![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1791732
¼¼°èÀÇ Midstream ¼®À¯ ¹× °¡½º ºÐ¼® ½ÃÀåMidstream Oil & Gas Analytics |
¼¼°èÀÇ Midstream ¼®À¯ ¹× °¡½º ºÐ¼® ¼¼°è ½ÃÀåÀº 2030³â±îÁö 69¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á
2024³â¿¡ 19¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â Midstream ¼®À¯ ¹× °¡½º ºÐ¼® ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 23.5%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 69¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼¿¡¼ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀΠŬ¶ó¿ìµå µµÀÔÀº CAGR 20.9%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 40¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. On-Premise µµÀÔ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ CAGR·Î 27.9%·Î ÃßÁ¤µË´Ï´Ù.
¹Ì±¹ ½ÃÀåÀº 5¾ï 1,090¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 22.4%·Î ¼ºÀå ¿¹Ãø
¹Ì±¹ÀÇ Midstream ¼®À¯ ¹× °¡½º ºÐ¼® ½ÃÀåÀº 2024³â¿¡´Â 5¾ï 1,090¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 11¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 22.4%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 21.1%¿Í 20.5%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼´Â µ¶ÀÏÀÌ CAGR ¾à 16.4%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.
¼¼°èÀÇ Midstream ¼®À¯ ¹× °¡½º ºÐ¼® ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®
¹Ìµå½ºÆ®¸² ¼®À¯ ¹× °¡½º ºÐ¼®À̶õ?
¹Ìµå½ºÆ®¸² ¼®À¯ ¹× °¡½º ºÐ¼®Àº ¼®À¯ ¹× °¡½º »ê¾÷ÀÇ Áß·ù ºÎ¹®¿¡¼ ¿î¿µÀ» ÃÖÀûÈÇϱâ À§ÇØ °í±Þ µ¥ÀÌÅÍ ºÐ¼®, ¸Ó½Å·¯´× ¹× ½Ç½Ã°£ ¸ð´ÏÅ͸µ µµ±¸¸¦ »ç¿ëÇÏ´Â °ÍÀ» ¸»ÇÕ´Ï´Ù. Áß·ù ºÎ¹®¿¡´Â ¼®À¯ ¹× õ¿¬°¡½ºÀÇ ¿î¼Û, ÀúÀå, µµ¸Å À¯ÅëÀÌ Æ÷ÇԵ˴ϴÙ. ÀÌ ºÐ¾ßÀÇ ºÐ¼®Àº ÆÄÀÌÇÁ¶óÀÎ ¼º´É, ÀÚ»ê ¹«°á¼º, ¹°·ù, ±ÔÁ¦ Áؼö µî ´Ù¾çÇÑ ¾÷¹« ºÐ¾ß¿¡ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ ±â¹Ý ÀλçÀÌÆ®¸¦ ÅëÇØ Áß°ß±â¾÷Àº Àüü ÀÎÇÁ¶óÀÇ È¿À²¼ºÀ» °³¼±ÇÏ°í ¿î¿µ ºñ¿ëÀ» Àý°¨ÇÏ¸ç ¾ÈÀü¼º°ú ½Å·Ú¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.
¼¼°è ¿¡³ÊÁö ¼ö¿ä°¡ Áö¼ÓÀûÀ¸·Î Áõ°¡ÇÔ¿¡ µû¶ó ¼®À¯ ¹× °¡½º ºÎ¹®¿¡¼´Â º¸´Ù È¿À²ÀûÀÌ°í ºñ¿ë È¿À²ÀûÀÎ ¿î¼Û ¹× ÀúÀå ¼Ö·ç¼Ç¿¡ ´ëÇÑ Çʿ伺ÀÌ Á¡Á¡ ´õ Ä¿Áö°í ÀÖ½À´Ï´Ù. Áß·ù ºÎ¹®Àº ¿î¿µ»óÀÇ º´¸ñÇö»ó, Àåºñ °íÀå, ±ÔÁ¦ Àå¾Ö µîÀÇ Ãø¸é¿¡¼ °¡Àå Ãë¾àÇÑ °æ¿ì°¡ ¸¹½À´Ï´Ù. ¾Ö³Î¸®Æ½½º´Â ¿¹Áöº¸Àü ¼Ö·ç¼Ç Á¦°ø, ¿î¼Û °æ·Î ÃÖÀûÈ, ¼ö¿ä ¹× °ø±Þ µ¿Çâ ¿¹ÃøÀ» ÅëÇØ ÀÌ·¯ÇÑ À§ÇèÀ» ÁÙÀÌ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. »ç¹°ÀÎÅͳÝ(IoT) ±â±â, ¼¾¼, ½Ç½Ã°£ µ¥ÀÌÅÍ ¼öÁý ¹× ºÐ¼®À» À§ÇÑ Å¬¶ó¿ìµå ±â¹Ý Ç÷§ÆûÀÇ µµÀÔÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¹Ìµå½ºÆ®¸² ¼®À¯ ¹× °¡½º ºÎ¹®Àº º¸´Ù µ¥ÀÌÅÍ Áß½ÉÀûÀÎ »ê¾÷À¸·Î º¯ÈÇϰí ÀÖÀ¸¸ç, ÀÇ»ç°áÁ¤ °úÁ¤°ú ¾÷¹« ¿öÅ©Ç÷ο찡 °ÈµÇ°í ÀÖ½À´Ï´Ù.
