½ÃÀ庸°í¼­
»óÇ°ÄÚµå
1528987

¼¼°èÀÇ ÀÚÀ²¹«ÀÎÀá¼öÁ¤(AUV) ½ÃÀå ±Ô¸ð : ÆäÀ̷εå À¯Çüº°, À¯Çüº°, ¼­ºê½Ã½ºÅÛº°, ¿ëµµº° - ¿¹Ãø(2024-2032³â)

Autonomous Underwater Vehicle (AUV) Market Size - By Payload Type, By Type, By Sub-system, By Application & Forecast, 2024 - 2032

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Global Market Insights Inc. | ÆäÀÌÁö Á¤º¸: ¿µ¹® 270 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óÇ°Àº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

ÀÚÀ²¹«ÀÎÀá¼öÁ¤(AUV) ¼¼°è ½ÃÀå ±Ô¸ð´Â ±â¼ú Çõ½Å°ú ±¹¹æ ¹× ¾Èº¸ ¼ö¿ä Áõ°¡·Î ÀÎÇØ 2024³âºÎÅÍ 2032³â±îÁö ¿¬Æò±Õ 14%ÀÇ ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¾¼­, ÀÚÀ²¼º, µ¥ÀÌÅÍ Ã³¸®ÀÇ ¹ßÀüÀ¸·Î AUV´Â ±º»ç ÀÛÀü, ±â·Ú Á¦°Å, ¼öÁß °¨½Ã µî ´Ù¾çÇÑ ¿ëµµ·Î È°¿ëµÉ ¼ö ÀÖ½À´Ï´Ù. ¼¼°è °¢±¹ Á¤ºÎ°¡ ÇØ¾ç ¾Èº¸¿Í ±¹¹æ È°µ¿ÀÇ È¿À²¼ºÀ» ¿ì¼±½ÃÇÏ´Â °¡¿îµ¥, Ư¼ö AUV¿¡ ´ëÇÑ ¼ö¿ä´Â Áö¼ÓÀûÀ¸·Î Áõ°¡ÇÏ°í ÀÖ½À´Ï´Ù. ±â¼ú Çõ½Å°ú ¾Èº¸¿¡ ´ëÇÑ ÀÌÁßÀû ÃÊÁ¡Àº AUV°¡ Çرº ¿ª·®À» °­È­ÇÏ°í ¼öÁß È¯°æÀÇ »õ·Î¿î À§Çù¿¡ ´ëÀÀÇÏ´Â µ¥ ÀÖ¾î Àü ¼¼°èÀûÀ¸·Î ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ°í ÀÖÀ½À» °­Á¶ÇÕ´Ï´Ù.

¿¹¸¦ µé¾î, GRSE´Â 2023³â 7¿ù ÄÝīŸ¿¡¼­ ±¤»ê ¹æ¾î¸¦ À§ÇØ ¼³°èµÈ °æ·® ÀÚÀ² Àá¼öÁ¤(AUV)À» ¹ßÇ¥Çߴµ¥, GRSE°¡ Aerospace Engineering Pvt.Ltd¿Í °øµ¿À¸·Î °³¹ßÇÑ 2.15m ±æÀÌÀÇ ÈÞ´ë¿ë AUV´Â ¹æ¾î ´É·ÂÀ» °­È­ÇÒ ¼ö ÀÖ½À´Ï´Ù. GRSE¿Í Aerospace Engineering Pvt. Ltd.ÀÇ Çù·Â °ü°è´Â AUV »ê¾÷ÀÇ ±â¼ú ¹ßÀüÀ» ÃËÁøÇÏ´Â AUV »ê¾÷ÀÇ ±â¼ú ¹ßÀüÀ» ÃËÁøÇÏ´Â ÆÄÆ®³Ê½ÊÀÇ Ãß¼¼¸¦ ¹Ý¿µÇÏ°í ÀÖ½À´Ï´Ù. ÆÄÆ®³Ê½ÊÀÇ Ãß¼¼¸¦ ¹Ý¿µÇÏ°í ÀÖ½À´Ï´Ù.

ÀÚÀ² Àá¼öÁ¤(AUV) »ê¾÷Àº ÆäÀ̷εå À¯Çü, À¯Çü, ÇÏÀ§ ½Ã½ºÅÛ, ¿ëµµ ¹× Áö¿ªº°·Î ¼¼ºÐÈ­µÇ¾î ÀÖ½À´Ï´Ù.

