시장보고서
상품코드
1722725

가상발전소(VPP) 시장 보고서 : 기술, 소스, 최종사용자, 지역별(2025-2033년)

Virtual Power Plant Market Report by Technology (Distribution Generation, Demand Response, Mixed Asset), Source (Renewable Energy, Cogeneration, Energy Storage), End User (Industrial, Commercial, Residential), and Region 2025-2033

발행일: | 리서치사: IMARC | 페이지 정보: 영문 150 Pages | 배송안내 : 2-3일 (영업일 기준)

    
    
    




※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

세계 가상발전소(VPP) 시장 규모는 2024년 21억 달러에 달했습니다. 향후 IMARC Group은 이 시장이 2033년까지 139억 달러에 도달하고, 2025-2033년 22.25%의 연평균 성장률(CAGR)을 보일 것으로 예측했습니다. 시장을 이끄는 주요 요인으로는 지속 가능한 에너지원에 대한 수요 증가, 에너지 관리 및 제어 시스템의 발전, 전기자동차(EV)의 보급이 꼽힙니다.

가상발전소(VPP) 시장 분석 :

주요 시장 성장 촉진요인 : 주요 시장 성장 촉진요인 중 하나는 환경 지속가능성에 대한 관심 증가입니다. 또한, 에너지 생산 최적화에 대한 요구가 증가하고 있는 것도 시장 성장 촉진요인으로 작용하고 있습니다.

주요 시장 동향 : 시장 수요는 재생 가능 에너지원의 채택 증가와 그리드 분산화로의 전환 등 여러 가지 주요 트렌드에 의해 촉진되고 있습니다.

지리적 동향 : 보고서에 따르면 북미가 뚜렷한 우위를 보이며 가장 큰 시장 점유율을 차지하고 있습니다. 이는 이 지역 정부의 적극적인 지원으로 인한 것입니다.

경쟁 환경: 가상발전소 산업의 주요 시장 기업은 ABB Ltd., AGL Energy Ltd., Autogrid Systems Inc., Enel Spa, Flexitricity Limited (Reserve Power Holdings (Jersey) Limited), General Electric Company, Hitachi Ltd., Next Kraftwerke GmbH, Osisoft LLC (AVEVA Group plc), Schneider Electric SE, Siemens Aktiengesellschaft, Sunverge Energy Inc. 등입니다.

과제와 기회: 시장 성장을 저해하는 주요 과제 중 하나는 규제 및 정책적 장벽입니다. 그럼에도 불구하고, 에너지 자원의 최적화는 최근 가상발전소(VPP) 시장에서 비즈니스 기회가 되고 있습니다.

가상발전소(VPP) 시장 동향 :

재생 가능 에너지원 도입 확대

지속 가능하거나 재생 가능한 에너지원의 채택이 증가함에 따라 가상발전소에 대한 수요가 증가하고 있습니다. 태양광 패널과 풍력 터빈의 설치가 증가하면서 분산형 에너지 생성 모델이 강화되고 있습니다. 분산형 에너지 자원(DER) 증가는 이러한 자산의 효과적인 관리 및 최적화에 대한 수요로 이어지고 있으며, VPP는 다양한 DER의 원활한 통합, 수집 및 관리를 촉진하여 재생 가능 에너지의 잠재력을 이끌어 내고 그리드의 안정성과 신뢰성을 향상시키는 데 중요한 역할을 하고 있습니다. 2023년 9월 6일, ABB Motion과 WindESCo는 전략적 파트너십을 체결하고, ABB는 벤처 캐피탈 부문인 ABB Technology Ventures(ATV)를 통해 WindESCo의 소수 지분을 인수했습니다. ATV)를 통해 WindESCo의 소수 지분을 인수했습니다. 미국에 본사를 둔 WindESCo는 풍력 터빈의 성능과 신뢰성을 향상시키는 분석 소프트웨어를 제공하는 선도적인 회사로, ABB는 WindESCo의 솔루션을 활용하여 저탄소 사회를 실현하는 중요한 기업으로서 재생에너지 발전 분야에서 ABB의 입지를 강화할 수 있게 되었습니다. 입지를 강화할 것입니다.

계통분산으로의 전환 증가

계통 분산화로의 전환이 가속화되면서 가상발전소(VPP) 시장의 성장을 가속하고 있습니다. 송전망의 분산화는 재생 가능 에너지원의 송전망으로의 임베디드을 촉진합니다. 또한, 태양광 패널과 풍력 터빈이 다양한 장소에 설치되어 분산형 에너지 발전 시스템에 기여할 것으로 예측됩니다. 또한, 송전망의 분산화 추세는 송전망의 내재해성 강화를 촉진하고 있습니다. 2022년 8월 4일, 테슬라와 PG&E는 캘리포니아 주에서 가장 큰 가상발전소를 건설할 계획을 발표했습니다. 이 발전소는 전력망의 신뢰성을 뒷받침하는 귀중한 자원이자 캘리포니아의 청정 에너지의 미래에 필수적인 요소이기 때문입니다.