¹Ìµå½ºÆ®¸² ¼®À¯ ¹× °¡½º ºÐ¼® ½ÃÀå¿¡¼ÀÇ ºÐ¼®Àº ±ÔÁ¦ ¾Ð·Â°ú ¾÷°èÀÇ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó ´õ¿í Ȱ¹ßÇÏ°Ô ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ȯ°æ ±ÔÁ¦°¡ °ÈµÇ°í ÀÌ»êÈź¼Ò ¹èÃâ·® °¨Ãà¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö´Â °¡¿îµ¥, Áß°ß±â¾÷µéÀº ¾Ö³Î¸®Æ½½º¸¦ Ȱ¿ëÇØ ¾÷¹« È¿À²È¸¦ ²ÒÇϰí ÀÖ½À´Ï´Ù. ¿©±â¿¡´Â ¿¡³ÊÁö ¼Òºñ ÃÖÀûÈ, Æó±â¹° ÃÖ¼ÒÈ, ȯ°æ ¹× ¾ÈÀü ±âÁØ Áؼö µîÀÌ Æ÷ÇԵ˴ϴÙ. ±× °á°ú, ºÐ¼® ¼Ö·ç¼ÇÀº ¾÷°è¿¡¼ ¿î¿µ ¿ì¼ö¼º°ú Áö¼Ó°¡´É¼º ³ë·Â¿¡ ÇʼöÀûÀÎ µµ±¸·Î ¿©°ÜÁö°í ÀÖÀ¸¸ç, ±â¾÷ÀÌ º¹ÀâÇÑ ½ÃÀå ¿ªÇÐÀ» Ž»öÇϰí Àü¹ÝÀûÀΠȯ°æ ¹ßÀÚ±¹À» °³¼±ÇÏ´Â µ¥ µµ¿òÀ» ÁÖ°í ÀÖ½À´Ï´Ù.
÷´Ü ±â¼úÀº ¹Ìµå½ºÆ®¸² ¼®À¯ ¹× °¡½º ºÐ¼® ½ÃÀåÀ» ¾î¶»°Ô Çü¼ºÇϰí Àִ°¡?
±â¼ú Çõ½ÅÀº ¹Ìµå½ºÆ®¸² ¼®À¯ ¹× °¡½º ºÐ¼® ½ÃÀåÀÇ ±Þ¼ÓÇÑ ¼ºÀåÀÇ ÇÙ½ÉÀÔ´Ï´Ù. ±â¼ú Çõ½ÅÀ» ÅëÇØ ±â¾÷Àº ÀÚ»êÀ» ´õ Àß °ü¸®Çϰí, À¯Áöº¸¼ö Çʿ伺À» ¿¹ÃøÇϰí, ´Ù¿îŸÀÓÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. °¡Àå ÁÖ¸ñÇÒ ¸¸ÇÑ ¹ßÀü Áß Çϳª´Â ÆÄÀÌÇÁ¶óÀÎ, ÀúÀå ½Ã¼³, ¿î¼Û Àڻ꿡 °ÉÃÄ IoT ¼¾¼¿Í ÀåÄ¡¸¦ ÅëÇÕÇÏ´Â °ÍÀÔ´Ï´Ù. ÀÌ ¼¾¼µéÀº ÆÄÀÌÇÁ¶óÀÎÀÇ ¾Ð·Â, ¿Âµµ, À¯·®, ´©Ãâ °¨Áö µî ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î ¼öÁýÇÕ´Ï´Ù. °í±Þ ºÐ¼® µµ±¸´Â ÀÌ µ¥ÀÌÅ͸¦ ó¸®ÇÏ¿© ¿î¿µÀÚ°¡ ºñ¿ëÀÌ ¸¹ÀÌ µå´Â ¼ö¸® ¹× ȯ°æ »ç°í·Î ¹ßÀüÇϱâ Àü¿¡ ÀáÀçÀûÀÎ ¹®Á¦¸¦ ½Äº°ÇÏ´Â µ¥ µµ¿òÀÌ µÇ´Â ¿¹ÃøÀû ÅëÂû·ÂÀ» Á¦°øÇÕ´Ï´Ù.