¼¾¼­ ºÐ¾ß´Â ¼öÁß È¯°æ¿¡¼­ Á¤È®ÇÑ µ¥ÀÌÅÍ ¼öÁýÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ±â¼ú ¹ßÀü¿¡ ÈûÀÔ¾î 2032³â±îÁö °ý¸ñÇÒ ¸¸ÇÑ ¼ºÀåÀ» ÀÌ·ê °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ¼¾¼­´Â Çؾç Á¶»ç, ¹æÀ§ ¹× ¼®À¯ Ž»ç¿¡ ÇʼöÀûÀÎ Ç×¹ý, À̹Ì¡ ¹× ȯ°æ ¸ð´ÏÅ͸µ ±â´ÉÀ» °­È­ÇÕ´Ï´Ù. Á¤È®ÇÑ ½Ç½Ã°£ µ¥ÀÌÅÍ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¼¾¼­ ±â¼úÀº ¼öÁß ÀÛ¾÷ÀÇ ¹Ì·¡¸¦ Çü¼ºÇÏ´Â µ¥ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ°í ÀÖÀ¸¸ç, AUV ½Ã½ºÅÛ¿¡ÀÇ ÅëÇÕÀº ¼öÁß Å½»ç ¹× »ê¾÷ ÀÀ¿ë ºÐ¾ß¿¡¼­ ±× Á߿伺À» °­Á¶ÇÏ°í ÀÖ½À´Ï´Ù.

È¿À²ÀûÀÎ ¼öÁß Å½»ç ¹× ȸ¼ö ÀÓ¹«ÀÇ Çʿ伺À¸·Î ÀÎÇØ 2032³â±îÁö Ž»ç ¹× Àξç ÀÛ¾÷ ºÐ¾ß´Â »ó´çÇÑ ¼ºÀåÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ¸ç, AUV´Â ½ÉÇØ ÀÛ¾÷¿¡¼­ Ź¿ùÇÑ ¼º´ÉÀ» ¹ßÈÖÇÏ¿© ¹°Ã¼ À§Ä¡ È®ÀÎ ¹× ȸ¼ö, Á¶»ç ¼öÇà, ¼öÁß ÁöÇü ¸ÅÇÎ µîÀÇ ±â´ÉÀ» Á¦°øÇÕ´Ï´Ù. Çؾç È°µ¿ÀÌ È°¹ßÇØÁö°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ÀÚÀ² ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¼ö»ö ¹× ±¸Á¶ ºÐ¾ß´Â Å©°Ô ¼ºÀåÇÒ °ÍÀ̸ç, AUV´Â ÇØ¾ç ±¸Á¶, ¹æ¾î ¹× Àç³­ ´ëÀÀ ¿ëµµ¿¡ ÇʼöÀûÀÎ µµ±¸·Î ÀÚ¸®¸Å±èÇÒ °ÍÀÔ´Ï´Ù.

¾Æ½Ã¾ÆÅÂÆò¾çÀÇ AUV ½ÃÀå Á¡À¯À²Àº ÇØ»ó º¸¾È Á¶Ä¡, ÇØ¾ç ¼®À¯ ¹× °¡½º Ž»ç, ¼öÁß Á¶»ç À̴ϼÅƼºê Áõ°¡·Î ÀÎÇØ 2024³âºÎÅÍ 2032³â±îÁö »ó´çÇÑ CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áß±¹, ÀϺ», È£ÁÖ¿Í °°Àº ±¹°¡µéÀº Á¤ºÎ ÅõÀÚ¿Í ±â¼ú ¹ßÀü¿¡ ÈûÀÔ¾î AUV ±â¼ú äÅÃÀ» ÁÖµµÇÏ°í ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ Çؾç È°µ¿¿¡¼­ÀÇ Àü·«Àû À§Ä¡¿Í ·Îº¿ °øÇÐ ¹× ¼¾½Ì ±â¼úÀÇ Áö¼ÓÀûÀÎ ¹ßÀüÀ¸·Î ÀÎÇØ ÀÌ Áö¿ªÀº ÀÚÀ² ¹«ÀÎÀá¼öÁ¤(AUV) »ê¾÷¿¡ Áß¿äÇÑ ±â¿©¸¦ ÇÏ°í ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý°ú Á¶»ç ¹üÀ§