첨단 에너지 관리 및 제어 시스템 개발 증가

가상발전소의 필요성은 첨단 에너지 관리 및 제어 시스템의 발전으로 인해 자극을 받고 있습니다. 분산된 에너지 자원을 동시에 통합, 분석 및 최적화하는 이러한 시스템의 능력이 향상되고 있으며, 이러한 지속적인 발전으로 VPP는 에너지 수요 및 공급의 변동에 보다 효과적으로 대응할 수 있게 되었습니다. 또한, 머신러닝(ML) 및 인공지능(AI) 알고리즘을 에너지 관리 및 제어 시스템에 통합함으로써 VPP는 에너지 시장의 변화를 예측하고 보다 정확하게 조정할 수 있습니다. 또한, 가상발전소(VPP) 시장의 주요 기업들은 다양한 용도의 강화된 서비스를 제공하기 위해 제휴 및 인수를 추진하고 있으며, 2023년 1월 10일 GM, 포드, 구글, 태양광 발전 사업자들은 공급 부족 시 전력망 부하를 줄이는 시스템인 가상발전소(VPP)의 활용을 확대하기 위한 표준을 수립할 예정입니다. 확대하기 위한 기준을 마련하기 위해 협력했습니다. 가상발전소 파트너십(VP3)은 이 시스템의 이용을 촉진하기 위한 정책을 수립하는 것을 목표로 하고 있습니다.

목차

제1장 서문

제2장 조사 범위와 조사 방법

  • 조사 목적
  • 이해관계자
  • 데이터 소스
    • 1차 정보
    • 2차 정보
  • 시장 추정
    • 보텀업 접근
    • 톱다운 접근
  • 조사 방법

제3장 주요 요약

제4장 서론

  • 개요
  • 주요 업계 동향

제5장 세계의 가상발전소(VPP) 시장

  • 시장 개요
  • 시장 실적
  • COVID-19의 영향
  • 시장 예측

제6장 시장 분석 : 기술별

  • 배전 발전
  • 수요반응
  • 혼합 자산

제7장 시장 분석 : 소스별

  • 재생에너지
  • 코제네레이션(cogeneration)
  • 에너지 저장

제8장 시장 분석 : 최종사용자별

  • 산업
  • 상업
  • 주택

제9장 시장 분석 : 지역별

  • 북미
    • 미국
    • 캐나다
  • 아시아태평양
    • 중국
    • 일본
    • 인도
    • 한국
    • 호주
    • 인도네시아
    • 기타
  • 유럽
    • 독일
    • 프랑스
    • 영국
    • 이탈리아
    • 스페인
    • 러시아
    • 기타
  • 라틴아메리카
    • 브라질
    • 멕시코
    • 기타
  • 중동 및 아프리카
    • 시장 내역 : 국가별

제10장 SWOT 분석

  • 개요
  • 강점
  • 약점
  • 기회
  • 위협

제11장 밸류체인 분석

제12장 Porter의 Five Forces 분석

  • 개요
  • 바이어의 교섭력
  • 공급 기업의 교섭력
  • 경쟁 정도
  • 신규 진출업체의 위협
  • 대체품의 위협

제13장 가격 분석

제14장 경쟁 구도

  • 시장 구조
  • 주요 기업
  • 주요 기업 개요
    • ABB Ltd.
    • AGL Energy Ltd.
    • Autogrid Systems Inc.
    • Enel Spa
    • Flexitricity Limited(Reserve Power Holdings(Jersey) Limited)
    • General Electric Company
    • Hitachi Ltd.
    • Next Kraftwerke GmbH
    • Osisoft LLC(AVEVA Group plc)
    • Schneider Electric SE
    • Siemens Aktiengesellschaft
    • Sunverge Energy Inc.
LSH 25.05.30

The global virtual power plant market size reached USD 2.1 Billion in 2024. Looking forward, IMARC Group expects the market to reach USD 13.9 Billion by 2033, exhibiting a growth rate (CAGR) of 22.25% during 2025-2033. Some of the key factors driving the market are the escalating need for sustainable energy sources, the advancement of energy management and control systems, and the rising adoption of electric vehicles (EVs).

Virtual Power Plant Market Analysis:

Major Market Drivers: One of the key market drivers are the rising focus on environmental sustainability. Moreover, the escalating need to optimize energy production is acting as a market driver.

Key Market Trends: The market demand is impelled owing to numerous primary trends such as the rising adoption of renewable energy sources and a shift towards grid decentralization.