¸Ó½Å·¯´× ¾Ë°í¸®Áò ¶ÇÇÑ ¹Ìµå½ºÆ®¸² ¼®À¯ ¹× °¡½º ºÐ¼®ÀÇ ¹ßÀü¿¡ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¾Ë°í¸®ÁòÀº °ú°Å µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© ÀáÀçÀûÀÎ Àåºñ °íÀåÀ» ¿¹ÃøÇϰí, °ø±Þ¸ÁÀ» ÃÖÀûÈÇϸç, ¼ö¿ä º¯µ¿À» ³î¶ó¿ï Á¤µµ·Î Á¤È®ÇÏ°Ô ¿¹ÃøÇÒ ¼ö ÀÖ½À´Ï´Ù. ¸Ó½Å·¯´×À» ÅëÇÑ ¿¹Áöº¸ÀüÀº ¸¶¸ð¿Í ÆÄ¼ÕÀÇ ÆÐÅÏÀ» ÆÄ¾ÇÇϰí, °íÀåÀÌ ¹ß»ýÇϱâ Àü¿¡ ¼ö¸® ¹× ±³Ã¼ ÀÏÁ¤À» ¼ö¸³ÇÏ¿© Áß¿äÇÑ ÀÎÇÁ¶óÀÇ ¼ö¸íÀ» ¿¬ÀåÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. À̸¦ ÅëÇØ ¿î¿µ ¸®½ºÅ©¸¦ ÁÙÀ̰í, È¿À²¼ºÀ» ³ôÀ̸ç, °èȹµÇÁö ¾ÊÀº ´Ù¿îŸÀÓÀ» ÁÙÀ̰í, ±Ã±ØÀûÀ¸·Î ¼öÀͼºÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù.
¶Ç ´Ù¸¥ Å« ±â¼ú Æ®·»µå´Â Ŭ¶ó¿ìµå ±â¹Ý ºÐ¼® Ç÷§ÆûÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý ºÐ¼® Ç÷§ÆûÀº º¸´Ù È®Àå °¡´ÉÇϰí À¯¿¬ÇÏ¸ç ºñ¿ë È¿À²ÀûÀÎ µ¥ÀÌÅÍ Ã³¸®¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý ½Ã½ºÅÛÀº °ÅÀÇ ¸ðµç °÷¿¡¼ ½Ç½Ã°£À¸·Î µ¥ÀÌÅÍ¿Í ºÐ¼®¿¡ Á¢±ÙÇÒ ¼ö Àֱ⠶§¹®¿¡ Áß·ù Áö¿ª ¿î¿µÀÚ´Â ¿ø°ÝÁö¿¡¼µµ Á¤º¸¿¡ ÀÔ°¢ÇÑ ½Å¼ÓÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ÀÌ´Â ¼öõ ¸¶ÀÏ¿¡ ´ÞÇÏ´Â ÆÄÀÌÇÁ¶óÀΰú ¿Üµý Áö¿ª¿¡ À§Ä¡ÇÑ ÀúÀå ½Ã¼³ µî ±¤¹üÀ§ÇÑ ÀÎÇÁ¶ó¸¦ °ü¸®ÇÏ´Â µ¥ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù. ¶ÇÇÑ, Ŭ¶ó¿ìµå ±â¼úÀº ÆÀ°ú ºÎ¼ °£ Çù¾÷À» ¿ëÀÌÇÏ°Ô Çϰí, ÀÇ»ç°áÁ¤À» °£¼ÒÈÇϸç, Àü¹ÝÀûÀÎ ¿öÅ©ÇÃ·Î¿ì °ü¸®¸¦ °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù.
¹Ìµå½ºÆ®¸² ¼®À¯ ¹× °¡½º ºÐ¼® ½ÃÀåÀÌ Á÷¸éÇÑ °úÁ¦´Â?