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ¾÷°è ÀλçÀÌÆ®

  • »ýÅÂ°è ºÐ¼®
  • °ø±Þ¾÷ü »óȲ
    • ¿øÀç·á °ø±Þ¾÷ü
    • ºÎÇ° °ø±Þ¾÷ü
    • ±â¼ú Á¦°ø¾÷ü
    • Á¦Á¶¾÷ü
    • ÃÖÁ¾»ç¿ëÀÚ
  • ÀÌÀÍ·ü ºÐ¼®
  • ±â¼ú ¹× Çõ½Å Àü¸Á
  • ƯÇ㠺м®
  • ÁÖ¿ä ´º½º ¹× À̴ϼÅƼºê
  • ±ÔÁ¦ »óȲ
  • ¿µÇâ¿äÀÎ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • Çؾç Á¶»ç¿Í ÁöµµÁ¦ÀÛ ¼ö¿ä Áõ°¡
      • ÇØ¾ç ¼®À¯ ¹× °¡½º Ž»ç È°µ¿ È®´ë
      • ¼¾¼­¿Í ³»ºñ°ÔÀ̼ǡ¤½Ã½ºÅÛ ±â¼úÀû Áøº¸
      • ½ÉÇØ ÀÚ¿ø°ú ±¤¹° Ž»ç
    • ¾÷°èÀÇ ÀáÀçÀû ¸®½ºÅ©£¦°úÁ¦
      • ³ôÀº Ãʱâ ÅõÀÚ¿Í ¿î¿µ ºñ¿ë
      • ±ÔÁ¦»ó Á¦¾à°ú ÇØ»ç¹ý
  • ¼ºÀå °¡´É¼º ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦4Àå °æÀï ±¸µµ

  • ¼­·Ð
  • ±â¾÷ Á¡À¯À² ºÐ¼®
  • °æÀï Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º
  • Àü·« Àü¸Á ¸ÅÆ®¸¯½º

Á¦5Àå ½ÃÀå Ã߻ꡤ¿¹Ãø : ÆäÀ̷εå À¯Çüº° 2018³â-2032³â

  • ÁÖ¿ä µ¿Çâ
  • Ä«¸Þ¶ó
  • ¼¾¼­
  • ÇÕ¼º Åë·Î ¼Ò³ª
  • ¿¡ÄÚ »ç¿î´õ
  • À½Çâ µµÇ÷¯ À¯¼Ó ºÐÆ÷°è
  • ±âŸ

Á¦6Àå ½ÃÀå Ã߻ꡤ¿¹Ãø : À¯Çüº°, 2021-2032³â

  • ÁÖ¿ä µ¿Çâ
  • Shallow AUVs
  • Medium AUVs
  • Large AUVs

Á¦7Àå ½ÃÀå Ã߻ꡤ¿¹Ãø : ¼­ºê½Ã½ºÅÛº°, 2021-2032³â

  • ÁÖ¿ä µ¿Çâ
  • ÃßÁø ½Ã½ºÅÛ
  • ±¸µ¿ ½Ã½ºÅÛ
  • Ãæµ¹ ȸÇÇ
  • ÆäÀÌ·Îµå ¹× À̹Ì¡
  • Åë½Å ¹× ³»ºñ°ÔÀ̼Ç

Á¦8Àå ½ÃÀå Ã߻ꡤ¿¹Ãø : ¿ëµµº°, 2021-2032³â

  • ÁÖ¿ä µ¿Çâ
  • ±º ¹× ¹æÀ§
  • ¼®À¯ ¹× °¡½º
  • ȯ°æ ¸ð´ÏÅ͸µ
  • ÇؾçÇÐ
  • °í°íÇÐ ¹× Ž»ç
  • ¼ö»ö ¹× ±¸Á¶ È°µ¿

