½ÃÀ庸°í¼­
»óǰÄÚµå
1660678

°ü¼º Ç×¹ý ½Ã½ºÅÛ ½ÃÀå º¸°í¼­ : ±â¼ú, µî±Þ, ±¸¼º ¿ä¼Ò, ¿ëµµ, Áö¿ªº°(2025-2033³â)

Inertial Navigation System Market Report by Technology, Grade, Component, Application, and Region 2025-2033

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: IMARC | ÆäÀÌÁö Á¤º¸: ¿µ¹® 149 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°èÀÇ °ü¼º Ç×¹ý ½Ã½ºÅÛ ½ÃÀå ±Ô¸ð´Â 2024³â 121¾ï ´Þ·¯¿¡ ´ÞÇß½À´Ï´Ù. ÇâÈÄ IMARC GroupÀº ½ÃÀåÀÌ 2033³â±îÁö 197¾ï ´Þ·¯¿¡ À̸£¸ç 2025³âºÎÅÍ 2033³â±îÁö 5.28%ÀÇ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøÇß½À´Ï´Ù.

°ü¼º Ç×¹ý ½Ã½ºÅÛ(INS)Àº À̵¿Ã¼ÀÇ ¼Óµµ, Áß·Â, ¹æÇ⼺À» °è»êÇÏ´Â ³×ºñ°ÔÀÌ¼Ç ½Ã½ºÅÛÀÔ´Ï´Ù. ÁÖ·Î ¸ð¼Ç ¼¾¼­, °¡¼Óµµ°è, ÀÚÀ̷νºÄÚÇÁ¸¦ Æ÷ÇÔÇÑ ÄÄÇ»ÅÍ ±â¹Ý ¸ÞÄ¿´ÏÁòÀÔ´Ï´Ù. ÀÚÀ̷νºÄÚÇÁ´Â µå·Ð, ¼±¹Ú, Ç×°ø±â µîÀÇ ¹°Ã¼ÀÇ °¢¼Óµµ¸¦ ¼¾¼­·Î ÃøÁ¤Çϰí, °¡¼Óµµ°è´Â ±× ¼ÓµµÀÇ º¯È­ Á¤µµ¸¦ ÃøÁ¤ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ µµÃâÀ» ±â¹ÝÀ¸·Î ¹°Ã¼ÀÇ ¹æÇâ°ú »ó´ë À§Ä¡°¡ ÃßÁ¤µË´Ï´Ù. INS´Â À¯µµ ±º»ç ¹«±â Á¦Á¶ ¹× ½ÃÆÇµÇ´Â °ÔÀÓ, Ä«¸Þ¶ó, ÄÄÇ»ÅÍ, ÀÇ·á±â±â µî¿¡ Æø³Ð°Ô ÀÀ¿ëµÇ°í ÀÖ½À´Ï´Ù.