¹Ìµå½ºÆ®¸² ¼®À¯ ¹× °¡½º ºÐ¼®Àº ¸¹Àº ÀÌÁ¡ÀÌ ÀÖÁö¸¸, ±â¾÷ÀÌ ºÐ¼® ¼Ö·ç¼ÇÀ» µµÀÔÇϰí È®ÀåÇÒ ¶§ Á÷¸éÇÏ´Â ¸î °¡Áö °úÁ¦µµ ÀÖ½À´Ï´Ù. ÁÖ¿ä À庮 Áß Çϳª´Â »õ·Î¿î ºÐ¼® ±â¼ú°ú ·¹°Å½Ã ½Ã½ºÅÛ ÅëÇÕÀÇ º¹À⼺ÀÔ´Ï´Ù. ¸¹Àº Áß°ß±â¾÷µéÀº ÃֽеðÁöÅÐ ¼Ö·ç¼Ç°ú ȣȯµÇÁö ¾Ê´Â ±¸½Ä Àåºñ¿Í ÀÎÇÁ¶ó·Î ¿î¿µµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·Î ÀÎÇØ µ¥ÀÌÅÍ ¼öÁý, ÀúÀå, ºÐ¼® ½Ã ¸¶ÂûÀÌ ¹ß»ýÇϰí, ¸Ó½Å·¯´×À̳ª ¿¹Ãø ºÐ¼®°ú °°Àº ÷´Ü ±â¼úÀ» µµÀÔÇÏ·Á´Â ±â¾÷µé¿¡°Ôµµ Àå¾Ö¹°ÀÌ µÇ°í ÀÖ½À´Ï´Ù.
¹Ìµå½ºÆ®¸² ¼®À¯ ¹× °¡½º ºÐ¼® ½ÃÀå¿¡¼´Â µ¥ÀÌÅÍ º¸¾Èµµ ½Ã±ÞÇÑ °úÁ¦·Î ¶°¿À¸£°í ÀÖ½À´Ï´Ù. IoT ±â±â ¹× Ŭ¶ó¿ìµå ±â¹Ý Ç÷§ÆûÀ» ÅëÇØ »ý¼ºµÇ´Â ±â¹Ð µ¥ÀÌÅͰ¡ Áõ°¡ÇÔ¿¡ µû¶ó »çÀ̹ö °ø°ÝÀº Å« À§Çè¿ä¼Ò·Î ´ëµÎµÇ°í ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ À¯Ãâ, ·£¼¶¿þ¾î °ø°Ý, Áß¿ä ½Ã½ºÅÛ¿¡ ´ëÇÑ ¹«´Ü Á¢±ÙÀº ¾÷¹«¿¡ È¥¶õÀ» ÃÊ·¡ÇÏ°í ¸·´ëÇÑ ±ÝÀüÀû ¼Õ½Ç°ú ¸í¿¹ÈѼÕÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼ Áß°ß±â¾÷Àº ¾ÇÀÇÀûÀÎ À§ÇùÀ¸·ÎºÎÅÍ µ¥ÀÌÅÍ¿Í ½Ã½ºÅÛÀ» º¸È£Çϱâ À§ÇØ »çÀ̹ö º¸¾È ´ëÃ¥¿¡ ¸¹Àº ÅõÀÚ¸¦ ÇØ¾ß ÇÕ´Ï´Ù. ¶ÇÇÑ, Ŭ¶ó¿ìµå ¼ºñ½º¸¦ Ÿ»ç Á¦°ø¾÷ü¿¡ ÀÇÁ¸ÇÏ´Â °ÍÀº ¾ö°ÝÇÑ º¸¾È Ç¥ÁØÀ» ÁؼöÇÏ´Â Á¦°ø¾÷ü¸¦ ½Å·ÚÇØ¾ß Çϱ⠶§¹®¿¡ À§ÇèÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù.
¶ÇÇÑ, ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ È¿À²ÀûÀ¸·Î °ü¸®ÇÏ°í ºÐ¼®ÇØ¾ß ÇÏ´Â °úÁ¦µµ ÀÖ½À´Ï´Ù. IoT ÀåÄ¡¿Í ¼¾¼¿¡¼ »ý¼ºµÇ´Â ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅÍ´Â ¾ÐµµÀûÀÏ ¼ö ÀÖÀ¸¸ç, ÀûÀýÇÑ µµ±¸°¡ ¾øÀ¸¸é ÀÇ¹Ì ÀÖ´Â ÅëÂû·ÂÀ» µµÃâÇϱⰡ ¾î·Æ½À´Ï´Ù. ÀÌ´Â ±â¾÷ÀÌ ´ç¸éÇÑ Á¤º¸ÀÇ º¹À⼺À¸·Î ÀÎÇØ µ¥ÀÌÅÍ ±â¹Ý ÀÇ»ç°áÁ¤À» ³»¸®´Â µ¥ ¾î·Á¿òÀ» °Þ´Â ºÐ¼® ¸¶ºñ·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. À̸¦ ±Øº¹Çϱâ À§ÇØ ±â¾÷Àº µ¥ÀÌÅ͸¦ È¿À²ÀûÀ¸·Î ÇÊÅ͸µÇϰí ó¸®ÇÏ¿© ¾÷¹« °³¼±À» ÃËÁøÇÏ´Â °¡Àå Áß¿äÇÑ ÀλçÀÌÆ®¿¡ ÁýÁßÇÒ ¼ö ÀÖ´Â °í±Þ ºÐ¼® Ç÷§Æû¿¡ ÅõÀÚÇØ¾ß ÇÕ´Ï´Ù.