Á¦9Àå ½ÃÀå Ã߻ꡤ¿¹Ãø : Áö¿ªº°, 2018-2032³â

  • ÁÖ¿ä µ¿Çâ
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
  • À¯·´
    • ¿µ±¹
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ÀÌÅ»¸®¾Æ
    • ½ºÆäÀÎ
    • ·¯½Ã¾Æ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • Çѱ¹
    • ´ºÁú·£µå
    • µ¿³²¾Æ½Ã¾Æ
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
    • ¾Æ¸£ÇîƼ³ª
    • ±âŸ ¶óƾ¾Æ¸Þ¸®Ä«
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦10Àå ±â¾÷ °³¿ä

  • Aquabotix
  • Atlas Elektronik
  • Bluefin Robotics
  • ECA Group
  • Eca Robotics
  • Falmouth Scientific, Inc.
  • Graal Tech
  • Hydroid
  • International Submarine Engineering
  • Kongsberg Maritime
  • Liquid Robotics
  • Lockheed Martin
  • Nautilus Marine Service
  • Oceanalpha
  • OceanServer Technology
  • Saab Seaeye
  • Soil Machine Dynamics
  • Subsea 7
  • Teledyne Gavia
LSH 24.08.20

Global Autonomous Underwater Vehicle (AUV) Market size will expand at a 14% CAGR between 2024 and 2032, attributed to technological innovations and increasing defense and security needs. Advances in sensors, autonomy, and data processing enhance AUV capabilities for diverse applications in military operations, mine countermeasures, and underwater surveillance. As governments worldwide prioritize maritime security and efficiency in defense operations, the demand for specialized AUVs continues to rise. This dual focus on innovation and security underscores AUVs' pivotal role in enhancing naval capabilities and addressing emerging threats in underwater environments globally.

For instance, in July 2023, GRSE launched a lightweight autonomous underwater vehicle (AUV) in Kolkata designed for mine countermeasure operations. Developed by GRSE in collaboration with Aerospace Engineering Pvt. Ltd., the 2.15m long, man-portable AUV enhances defense capabilities. It highlights the increasing demand for specialized AUVs capable of enhancing underwater defense capabilities, potentially spurring innovation and competition among manufacturers. The collaboration between GRSE and Aerospace Engineering Pvt. Ltd. also reflects a trend towards partnerships driving technological advancements in the AUV industry.

The autonomous underwater vehicle (AUV) industry is fragmented based on payload type, type, sub-system, application, and region.

The sensors segment will garner remarkable gains through 2032, spurred by advancements in technology enabling precise data collection in underwater environments. These sensors enhance navigation, imaging, and environmental monitoring capabilities crucial for marine research, defense, and oil exploration. With increasing demand for accurate and real-time data, sensor technologies play a pivotal role in shaping the future of underwater operations. Their integration into AUV systems underscores their critical importance in underwater exploration and industry applications.

The search and salvage operation segment will see a considerable surge by 2032, owing to the need for efficient underwater exploration and recovery missions. AUVs excel in deep-sea operations, offering capabilities in locating and retrieving objects, conducting surveys, and mapping underwater terrains. With increasing maritime activities and the demand for reliable autonomous solutions, the search and salvage segment will see substantial growth, positioning AUVs as essential tools in marine salvage, defense, and disaster response applications.

Asia Pacific AUV market share will experience a notable CAGR from 2024 to 2032 due to increasing maritime security measures, offshore oil and gas exploration, and underwater research initiatives. Countries like China, Japan, and Australia lead in AUV technology adoption, bolstered by government investments and technological advancements. The region's strategic positioning in maritime activities and ongoing developments in robotics and sensing technologies make it a crucial contributor to the autonomous underwater vehicle (AUV) industry.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Market scope & definitions
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Base estimates & calculations
    • 1.3.1 Base year calculation
    • 1.3.2 Key trends for market estimation
  • 1.4 Forecast model
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
    • 1.5.2 Data mining sources