¹«ÀÎ ´ÙÀ̺ù±â(UUV)¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÏ´Â ÁÖ¿ä ¿äÀÎÀÔ´Ï´Ù. UUV´Â ¼®À¯ ¹× °¡½º Ž»ç, °úÇÐ ¿¬±¸, °íÁ¤¹Ðµµ°¡ ¿ä±¸µÇ´Â ¹æÀ§ ¹«±â µî¿¡ Æø³Ð°Ô ÀÌ¿ëµÇ°í ÀÖ½À´Ï´Ù. ¹æÀ§ ºÐ¾ß¿¡¼­´Â ¼öÁß ±â·Ú ºÒȰ¼ºÈ­, ¹Ý°Ý, Ç׸¸ °æºñ, ¼±Ã¼ °Ë»ç µî¿¡ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. °úÇÐ ¿¬±¸¿¡¼­ ¼öÁß ¹«ÀÎ Ç×°ø±â´Â ÇØÀú ¸ÅÇÎÀ»À§ÇÑ ÇØ¾ç ÇÐÀû ¿¬±¸¸¦ Áö¿øÇÕ´Ï´Ù. °Ô´Ù°¡ ¼¼°è ¼®À¯ ¼Òºñ°¡ Áõ°¡ÇÔ¿¡ µû¶ó UUV´Â ¼®À¯ Àåºñ °Ç¼³, ÆÄÀÌÇÁ¶óÀÎ °Ë»ç ¹× À¯Áöº¸¼ö Ȱµ¿¿¡ »ç¿ëµÇ°í ÀÖÀ¸¸ç, ÀÌ¿¡ µû¶ó Á¦Ç° ¼ö¿ä¸¦ ºÎÃß±â°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Ç×°ø¿ìÁÖ ºÐ¾ßÀÇ ¼ºÈ²µµ ½ÃÀå ¼ºÀåÀÇ ¿øÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¿ìÁÖ ¿¬±¸ÀÇ Áøº¸¿Í À§¼º ¹ß»ç Áõ°¡´Â ¹°Ã¼ÀÇ ¼Óµµ¿Í °íµµ¸¦ Á¤È®ÇÏ°Ô ÃøÁ¤ÇÏ´Â µ¥ ÇÊ¿äÇÑ ³×ºñ°ÔÀÌ¼Ç ½Ã½ºÅÛÀÇ ÀÌ¿ëÀ» °­È­Çϰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ¸µ ·¹ÀÌÀú ÀÚÀÌ·Î(RLG)³ª ÆÄÀ̹ö ¿Éƽ ÀÚÀÌ·Î(FOG)¸¦ ÀÌ¿ëÇÑ °æ·®¡¤ÄÄÆÑÆ® »çÀÌÁîÀÇ ³×ºñ°ÔÀÌ¼Ç ½Ã½ºÅÛÀÇ µîÀå µî, ´Ù¾çÇÑ ±â¼ú Áøº¸µµ ½ÃÀå¿¡ ¹àÀº Àü¸ÁÀ» ³º°í ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­¿¡¼­ ´Ù·ç´Â ÁÖ¿ä Áú¹®

  • ¼¼°èÀÇ °ü¼º Ç×¹ý ½Ã½ºÅÛ ½ÃÀåÀº Áö±Ý±îÁö ¾î¶»°Ô ÃßÀÌÇϰí ÇâÈÄ ¾î¶»°Ô ÃßÀÌÇØ ³ª°¥ °ÍÀΰ¡?
  • ¼¼°è °ü¼º Ç×¹ý ½Ã½ºÅÛ »ê¾÷ÀÇ ÁÖ¿ä Áö¿ª ½ÃÀåÀº?
  • COVID-19´Â ¼¼°è °ü¼º Ç×¹ý ½Ã½ºÅÛ ½ÃÀå¿¡ ¾î¶² ¿µÇâÀ» ¹ÌÃÆ´Â°¡?
  • ±â¼úº° ½ÃÀå ºÐ¼®Àº?
  • µî±Þº° ½ÃÀå ºÐ¼®Àº?
  • ±¸¼º ¿ä¼Òº° ½ÃÀå ºÐ¼®Àº?
  • ¿ëµµº° ½ÃÀå ºÐ¼®Àº?
  • ¼¼°è °ü¼º Ç×¹ý ½Ã½ºÅÛ »ê¾÷ÀÇ ¹ë·ùüÀÎÀÇ ´Ù¾çÇÑ ´Ü°è´Â?
  • ¼¼°èÀÇ °ü¼º Ç×¹ý ½Ã½ºÅÛ »ê¾÷ÀÇ ÁÖ¿ä ¼ºÀå ÃËÁø¿äÀΰú °úÁ¦´Â?
  • ¼¼°èÀÇ °ü¼º Ç×¹ý ½Ã½ºÅÛ »ê¾÷ÀÇ ±¸Á¶¿Í ÁÖ¿ä ±â¾÷Àº?
  • ¼¼°èÀÇ °ü¼º Ç×¹ý ½Ã½ºÅÛ »ê¾÷¿¡¼­ÀÇ °æÀïµµ´Â?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹üÀ§¿Í Á¶»ç ¹æ¹ý

  • Á¶»çÀÇ ¸ñÀû
  • ÀÌÇØ°ü°èÀÚ
  • µ¥ÀÌÅÍ ¼Ò½º
    • 1Â÷ Á¤º¸
    • 2Â÷ Á¤º¸
  • ½ÃÀå ÃßÁ¤
    • »óÇâ½Ä Á¢±Ù
    • ÇÏÇâ½Ä Á¢±Ù
  • Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ¼Ò°³

