4.9.4. SWOT analysis

5. CONSUMER ELECTRONICS WEARABLE TECHNOLOGY

  • 5.1. Market drivers and trends
  • 5.2. Wearable sensors
    • 5.2.1. Types
    • 5.2.2. Wearable sensor technologies
    • 5.2.3. Opportunities
    • 5.2.4. Consumer acceptance
    • 5.2.5. Healthcare
    • 5.2.6. Trends
  • 5.3. Wearable actuators
    • 5.3.1. Applications
    • 5.3.2. Types
    • 5.3.3. Electrical stimulation technologies
    • 5.3.4. Regulations
    • 5.3.5. Batteries
    • 5.3.6. Wireless communication technologies
  • 5.4. Recent market developments
  • 5.5. Wrist-worn wearables
    • 5.5.1. Overview
    • 5.5.2. Recent developments and future outlook
    • 5.5.3. Wrist-worn sensing technologies
    • 5.5.4. Activity tracking
    • 5.5.5. Advanced biometric sensing
      • 5.5.5.1. Blood oxygen and respiration rate
      • 5.5.5.2. Established sensor hardware
      • 5.5.5.3. Blood Pressure
      • 5.5.5.4. Spectroscopic technologies
      • 5.5.5.5. Non-Invasive Glucose Monitoring
      • 5.5.5.6. Minimally invasive glucose monitoring
    • 5.5.6. Wrist-worn communication technologies
    • 5.5.7. Luxury and traditional watch industry
    • 5.5.8. Smart-strap technologies
    • 5.5.9. Driver monitoring technologies
    • 5.5.10. Sports-watches, smart-watches and fitness trackers
      • 5.5.10.1. Sensing
      • 5.5.10.2. Actuating
      • 5.5.10.3. SWOT analysis
    • 5.5.11. Health monitoring
    • 5.5.12. Energy harvesting for powering smartwatches
    • 5.5.13. Main producers and products
  • 5.6. Sports and fitness
    • 5.6.1. Overview
    • 5.6.2. Wearable devices and apparel
    • 5.6.3. Skin patches
    • 5.6.4. Products
  • 5.7. Hearables
    • 5.7.1. Hearing assistance technologies
      • 5.7.1.1. Products
    • 5.7.2. Technology advancements
    • 5.7.3. Assistive Hearables
      • 5.7.3.1. Biometric Monitoring
    • 5.7.4. SWOT analysis
    • 5.7.5. Health & Fitness Hearables
    • 5.7.6. Multimedia Hearables
    • 5.7.7. Artificial Intelligence (AI)
    • 5.7.8. Biometric Monitoring
      • 5.7.8.1. Sensors
      • 5.7.8.2. Heart Rate Monitoring in Sports Headphones
      • 5.7.8.3. Integration into hearing assistance
      • 5.7.8.4. Advanced Sensing Technologies
      • 5.7.8.5. Blood pressure hearables
      • 5.7.8.6. Sleep monitoring market
    • 5.7.9. Companies and products
  • 5.8. Sleep trackers and wearable monitors
    • 5.8.1. Built in function in smart watches and fitness trackers
    • 5.8.2. Smart rings
    • 5.8.3. Headbands
    • 5.8.4. Sleep monitoring devices
      • 5.8.4.1. Companies and products
  • 5.9. Pet and animal wearables
  • 5.10. Military wearables
  • 5.11. Industrial and workplace monitoring
    • 5.11.1. Products
  • 5.12. Global market forecasts
    • 5.12.1. Volume
    • 5.12.2. Revenues
  • 5.13. Market challenges
  • 5.14. Company profiles (131 company profiles)