¹Ìµå½ºÆ®¸² ¼®À¯ ¹× °¡½º ºÐ¼® ½ÃÀåÀÇ ÁÖ¿ä ¼ºÀå ÃËÁø¿äÀÎÀº ¹«¾ùÀΰ¡?
¹Ìµå½ºÆ®¸² ¼®À¯ ¹× °¡½º ºÐ¼® ½ÃÀåÀÇ ¼ºÀåÀº ¾÷¹« È¿À²¼º¿¡ ´ëÇÑ ¿ä±¸ Áõ°¡, ±ÔÁ¦ ¾Ð·Â, µðÁöÅÐ ±â¼ú ¹ßÀü µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¼ºÀå ¿äÀÎ Áß Çϳª´Â ¾÷¹« È¿À²È ÃßÁøÀÔ´Ï´Ù. ¼®À¯ ¹× °¡½º ±â¾÷µéÀº ºñ¿ë Àý°¨°ú ¼öÀͼº °³¼±¿¡ ´ëÇÑ ¾Ð¹Ú¿¡ Á÷¸éÇØ ÀÖÀ¸¸ç, ¿¹Ãø À¯Áöº¸¼ö, ÃÖÀûÈµÈ ¶ó¿ìÆÃ, ´õ ³ªÀº ÀÚ»ê °ü¸®¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â ºÐ¼® µµ±¸¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸´Â ±â¾÷ÀÌ ´Ù¿îŸÀÓÀ» ÁÙÀ̰í, ºñ¿ëÀÌ ¸¹ÀÌ µå´Â ¼ö¸®¸¦ ¹æÁöÇϰí, ÀÚ»ê Ȱ¿ëµµ¸¦ ±Ø´ëÈÇÏ´Â µ¥ µµ¿òÀÌ µÇ¸ç, ÀÌ ¸ðµç °ÍÀÌ ¼öÀÍ¿¡ ±â¿©ÇÕ´Ï´Ù.
¶Ç ´Ù¸¥ ¿øµ¿·ÂÀº ¾÷°è ³»¿¡¼ Áö¼Ó°¡´É¼º°ú ȯ°æÀû Ã¥ÀÓ¿¡ ´ëÇÑ Á߿伺ÀÌ °Á¶µÇ°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. °¢±¹ Á¤ºÎ°¡ ¹èÃâ°¡½º, ¿¡³ÊÁö ¼Òºñ, Æó±â¹° °ü¸®¿¡ ´ëÇÑ ±ÔÁ¦¸¦ °ÈÇÏ´Â °¡¿îµ¥, Áß°ß±â¾÷µéÀº ºÐ¼®À» ÅëÇØ ȯ°æ ¹ßÀÚ±¹À» °³¼±Çϰí ÀÖ½À´Ï´Ù. ºÐ¼® ¼Ö·ç¼ÇÀº ¿¡³ÊÁö »ç¿ëÀ» ÃÖÀûÈÇϰí, ÆÄÀÌÇÁ¶óÀÎ ´©ÃâÀ» ÁÙÀ̸ç, ȯ°æ Ç¥ÁØÀ» ÁؼöÇÔÀ¸·Î½á ±â¾÷ÀÌ ±ÔÁ¦ ¿ä°ÇÀ» ÃæÁ·ÇÏ´Â µ¿½Ã¿¡ ȯ°æ Ä£ÈÀûÀÎ ¹Ì·¡¿¡ ±â¿©ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ÀÌ´Â Áö¼Ó°¡´É¼º°ú È¿À²¼ºÀÌ Áß¿äÇÑ ¿ì¼±¼øÀ§ÀÎ ¿¡³ÊÁö ºÎ¹®ÀÇ µðÁöÅÐ ÀüȯÀÇ ±¤¹üÀ§ÇÑ Ãß¼¼¿Í ÀÏÄ¡ÇÕ´Ï´Ù.