  • °³¿ä
  • ÁÖ¿ä ¾÷°è µ¿Çâ

Á¦5Àå ¼¼°èÀÇ °ü¼º Ç×¹ý ½Ã½ºÅÛ ½ÃÀå

  • ½ÃÀå °³¿ä
  • ½ÃÀå ½ÇÀû
  • COVID-19ÀÇ ¿µÇâ
  • ½ÃÀå ºÐ¼® : ±â¼úº°
  • ½ÃÀå ºÐ¼® : µî±Þº°
  • ½ÃÀå ºÐ¼® : ±¸¼º ¿ä¼Òº°
  • ½ÃÀå ºÐ¼® : ¿ëµµº°
  • ½ÃÀå ºÐ¼® : Áö¿ªº°
  • ½ÃÀå ¿¹Ãø

Á¦6Àå ½ÃÀå ºÐ¼® : ±â¼úº°

  • ±â°è½Ä ÀÚÀÌ·Î
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ¸µ ·¹ÀÌÀú ÀÚÀÌ·Î
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ±¤¼¶À¯ ÀÚÀÌ·Î
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • MEMS
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ±âŸ
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø

Á¦7Àå ½ÃÀå ºÐ¼® : µî±Þº°

  • ÇØ¾ç µî±Þ
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • Ç×ÇØ µî±Þ
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • Àü¼ú µî±Þ
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ¿ìÁÖ µî±Þ
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • »ó¾÷¿ë µî±Þ
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø

Á¦8Àå ½ÃÀå ºÐ¼® : ±¸¼º ¿ä¼Òº°

  • °¡¼Óµµ°è
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ÀÚÀ̷νºÄÚÇÁ
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ¾Ë°í¸®Áò°ú ÇÁ·Î¼¼¼­
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ¹«¼± ½Ã½ºÅÛ
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø

Á¦9Àå ½ÃÀå ºÐ¼® : ¿ëµµº°

  • Ç×°ø±â
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ¹Ì»çÀÏ
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ¿ìÁÖ ¹ß»ç ·ÎÄÏ
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ÇØ¾ç
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ±º¿ë Àå°© Â÷·®
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ¹«ÀÎ Ç×°ø±â
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ¹«ÀÎ Áö»ó Â÷·®
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ¹«ÀÎ ÇØ¾ç Â÷·®
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø

Á¦10Àå ½ÃÀå ³»¿ª : Áö¿ªº°

  • ºÏ¹Ì
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • À¯·´
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø

Á¦11Àå SWOT ºÐ¼®

  • °³¿ä
  • °­Á¡
  • ¾àÁ¡
  • ±âȸ
  • À§Çù

Á¦12Àå ¹ë·ùüÀÎ ºÐ¼®

Á¦13Àå Porter's Five Forces ºÐ¼®

  • °³¿ä
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • °æÀïµµ
  • ½Å±Ô ÁøÀÔ¾÷ÀÚÀÇ À§Çù
  • ´ëüǰÀÇ À§Çù

Á¦14Àå °¡°Ý ºÐ¼®

Á¦15Àå °æÀï ±¸µµ

  • ½ÃÀå ±¸Á¶
  • ÁÖ¿ä ±â¾÷
  • ÁÖ¿ä ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Honeywell International Inc.
    • Northrop Grumman Corporation
    • Teledyne Technologies Inc.
    • Vectornav Technologies LLC
    • LORD, MicroStrain Sensing Systems
    • Safran Electronics & Defense
    • Thales Group
    • Raytheon Technologies Corporation
    • General Electric Company
    • Collins Aerospace
    • Trimble Inc.
    • Gladiator Technologies Inc
KTH 25.03.10

The global inertial navigation system market size reached USD 12.1 Billion in 2024. Looking forward, IMARC Group expects the market to reach USD 19.7 Billion by 2033, exhibiting a growth rate (CAGR) of 5.28% during 2025-2033.

An Inertial Navigation System (INS) is a navigation system that calculates velocity, gravitational force and directional orientation of a moving object. It is a computer-based mechanism that primarily includes motion sensors, accelerometers and gyroscopes. The gyroscope measures the angular velocity of an object such as drones, ships and aircraft using sensors, whereas the accelerometer measures the degree of change in their speed. Based on these derivations, the object's direction and relative position are estimated. The INS finds extensive applicability in the production of guided military weapons and commercially produced games, cameras, computers and medical appliances.