6. MEDICAL AND HEALTHCARE WEARABLE TECHNOLOGY

  • 6.1. Market drivers
  • 6.2. Current state of the art
    • 6.2.1. Wearables for Digital Health
    • 6.2.2. Wearable medical device products
    • 6.2.3. Temperature and respiratory rate monitoring
  • 6.3. Wearable and health monitoring and rehabilitation
    • 6.3.1. Market overview
    • 6.3.2. Companies and products
  • 6.4. Electronic skin patches
    • 6.4.1. Electrochemical biosensors
    • 6.4.2. Printed pH sensors
    • 6.4.3. Printed batteries
    • 6.4.4. Materials
      • 6.4.4.1. Summary of advanced materials
    • 6.4.5. Temperature and respiratory rate monitoring
      • 6.4.5.1. Market overview
      • 6.4.5.2. Companies and products
    • 6.4.6. Continuous glucose monitoring (CGM)
      • 6.4.6.1. Market overview
    • 6.4.7. Minimally-invasive CGM sensors
      • 6.4.7.1. Technologies
    • 6.4.8. Non-invasive CGM sensors
      • 6.4.8.1. Commercial devices
      • 6.4.8.2. Companies and products
    • 6.4.9. Cardiovascular monitoring
      • 6.4.9.1. Market overview
      • 6.4.9.2. ECG sensors
        • 6.4.9.2.1. Companies and products
      • 6.4.9.3. PPG sensors
        • 6.4.9.3.1. Companies and products
    • 6.4.10. Pregnancy and newborn monitoring
      • 6.4.10.1. Market overview
      • 6.4.10.2. Companies and products
    • 6.4.11. Hydration sensors
      • 6.4.11.1. Market overview
      • 6.4.11.2. Companies and products
    • 6.4.12. Wearable sweat sensors (medical and sports)
      • 6.4.12.1. Market overview
      • 6.4.12.2. Companies and products
  • 6.5. Wearable drug delivery
    • 6.5.1. Companies and products
  • 6.6. Cosmetics patches
    • 6.6.1. Companies and products
  • 6.7. Femtech devices
    • 6.7.1. Companies and products
  • 6.8. Smart footwear for health monitoring
    • 6.8.1. Companies and products
  • 6.9. Smart contact lenses and smart glasses for visually impaired
    • 6.9.1. Companies and products
  • 6.10. Smart woundcare
    • 6.10.1. Companies and products
  • 6.11. Smart diapers
    • 6.11.1. Companies and products
  • 6.12. Wearable robotics-exo-skeletons, bionic prostheses, exo-suits, and body worn collaborative robots
    • 6.12.1. Companies and products
  • 6.13. Global market forecasts
    • 6.13.1. Volume
    • 6.13.2. Revenues
  • 6.14. Market challenges
  • 6.15. Company profiles (341 company profiles)

7. GAMING AND ENTERTAINMENT WEARABLE TECHNOLOGY (VR/AR/MR)

  • 7.1. Introduction
  • 7.2. Classification of VR, AR, MR, and XR
    • 7.2.1. XR controllers and sensing systems
    • 7.2.2. XR positional and motion tracking systems
    • 7.2.3. Wearable technology for XR
    • 7.2.4. Wearable Gesture Sensors for XR
    • 7.2.5. Edge Sensing and AI
    • 7.2.6. VR Technology
      • 7.2.6.1. Overview
      • 7.2.6.2. VR Headset Types
      • 7.2.6.3. Future outlook for VR technology
      • 7.2.6.4. VR Lens Technology
      • 7.2.6.5. VR challenges
      • 7.2.6.6. Market growth
    • 7.2.7. AR Technology
      • 7.2.7.1. Overview
      • 7.2.7.2. AR and MR distinction
      • 7.2.7.3. AR for Assistive Technology
      • 7.2.7.4. Consumer AR market
      • 7.2.7.5. Optics Technology for AR and VR
        • 7.2.7.5.1. Optical Combiners
      • 7.2.7.6. AR display technology
      • 7.2.7.7. Challenges
    • 7.2.8. Metaverse
    • 7.2.9. Mixed Reality (MR) smart glasses
    • 7.2.10. OLED microdisplays
      • 7.2.10.1. MiniLED
        • 7.2.10.1.1. High dynamic range miniLED displays
        • 7.2.10.1.2. Quantum dot films for miniLED displays
      • 7.2.10.2. MicroLED
        • 7.2.10.2.1. Integration
        • 7.2.10.2.2. Transfer technologies
        • 7.2.10.2.3. MicroLED display specifications
        • 7.2.10.2.4. Advantages
        • 7.2.10.2.5. Transparency
        • 7.2.10.2.6. Costs
        • 7.2.10.2.7. MicroLED contact lenses
        • 7.2.10.2.8. Products
        • 7.2.10.2.9. VR and AR MicroLEDs
  • 7.3. Global market forecasts
    • 7.3.1. Volume
    • 7.3.2. Revenues
  • 7.4. Company profiles (96 company profiles)