IoT µð¹ÙÀ̽º¿Í ¼¾¼ÀÇ ±Þ¼ÓÇÑ ¹ßÀü°ú º¸±Þµµ ºÐ¼® ½ÃÀåÀÇ ¼ºÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù. ÆÄÀÌÇÁ¶óÀÎ, ÀúÀå ½Ã¼³, ¿î¼Û ³×Æ®¿öÅ©¿¡ ´õ ¸¹Àº ¼¾¼°¡ µµÀԵʿ¡ µû¶ó »ý¼ºµÇ´Â µ¥ÀÌÅÍÀÇ ¾çÀº ±âÇϱ޼öÀûÀ¸·Î Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¥ÀÌÅÍ ±ÞÁõÀº Áß°ß±â¾÷ÀÌ °í±Þ ºÐ¼®À» Àû¿ëÇÏ¿© ¿î¿µÀ» ÃÖÀûÈÇϰí ÀÇ»ç°áÁ¤À» °³¼±ÇÒ ¼ö ÀÖ´Â »õ·Î¿î ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ, ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀ» ÀÌ·¯ÇÑ ºÐ¼® Ç÷§Æû¿¡ ÅëÇÕÇÔÀ¸·Î½á Áß·ù °¡Ä¡»ç½½ Àü¹Ý¿¡ °ÉÃÄ ´õ Á¤È®ÇÑ ¿¹Ãø, ´õ ³ªÀº ¸®½ºÅ© °ü¸®, ´õ ½º¸¶Æ®ÇÑ ÀÇ»ç°áÁ¤À» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù.
¸¶Áö¸·À¸·Î, ½ÅÈï±¹ ½ÃÀåÀÇ µðÁöÅÐ ÀÎÇÁ¶ó È®´ë´Â ¹Ìµå½ºÆ®¸² ¼®À¯ ¹× °¡½º ºÐ¼® ¼Ö·ç¼Ç¿¡ »õ·Î¿î ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. ¸¹Àº ½ÅÈï °æÁ¦±¹µéÀÌ ¼®À¯ ¹× °¡½º ÀÎÇÁ¶ó¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç, ÀÌµé ½ÃÀåÀÌ ¹ßÀüÇÔ¿¡ µû¶ó ÀÚ»êÀ» º¸´Ù È¿À²ÀûÀ¸·Î °ü¸®Çϱâ À§ÇØ µðÁöÅÐ ±â¼úÀ» Ȱ¿ëÇÏ´Â °æÇâÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ÀÌ·¯ÇÑ ½ÃÀåÀÇ ¿î¿µ È¿À²¼º Çâ»ó, ¾ÈÀü¼º È®º¸, ±¹Á¦ Ç¥ÁØ Áؼö¸¦ Áö¿øÇÏ´Â ºÐ¼® ¼Ö·ç¼Ç¿¡ ´ëÇÑ »õ·Î¿î ¼ö¿ä¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. ±× °á°ú, µðÁöÅÐ ÀüȯÀÌ Àü ¼¼°èÀûÀ¸·Î ¿ì¼±¼øÀ§·Î ¶°¿À¸£¸é¼ ¹Ìµå½ºÆ®¸² ¼®À¯ ¹× °¡½º ºÐ¼® ½ÃÀåÀº Áö¼ÓÀûÀ¸·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
°á·ÐÀûÀ¸·Î, ¹Ìµå½ºÆ®¸² ¼®À¯ ¹× °¡½º ºÐ¼® ½ÃÀåÀº ±â¼ú ¹ßÀü, ±ÔÁ¦ ¾Ð·Â, ¿î¿µ È¿À²¼º °³¼±ÀÇ Çʿ伺À¸·Î ÀÎÇØ Å©°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. IoT, ¸Ó½Å·¯´×, Ŭ¶ó¿ìµå ±â¼úÀÌ µµÀÔµÇ¸é¼ Áß°ß±â¾÷µéÀº ¾Ö³Î¸®Æ½½º¸¦ Ȱ¿ëÇØ ¾÷¹« ÃÖÀûÈ, ºñ¿ë Àý°¨, ¾ÈÀü¼º Çâ»óÀ» ²ÒÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀÇ ÀÌÁ¡À» ÃæºÐÈ÷ ´©¸®±â À§Çؼ´Â µ¥ÀÌÅÍ º¸¾È, ·¹°Å½Ã ½Ã½ºÅÛ°úÀÇ ÅëÇÕ, µ¥ÀÌÅÍ °ü¸®ÀÇ º¹À⼺ µîÀÇ ¹®Á¦¸¦ ÇØ°áÇØ¾ß ÇÕ´Ï´Ù. Áö¼Ó°¡´É¼º°ú ¿î¿µ ¿ì¼ö¼º¿¡ ´ëÇÑ ¿ä±¸°¡ °è¼Ó Áõ°¡ÇÔ¿¡ µû¶ó, ¹Ìµå½ºÆ®¸² ¼®À¯ ¹× °¡½º ºÐ¼®Àº ¾÷°èÀÇ ¹Ì·¡¸¦ Çü¼ºÇÏ´Â µ¥ ÀÖ¾î ÇÙ½ÉÀûÀÎ ¿ªÇÒÀ» ÇÒ °ÍÀÔ´Ï´Ù.