Chapter 2 Executive Summary

  • 2.1 Industry 360-degree synopsis, 2018 - 2032

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Supplier landscape
    • 3.2.1 Raw material supplier
    • 3.2.2 Component supplier
    • 3.2.3 Technology provider
    • 3.2.4 Manufacturers
    • 3.2.5 End-user
  • 3.3 Profit margin analysis
  • 3.4 Technology & innovation landscape
  • 3.5 Patent analysis
  • 3.6 Key news & initiatives
  • 3.7 Regulatory landscape
  • 3.8 Impact forces
    • 3.8.1 Growth drivers
      • 3.8.1.1 Rising demand for oceanographic research and mapping
      • 3.8.1.2 Expansion of offshore oil and gas exploration activities
      • 3.8.1.3 Technological advancements in sensors and navigation systems
      • 3.8.1.4 Exploration of deep-sea resources and minerals
    • 3.8.2 Industry pitfalls & challenges
      • 3.8.2.1 High initial investment and operational costs
      • 3.8.2.2 Regulatory restrictions and maritime laws
  • 3.9 Growth potential analysis
  • 3.10 Porter's analysis
    • 3.10.1 Supplier Sub-system
    • 3.10.2 Buyer Sub-system
    • 3.10.3 Threat of new entrants
    • 3.10.4 Threat of substitutes
    • 3.10.5 Industry rivalry
  • 3.11 PESTEL analysis

Chapter 4 Competitive Landscape, 2023

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Competitive positioning matrix
  • 4.4 Strategic outlook matrix

Chapter 5 Market Estimates & Forecast, By Payload Type 2018 - 2032 ($Bn, Units)

  • 5.1 Key trends
  • 5.2 Cameras
  • 5.3 Sensors
  • 5.4 Synthetic aperture sonar
  • 5.5 Echo sounders
  • 5.6 Acoustic doppler current profilers
  • 5.7 Others

Chapter 6 Market Estimates & Forecast, By Type, 2021 - 2032 ($Bn, Units)

  • 6.1 Key trends
  • 6.2 Shallow AUVs
  • 6.3 Medium AUVs
  • 6.4 Large AUVs

Chapter 7 Market Estimates & Forecast, By Sub-system, 2021 - 2032 ($Bn, Units)

  • 7.1 Key trends
  • 7.2 Propulsion
  • 7.3 Drive system
  • 7.4 Collision avoidance
  • 7.5 Payloads & imaging
  • 7.6 Communication & navigation

Chapter 8 Market Estimates & Forecast, By Application, 2021 - 2032 ($Bn, Units)

  • 8.1 Key trends
  • 8.2 Military & defense
  • 8.3 Oil & gas
  • 8.4 Environment monitoring
  • 8.5 Oceanography
  • 8.6 Archaeology & exploration
  • 8.7 Search & salvage operation

Chapter 9 Market Estimates & Forecast, By Region, 2018 - 2032 ($Bn, Units)

  • 9.1 Key trends
  • 9.2 North America
    • 9.2.1 U.S.
    • 9.2.2 Canada
  • 9.3 Europe
    • 9.3.1 UK
    • 9.3.2 Germany
    • 9.3.3 France
    • 9.3.4 Italy
    • 9.3.5 Spain
    • 9.3.6 Russia
    • 9.3.7 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 China
    • 9.4.2 India
    • 9.4.3 Japan
    • 9.4.4 South Korea
    • 9.4.5 ANZ
    • 9.4.6 Southeast Asia
    • 9.4.7 Rest of Asia Pacific
  • 9.5 Latin America
    • 9.5.1 Brazil
    • 9.5.2 Mexico
    • 9.5.3 Argentina
    • 9.5.4 Rest of Latin America
  • 9.6 MEA
    • 9.6.1 UAE
    • 9.6.2 South Africa
    • 9.6.3 Saudi Arabia
    • 9.6.4 Rest of MEA

Chapter 10 Company Profiles

  • 10.1 Aquabotix
  • 10.2 Atlas Elektronik
  • 10.3 Bluefin Robotics
  • 10.4 ECA Group
  • 10.5 Eca Robotics
  • 10.6 Falmouth Scientific, Inc.
  • 10.7 Graal Tech
  • 10.8 Hydroid
  • 10.9 International Submarine Engineering
  • 10.10 Kongsberg Maritime
  • 10.11 Liquid Robotics
  • 10.12 Lockheed Martin
  • 10.13 Nautilus Marine Service
  • 10.14 Oceanalpha
  • 10.15 OceanServer Technology
  • 10.16 Saab Seaeye
  • 10.17 Soil Machine Dynamics
  • 10.18 Subsea 7
  • 10.19 Teledyne Gavia
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óÇ°À» ¼±Åà Áß
»óÇ° ºñ±³Çϱâ
Àüü»èÁ¦