8. ELECTRONIC TEXTILES (E-TEXTILES) AND SMART APPAREL

  • 8.1. Macro-trends
  • 8.2. Market drivers
  • 8.3. SWOT analysis
  • 8.4. Performance requirements for E-textiles
  • 8.5. Growth prospects for electronic textiles
  • 8.6. Textiles in the Internet of Things
  • 8.7. Types of E-Textile products
    • 8.7.1. Embedded e-textiles
    • 8.7.2. Laminated e-textiles
  • 8.8. Materials and components
    • 8.8.1. Integrating electronics for E-Textiles
      • 8.8.1.1. Textile-adapted
      • 8.8.1.2. Textile-integrated
      • 8.8.1.3. Textile-based
    • 8.8.2. Manufacturing of E-textiles
      • 8.8.2.1. Integration of conductive polymers and inks
      • 8.8.2.2. Integration of conductive yarns and conductive filament fibers
      • 8.8.2.3. Integration of conductive sheets
    • 8.8.3. Flexible and stretchable electronics
    • 8.8.4. E-textiles materials and components
      • 8.8.4.1. Conductive and stretchable fibers and yarns
        • 8.8.4.1.1. Production
        • 8.8.4.1.2. Metals
        • 8.8.4.1.3. Carbon materials and nanofibers
          • 8.8.4.1.3.1. Graphene
          • 8.8.4.1.3.2. Carbon nanotubes
          • 8.8.4.1.3.3. Nanofibers
      • 8.8.4.2. Mxenes
      • 8.8.4.3. Hexagonal boron-nitride (h-BN)/Bboron nitride nanosheets (BNNSs)
      • 8.8.4.4. Conductive polymers
        • 8.8.4.4.1. PDMS
        • 8.8.4.4.2. PEDOT: PSS
        • 8.8.4.4.3. Polypyrrole (PPy)
        • 8.8.4.4.4. Conductive polymer composites
        • 8.8.4.4.5. Ionic conductive polymers
      • 8.8.4.5. Conductive inks
        • 8.8.4.5.1. Aqueous-Based Ink
        • 8.8.4.5.2. Solvent-Based Ink
        • 8.8.4.5.3. Oil-Based Ink
        • 8.8.4.5.4. Hot-Melt Ink
        • 8.8.4.5.5. UV-Curable Ink
        • 8.8.4.5.6. Metal-based conductive inks
          • 8.8.4.5.6.1. Nanoparticle ink
          • 8.8.4.5.6.2. Silver inks
            • 8.8.4.5.6.2.1. Silver flake
            • 8.8.4.5.6.2.2. Silver nanoparticle ink
            • 8.8.4.5.6.2.3. Formulation
            • 8.8.4.5.6.2.4. Conductivity
            • 8.8.4.5.6.2.5. Particle-Free silver conductive ink
          • 8.8.4.5.6.3. Copper inks
            • 8.8.4.5.6.3.1. Properties
            • 8.8.4.5.6.3.2. Silver-coated copper
          • 8.8.4.5.6.4. Gold (Au) ink
            • 8.8.4.5.6.4.1. Properties
        • 8.8.4.5.7. Carbon-based conductive inks
          • 8.8.4.5.7.1. Carbon nanotubes
          • 8.8.4.5.7.2. Single-walled carbon nanotubes
          • 8.8.4.5.7.3. Graphene
        • 8.8.4.5.8. Liquid metals
          • 8.8.4.5.8.1. Properties
      • 8.8.4.6. Electronic filaments
      • 8.8.4.7. Phase change materials
        • 8.8.4.7.1. Temperature controlled fabrics
      • 8.8.4.8. Shape memory materials
      • 8.8.4.9. Metal halide perovskites
      • 8.8.4.10. Nanocoatings in smart textiles
      • 8.8.4.11. 3D printing
        • 8.8.4.11.1. Fused Deposition Modeling (FDM)
        • 8.8.4.11.2. Selective Laser Sintering (SLS)
        • 8.8.4.11.3. Products
    • 8.8.5. E-textiles components
      • 8.8.5.1. Sensors and actuators
        • 8.8.5.1.1. Physiological sensors
        • 8.8.5.1.2. Environmental sensors
        • 8.8.5.1.3. Pressure sensors
          • 8.8.5.1.3.1. Flexible capacitive sensors
          • 8.8.5.1.3.2. Flexible piezoresistive sensors
          • 8.8.5.1.3.3. Flexible piezoelectric sensors
        • 8.8.5.1.4. Activity sensors
        • 8.8.5.1.5. Strain sensors
          • 8.8.5.1.5.1. Resistive sensors
          • 8.8.5.1.5.2. Capacitive strain sensors
        • 8.8.5.1.6. Temperature sensors
        • 8.8.5.1.7. Inertial measurement units (IMUs)
      • 8.8.5.2. Electrodes
      • 8.8.5.3. Connectors
  • 8.9. Applications, markets and products
    • 8.9.1. Current E-textiles and smart clothing products
    • 8.9.2. Temperature monitoring and regulation
      • 8.9.2.1. Heated clothing
      • 8.9.2.2. Heated gloves
      • 8.9.2.3. Heated insoles
      • 8.9.2.4. Heated jacket and clothing products
      • 8.9.2.5. Materials used in flexible heaters and applications
    • 8.9.3. Stretchable E-fabrics
    • 8.9.4. Therapeutic products
    • 8.9.5. Sport & fitness
      • 8.9.5.1. Products
    • 8.9.6. Smart footwear
      • 8.9.6.1. Companies and products
    • 8.9.7. Wearable displays
    • 8.9.8. Military
    • 8.9.9. Textile-based lighting
      • 8.9.9.1. OLEDs
    • 8.9.10. Smart gloves
    • 8.9.11. Powering E-textiles
      • 8.9.11.1. Advantages and disadvantages of main battery types for E-textiles
      • 8.9.11.2. Bio-batteries
      • 8.9.11.3. Challenges for battery integration in smart textiles
      • 8.9.11.4. Textile supercapacitors
      • 8.9.11.5. Energy harvesting
        • 8.9.11.5.1. Photovoltaic solar textiles
        • 8.9.11.5.2. Energy harvesting nanogenerators
          • 8.9.11.5.2.1. TENGs
          • 8.9.11.5.2.2. PENGs
        • 8.9.11.5.3. Radio frequency (RF) energy harvesting
    • 8.9.12. Motion capture for AR/VR
  • 8.10. Global market forecasts
    • 8.10.1. Volume
    • 8.10.2. Revenues
  • 8.11. Market challenges
  • 8.12. Company profiles (152 company profiles)