ºÎ¹®
Àü°³(Ŭ¶ó¿ìµå Àü°³, On-Premise Àü°³);¼ºñ½º À¯Çü(Ŭ¶ó¿ìµå ¼ºñ½º, ÅëÇÕ ¼ºñ½º, Àü¹® ¼ºñ½º)
AI ÅëÇÕ
Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.
Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.
°ü¼¼ ¿µÇâ °è¼ö
Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
Global Midstream Oil & Gas Analytics Market to Reach US$6.9 Billion by 2030
The global market for Midstream Oil & Gas Analytics estimated at US$1.9 Billion in the year 2024, is expected to reach US$6.9 Billion by 2030, growing at a CAGR of 23.5% over the analysis period 2024-2030. Cloud Deployment, one of the segments analyzed in the report, is expected to record a 20.9% CAGR and reach US$4.0 Billion by the end of the analysis period. Growth in the On-Premise Deployment segment is estimated at 27.9% CAGR over the analysis period.
The U.S. Market is Estimated at US$510.9 Million While China is Forecast to Grow at 22.4% CAGR
The Midstream Oil & Gas Analytics market in the U.S. is estimated at US$510.9 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.1 Billion by the year 2030 trailing a CAGR of 22.4% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 21.1% and 20.5% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 16.4% CAGR.
Global Midstream Oil & Gas Analytics Market - Key Trends & Drivers Summarized
What Is Midstream Oil & Gas Analytics and Why Is It Gaining Traction?
Midstream oil and gas analytics refers to the use of advanced data analytics, machine learning, and real-time monitoring tools to optimize operations in the midstream sector of the oil and gas industry. The midstream sector involves the transportation, storage, and wholesale distribution of oil and natural gas. Analytics in this context is applied to a wide range of operational areas including pipeline performance, asset integrity, logistics, and regulatory compliance. Through data-driven insights, midstream companies can improve efficiency, reduce operational costs, and enhance safety and reliability across their infrastructure.
As global demand for energy continues to grow, the need for more efficient and cost-effective transportation and storage solutions in the oil and gas sector becomes increasingly important. The midstream segment is often the most vulnerable in terms of operational bottlenecks, equipment failures, and regulatory hurdles. Analytics plays a crucial role in mitigating these risks by offering predictive maintenance solutions, optimizing transportation routes, and forecasting demand and supply trends. The growing adoption of Internet of Things (IoT) devices, sensors, and cloud-based platforms to collect and analyze real-time data has transformed the midstream oil and gas sector into a more data-centric industry, enhancing decision-making processes and operational workflows.
Analytics in the midstream oil and gas market is also driven by regulatory pressures and the increasing need for sustainability in the industry. With the rise of stricter environmental regulations and a growing focus on reducing carbon emissions, midstream companies are leveraging analytics to improve the efficiency of their operations. This includes optimizing energy consumption, minimizing waste, and ensuring compliance with environmental and safety standards. As a result, analytics solutions are seen as vital tools for both operational excellence and sustainability efforts in the industry, helping companies navigate complex market dynamics while improving their overall environmental footprint.
How Are Advanced Technologies Shaping the Midstream Oil & Gas Analytics Market?
Technological innovations are central to the rapid growth of midstream oil and gas analytics, as they enable companies to better manage their assets, predict maintenance needs, and reduce downtime. One of the most notable advancements is the integration of IoT sensors and devices across pipelines, storage facilities, and transportation assets. These sensors collect vast amounts of data in real time, including pipeline pressure, temperature, flow rates, and leak detection. Advanced analytics tools process this data, providing operators with predictive insights that help them identify potential issues before they escalate into costly repairs or environmental incidents.
Machine learning algorithms are also playing a pivotal role in the evolution of midstream oil and gas analytics. By analyzing historical data, these algorithms can predict potential equipment failures, optimize supply chains, and forecast demand fluctuations with impressive accuracy. Predictive maintenance powered by machine learning helps extend the life of critical infrastructure by identifying wear and tear patterns and scheduling repairs or replacements before failure occurs. This reduces operational risks, enhances efficiency, and cuts down on unplanned downtime, ultimately improving profitability.
Another major technological trend is the increased adoption of cloud-based analytics platforms, which allow for more scalable, flexible, and cost-effective data processing. Cloud-based systems provide real-time access to data and analytics from virtually anywhere, enabling midstream operators to make informed decisions quickly, even in remote locations. This is especially beneficial in managing widespread infrastructure, such as pipelines that span thousands of miles, or storage facilities located in distant regions. Furthermore, cloud technology allows for easier collaboration across teams and departments, streamlining decision-making and improving overall workflow management.