The growing demand for Unmanned Underwater Vehicles (UUV) is the key factor driving the growth of the market. UUVs are extensively used in oil and gas explorations, scientific research and defense weaponry that require high precision to function. In the defense sector, they are used for deactivating underwater mines, counterattacking, port security and hull inspection. In scientific research, underwater drones assist in oceanographic studies for the mapping of the ocean bed. Furthermore, with the rising oil consumption across the globe, UUVs are increasingly being used for oil rig constructions, pipeline inspections, and maintenance activities, thereby fueling the demand for the product. Additionally, the thriving aerospace sector is another factor contributing to the growth of the market. Advancements in space research and increasing satellite launches have enhanced the utilization of these navigation systems that are necessary to measure the velocity and altitude of an object accurately. Moreover, various technological advancements such as the introduction of light-powered and compact-sized navigation systems, which utilize ring laser gyro (RLG) and fiber optic gyro (FOG), are also creating a positive outlook for the market.

Key Market Segmentation:

Breakup by Technology:

  • Mechanical Gyros
  • Ring Laser Gyros
  • Fiber Optics Gyros
  • MEMS
  • Others

Breakup by Grade:

  • Marine Grade
  • Navigation Grade
  • Tactical Grade
  • Space Grade
  • Commercial Grade

Breakup by Component:

  • Accelerometers
  • Gyroscopes
  • Algorithms and Processors
  • Wireless Systems

Breakup by Application:

  • Aircraft
  • Missiles
  • Space Launch Vehicles
  • Marine
  • Military Armored Vehicles
  • Unmanned Aerial Vehicles
  • Unmanned Ground Vehicles
  • Unmanned Marine Vehicles

Breakup by Region:

  • North America
  • Europe
  • Asia Pacific
  • Middle East and Africa
  • Latin America

Competitive Landscape:

The report has also analyzed the competitive landscape of the market with some of the key players being Honeywell International Inc., Northrop Grumman Corporation, Teledyne Technologies Inc., VectorNav Technologies, LLC, LORD, MicroStrain Sensing Systems, Safran Electronics & Defense, Thales Group, Raytheon Technologies Corporation, General Electric Company, Collins Aerospace, Trimble Inc., and Gladiator Technologies, Inc.

Key Questions Answered in This Report:

  • How has the global inertial navigation system market performed so far and how will it perform in the coming years?
  • What are the key regional markets in the global inertial navigation system industry?
  • What has been the impact of COVID-19 on the global inertial navigation system market?
  • What is the breakup of the market based on the technology?
  • What is the breakup of the market based on the grade?
  • What is the breakup of the market based on the component?
  • What is the breakup of the market based on the application?
  • What are the various stages in the value chain of the global inertial navigation system industry?
  • What are the key driving factors and challenges in the global inertial navigation system industry?
  • What is the structure of the global inertial navigation system industry and who are the key players?
  • What is the degree of competition in the global inertial navigation system industry?

Table of Contents

1 Preface

2 Scope and Methodology

  • 2.1 Objectives of the Study
  • 2.2 Stakeholders
  • 2.3 Data Sources
    • 2.3.1 Primary Sources
    • 2.3.2 Secondary Sources
  • 2.4 Market Estimation
    • 2.4.1 Bottom-Up Approach
    • 2.4.2 Top-Down Approach
  • 2.5 Forecasting Methodology

3 Executive Summary

4 Introduction

  • 4.1 Overview
  • 4.2 Key Industry Trends

5 Global Inertial Navigation System Market

  • 5.1 Market Overview
  • 5.2 Market Performance
  • 5.3 Impact of COVID-19
  • 5.4 Market Breakup by Technology
  • 5.5 Market Breakup by Grade
  • 5.6 Market Breakup by Component
  • 5.7 Market Breakup by Application
  • 5.8 Market Breakup by Region
  • 5.9 Market Forecast

6 Market Breakup by Technology

  • 6.1 Mechanical Gyros
    • 6.1.1 Market Trends
    • 6.1.2 Market Forecast
  • 6.2 Ring Laser Gyros
    • 6.2.1 Market Trends
    • 6.2.2 Market Forecast
  • 6.3 Fiber Optics Gyros
    • 6.3.1 Market Trends
    • 6.3.2 Market Forecast
  • 6.4 MEMS
    • 6.4.1 Market Trends
    • 6.4.2 Market Forecast
  • 6.5 Others
    • 6.5.1 Market Trends
    • 6.5.2 Market Forecast