9. ENERGY STORAGE AND HARVESTING FOR WEARABLE TECHNOLOGY

  • 9.1. Macro-trends
  • 9.2. Market drivers
  • 9.3. SWOT analysis
  • 9.4. Battery Development
    • 9.4.1. Enhanced Energy Density and Performance
    • 9.4.2. Stretchable Batteries
    • 9.4.3. Textile-Based Batteries
    • 9.4.4. Printable Batteries
    • 9.4.5. Sustainable and Biodegradable Batteries
    • 9.4.6. Self-Healing Batteries
    • 9.4.7. Solid-State Flexible Batteries
    • 9.4.8. Integration with Energy Harvesting
    • 9.4.9. Nanostructured Materials
    • 9.4.10. Thin-Film Battery Technologies
  • 9.5. Applications of printed and flexible electronics
  • 9.6. Flexible and stretchable batteries for electronics
  • 9.7. Approaches to flexibility
  • 9.8. Flexible Battery Technologies
    • 9.8.1. Thin-film Lithium-ion Batteries
      • 9.8.1.1. Types of Flexible/stretchable LIBs
        • 9.8.1.1.1. Flexible planar LiBs
        • 9.8.1.1.2. Flexible Fiber LiBs
        • 9.8.1.1.3. Flexible micro-LiBs
        • 9.8.1.1.4. Stretchable lithium-ion batteries
        • 9.8.1.1.5. Origami and kirigami lithium-ion batteries
      • 9.8.1.2. Flexible Li/S batteries
      • 9.8.1.3. Flexible lithium-manganese dioxide (Li-MnO2) batteries
    • 9.8.2. Printed Batteries
      • 9.8.2.1. Technical specifications
      • 9.8.2.2. Components
      • 9.8.2.3. Design
      • 9.8.2.4. Key features
        • 9.8.2.4.1. Printable current collectors
        • 9.8.2.4.2. Printable electrodes
        • 9.8.2.4.3. Materials
        • 9.8.2.4.4. Applications
        • 9.8.2.4.5. Printing techniques
        • 9.8.2.4.6. Lithium-ion (LIB) printed batteries
        • 9.8.2.4.7. Zinc-based printed batteries
        • 9.8.2.4.8. 3D Printed batteries
      • 9.8.2.5. 3D Printing techniques for battery manufacturing
        • 9.8.2.5.1.1. Materials for 3D printed batteries
    • 9.8.3. Thin-Film Solid-state Batteries
      • 9.8.3.1. Solid-state electrolytes
      • 9.8.3.2. Features and advantages
      • 9.8.3.3. Technical specifications
      • 9.8.3.4. Microbatteries
        • 9.8.3.4.1. Introduction
        • 9.8.3.4.2. 3D designs
    • 9.8.4. Stretchable Batteries
    • 9.8.5. Other Emerging Technologies
      • 9.8.5.1. Metal-sulfur batteries
      • 9.8.5.2. Flexible zinc-based batteries
      • 9.8.5.3. Flexible silver-zinc (Ag-Zn) batteries
      • 9.8.5.4. Flexible Zn-Air batteries
      • 9.8.5.5. Flexible zinc-vanadium batteries
      • 9.8.5.6. Fiber-shaped batteries
        • 9.8.5.6.1. Carbon nanotubes
        • 9.8.5.6.2. Applications
        • 9.8.5.6.3. Challenges
      • 9.8.5.7. Transparent batteries
        • 9.8.5.7.1. Components
      • 9.8.5.8. Degradable batteries
        • 9.8.5.8.1. Components
      • 9.8.5.9. Fiber-shaped batteries
        • 9.8.5.9.1. Carbon nanotubes
        • 9.8.5.9.2. Types
        • 9.8.5.9.3. Applications