What Are the Challenges Facing the Midstream Oil & Gas Analytics Market?
While midstream oil and gas analytics presents numerous benefits, there are several challenges that companies face when trying to implement and scale analytics solutions. One of the primary barriers is the complexity of integrating new analytics technologies with legacy systems. Many midstream companies still operate with outdated equipment and infrastructure that are not compatible with modern digital solutions. This creates friction when trying to collect, store, and analyze data, as well as hurdles for companies looking to implement more advanced technologies like machine learning and predictive analytics.
Data security is another pressing issue in the midstream oil and gas analytics market. With the increasing amount of sensitive data being generated through IoT devices and cloud-based platforms, cyberattacks pose a significant risk. Data breaches, ransomware attacks, or unauthorized access to critical systems can disrupt operations and lead to significant financial and reputational losses. As a result, midstream companies must invest heavily in cybersecurity measures to safeguard their data and systems from malicious threats. Additionally, the reliance on third-party providers for cloud services can introduce risks, as companies must trust these providers to uphold strict security standards.
There is also the challenge of managing and analyzing vast amounts of data effectively. The sheer volume of data generated by IoT devices and sensors can be overwhelming, and without the right tools, it can be difficult to extract meaningful insights. This can lead to analysis paralysis, where companies struggle to make data-driven decisions due to the complexity of the information at hand. To overcome this, companies must invest in advanced analytics platforms that can filter and process the data efficiently, focusing on the most critical insights that will drive improvements in operations.
What Are the Key Growth Drivers for the Midstream Oil & Gas Analytics Market?
The growth in the midstream oil and gas analytics market is driven by several factors, including the increasing demand for operational efficiency, regulatory pressures, and advancements in digital technologies. One of the key growth drivers is the push for greater operational efficiency. With oil and gas companies facing pressure to cut costs and improve profitability, analytics tools that enable predictive maintenance, optimized routing, and better asset management are in high demand. These tools help companies reduce downtime, prevent costly repairs, and maximize asset utilization, all of which contribute to the bottom line.
Another driver is the growing emphasis on sustainability and environmental responsibility within the industry. As governments around the world impose stricter regulations on emissions, energy consumption, and waste management, midstream companies are using analytics to improve their environmental footprint. By optimizing energy use, reducing pipeline leaks, and ensuring compliance with environmental standards, analytics solutions help companies meet regulatory requirements while contributing to a greener future. This aligns with the broader trend of digital transformation within the energy sector, where sustainability and efficiency are key priorities.
The rapid development and adoption of IoT devices and sensors are also fueling the growth of the analytics market. As more sensors are deployed across pipelines, storage facilities, and transportation networks, the amount of data generated continues to increase exponentially. This surge in data offers new opportunities for midstream companies to apply advanced analytics to optimize operations and improve decision-making. Additionally, the integration of artificial intelligence (AI) and machine learning algorithms into these analytics platforms is enabling more accurate forecasting, better risk management, and smarter decision-making across the entire midstream value chain.
Lastly, the expansion of digital infrastructure in developing markets is creating new opportunities for midstream oil and gas analytics solutions. Many emerging economies are investing heavily in their oil and gas infrastructure, and as these markets develop, they are increasingly turning to digital technologies to manage their assets more effectively. This trend is creating new demand for analytics solutions that can help these markets improve their operational efficiency, ensure safety, and comply with international standards. As a result, the market for midstream oil and gas analytics is expected to see continued growth as digital transformation becomes a global priority.
In conclusion, the midstream oil and gas analytics market is experiencing significant growth due to technological advancements, regulatory pressures, and the need for greater operational efficiency. With the increasing adoption of IoT, machine learning, and cloud technologies, midstream companies are leveraging analytics to optimize operations, reduce costs, and improve safety. However, challenges such as data security, integration with legacy systems, and data management complexities must be addressed to fully realize the benefits of these solutions. As the demand for sustainability and operational excellence continues to rise, midstream oil and gas analytics will play a central role in shaping the future of the industry.
SCOPE OF STUDY:
The report analyzes the Midstream Oil & Gas Analytics market in terms of units by the following Segments, and Geographic Regions/Countries:
Segments:
Deployment (Cloud Deployment, On-Premise Deployment); Service Type (Cloud Services, Integration Services, Professional Services)
Geographic Regions/Countries:
World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.
Select Competitors (Total 43 Featured) -
AI INTEGRATIONS
We're transforming market and competitive intelligence with validated expert content and AI tools.
Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.
TARIFF IMPACT FACTOR
Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.