7 Market Breakup by Grade

  • 7.1 Marine Grade
    • 7.1.1 Market Trends
    • 7.1.2 Market Forecast
  • 7.2 Navigation Grade
    • 7.2.1 Market Trends
    • 7.2.2 Market Forecast
  • 7.3 Tactical Grade
    • 7.3.1 Market Trends
    • 7.3.2 Market Forecast
  • 7.4 Space Grade
    • 7.4.1 Market Trends
    • 7.4.2 Market Forecast
  • 7.5 Commercial Grade
    • 7.5.1 Market Trends
    • 7.5.2 Market Forecast

8 Market Breakup by Component

  • 8.1 Accelerometers
    • 8.1.1 Market Trends
    • 8.1.2 Market Forecast
  • 8.2 Gyroscopes
    • 8.2.1 Market Trends
    • 8.2.2 Market Forecast
  • 8.3 Algorithms and Processors
    • 8.3.1 Market Trends
    • 8.3.2 Market Forecast
  • 8.4 Wireless Systems
    • 8.4.1 Market Trends
    • 8.4.2 Market Forecast

9 Market Breakup by Application

  • 9.1 Aircraft
    • 9.1.1 Market Trends
    • 9.1.2 Market Forecast
  • 9.2 Missiles
    • 9.2.1 Market Trends
    • 9.2.2 Market Forecast
  • 9.3 Space Launch Vehicles
    • 9.3.1 Market Trends
    • 9.3.2 Market Forecast
  • 9.4 Marine
    • 9.4.1 Market Trends
    • 9.4.2 Market Forecast
  • 9.5 Military Armored Vehicles
    • 9.5.1 Market Trends
    • 9.5.2 Market Forecast
  • 9.6 Unmanned Aerial Vehicles
    • 9.6.1 Market Trends
    • 9.6.2 Market Forecast
  • 9.7 Unmanned Ground Vehicles
    • 9.7.1 Market Trends
    • 9.7.2 Market Forecast
  • 9.8 Unmanned Marine Vehicles
    • 9.8.1 Market Trends
    • 9.8.2 Market Forecast

10 Market Breakup by Region

  • 10.1 North America
    • 10.1.1 Market Trends
    • 10.1.2 Market Forecast
  • 10.2 Europe
    • 10.2.1 Market Trends
    • 10.2.2 Market Forecast
  • 10.3 Asia Pacific
    • 10.3.1 Market Trends
    • 10.3.2 Market Forecast
  • 10.4 Middle East and Africa
    • 10.4.1 Market Trends
    • 10.4.2 Market Forecast
  • 10.5 Latin America
    • 10.5.1 Market Trends
    • 10.5.2 Market Forecast

11 SWOT Analysis

  • 11.1 Overview
  • 11.2 Strengths
  • 11.3 Weaknesses
  • 11.4 Opportunities
  • 11.5 Threats

12 Value Chain Analysis

13 Porters Five Forces Analysis

  • 13.1 Overview
  • 13.2 Bargaining Power of Buyers
  • 13.3 Bargaining Power of Suppliers
  • 13.4 Degree of Competition
  • 13.5 Threat of New Entrants
  • 13.6 Threat of Substitutes

14 Price Analysis

15 Competitive Landscape

  • 15.1 Market Structure
  • 15.2 Key Players
  • 15.3 Profiles of Key Players
    • 15.3.1 Honeywell International Inc.
    • 15.3.2 Northrop Grumman Corporation
    • 15.3.3 Teledyne Technologies Inc.
    • 15.3.4 Vectornav Technologies LLC
    • 15.3.5 LORD, MicroStrain Sensing Systems
    • 15.3.6 Safran Electronics & Defense
    • 15.3.7 Thales Group
    • 15.3.8 Raytheon Technologies Corporation
    • 15.3.9 General Electric Company
    • 15.3.10 Collins Aerospace
    • 15.3.11 Trimble Inc.
    • 15.3.12 Gladiator Technologies Inc
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