        • 9.8.5.9.4. Challenges
  • 9.9. Key Components of Flexible Batteries
    • 9.9.1. Electrodes
      • 9.9.1.1. Cable-type batteries
      • 9.9.1.2. Batteries-on-wire
    • 9.9.2. Electrolytes
    • 9.9.3. Separators
    • 9.9.4. Current Collectors
      • 9.9.4.1. Carbon Materials for Current Collectors in Flexible Batteries
    • 9.9.5. Packaging
      • 9.9.5.1. Lithium-Polymer Pouch Cells
      • 9.9.5.2. Flexible Pouch Cells
      • 9.9.5.3. Encapsulation Materials
    • 9.9.6. Other Manufacturing Techniques
  • 9.10. Performance Metrics and Characteristics
    • 9.10.1. Energy Density
    • 9.10.2. Power Density
    • 9.10.3. Cycle Life
    • 9.10.4. Flexibility and Bendability
  • 9.11. Printed supercapacitors
    • 9.11.1. Electrode materials
    • 9.11.2. Electrolytes
  • 9.12. Photovoltaics
    • 9.12.1. Conductive pastes
    • 9.12.2. Organic photovoltaics (OPV)
    • 9.12.3. Perovskite PV
    • 9.12.4. Flexible and stretchable photovoltaics
      • 9.12.4.1. Companies
    • 9.12.5. Photovoltaic solar textiles
    • 9.12.6. Solar tape
    • 9.12.7. Origami-like solar cells
    • 9.12.8. Spray-on and stick-on perovskite photovoltaics
    • 9.12.9. Photovoltaic solar textiles
  • 9.13. Transparent and flexible heaters
    • 9.13.1. Technology overview
    • 9.13.2. Applications
      • 9.13.2.1. Automotive Industry
        • 9.13.2.1.1. Defrosting and Defogging Systems
        • 9.13.2.1.2. Heated Windshields and Mirrors
        • 9.13.2.1.3. Touch Panels and Displays
      • 9.13.2.2. Aerospace and Aviation
        • 9.13.2.2.1. Aircraft Windows and Canopies
        • 9.13.2.2.2. Sensor and Camera Housings
      • 9.13.2.3. Consumer Electronics
        • 9.13.2.3.1. Smartphones and Tablets
        • 9.13.2.3.2. Wearable Devices
        • 9.13.2.3.3. Smart Home Appliances
      • 9.13.2.4. Building and Architecture
        • 9.13.2.4.1. Smart Windows
        • 9.13.2.4.2. Heated Glass Facades
        • 9.13.2.4.3. Greenhouse and Skylight Applications
      • 9.13.2.5. Medical and Healthcare
        • 9.13.2.5.1. Incubators and Warming Beds
        • 9.13.2.5.2. Surgical Microscopes and Endoscopes
        • 9.13.2.5.3. Medical Imaging Equipment
      • 9.13.2.6. Display Technologies
        • 9.13.2.6.1. LCD Displays
        • 9.13.2.6.2. OLED Displays
        • 9.13.2.6.3. Flexible and Transparent Displays
      • 9.13.2.7. Energy Systems
        • 9.13.2.7.1. Solar Panels (De-icing and Efficiency Enhancement)
        • 9.13.2.7.2. Fuel Cells
        • 9.13.2.7.3. Battery Systems
  • 9.14. Thermoelectric energy harvesting
  • 9.15. Market challenges
  • 9.16. Global market forecasts
    • 9.16.1. Volume
    • 9.16.2. Revenues
  • 9.17. Companies (45 company profiles)

10. RESEARCH METHODOLOGY

11. REFERENCES

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제