Geographical Trends: According to the report, North America exhibits a clear dominance, accounting for the largest market share. This is due to favorable government initiatives in the region.

Competitive Landscape: Various key market players in the virtual power plant industry are ABB Ltd., AGL Energy Ltd., Autogrid Systems Inc., Enel Spa, Flexitricity Limited (Reserve Power Holdings (Jersey) Limited), General Electric Company, Hitachi Ltd., Next Kraftwerke GmbH, Osisoft LLC (AVEVA Group plc), Schneider Electric SE, Siemens Aktiengesellschaft, Sunverge Energy Inc., among many others.

Challenges and Opportunities: One of the key challenges hindering the market growth is regulatory and policy barriers. Nonetheless, the optimization of energy resources represents virtual power plant market recent opportunities.

Virtual Power Plant Market Trends:

Growing Adoption of Renewable Energy Sources

The increasing adoption of sustainable or renewable energy sources is catalyzing the virtual power plant demand. The increase in solar panel and wind turbine installations is enhancing the decentralized energy generation model. The rise in distributed energy resources (DERs) is leading to a demand for effective management and optimization of these assets. VPPs play a vital role in unlocking the potential of renewables by facilitating smooth integration, collection, and management of various DERs, thus improving grid stability and dependability. Moreover, several companies are partnering with other stakeholders to improve their sources of renewable energy. On 6 September 2023, ABB Motion and WindESCo, signed a strategic partnership, where ABB has acquired a minority stake in the company through its venture capital unit, ABB Technology Ventures (ATV). US-based WindESCo is the leading analytics software provider for improving the performance and reliability of wind turbines. Leveraging WindESCo' solutions, the investment will strengthen ABB's position as a key enabler of a low carbon society and its position in the renewable power generation sector.

Rising Shift Towards Grid Decentralization

The rising shift towards grid decentralization is propelling the virtual power plant market growth. Grid decentralization is fostering greater incorporation of renewable energy sources into the grid. In addition, solar panels and wind turbines are being installed in various locations that benefit in contributing to a distributed energy generation system. Moreover, the trend of grid decentralization is facilitating enhanced grid resilience. This is particularly important for dealing with climate-related challenges and natural disasters. On 4 August 2022, Tesla and PG&E announced a plan to build California's largest virtual power plant as these plants are a valuable resource for supporting grid reliability and an essential part of California's clean energy future.

Increasing Development of Advanced Energy Management and Control Systems

The need for virtual power plants is stimulated by the increasing development of sophisticated energy management and control systems. The capacity of these systems to simultaneously aggregate, analyze, and optimize dispersed energy resources is growing. VPPs are able to react to variations in the supply and demand for energy more effectively because of this ongoing progress. Furthermore, by integrating machine learning (ML) and artificial intelligence (AI) algorithms into energy management and control systems, VPPs can anticipate and adjust to changes in the energy market with a level of improved accuracy. Furthermore, key players in the virtual power plant market are engaging in collaborations and acquisitions to provide enhanced services to various applications. On 10 January 2023, GM, Ford, Google and solar energy producers collaborated to establish standards for scaling up the use of virtual power plants (VPPs), systems for easing loads on electricity grids when supply is short. The virtual power plant partnership (VP3) also aims to shape policy for promoting the use of the systems.

Virtual Power Plant Market Segmentation:

Breakup by Technology:

  • Distribution Generation
  • Demand Response
  • Mixed Asset

Demand response accounts for the majority of the market share

Demand response is preferred to balance electricity supply and demand. It adjusts the consumption of electricity during times of high or low availability. VPPs continuously monitor the electricity grid, including supply, demand, and pricing data, in real time. They also gather information on the state of the distributed energy resources within the system. VPPs use advanced algorithms and ML to forecast electricity demand patterns. They also predict when demand will peak and when there will be excess supply from renewable sources.

Breakup by Source:

  • Renewable Energy
  • Cogeneration
  • Energy Storage

Renewable energy sources can be naturally replenished and are considered eco-friendly because they emit fewer greenhouse gases (GHGs). Their importance in VPPs is significant as they can assist in lowering carbon emissions and supplying eco-friendly and renewable energy.

Cogeneration, also called combined heat and power (CHP), involves the simultaneous generation of electricity and useful heat from a single fuel source such as natural gas, biomass, or waste heat. Moreover, VPPs have the ability to incorporate CHP systems such as industrial CHP plants, district heating systems, and commercial cogeneration units in order to enhance energy efficiency and fully utilize resources. Besides this, cogeneration has the potential to enhance energy efficiency and decrease greenhouse gas emissions.

Energy storage systems play a vital role in VPPs by allowing for the effective control and enhancement of various distributed energy resources. They offer versatility by saving extra energy during times of surplus and discharging it during times of high demand or low renewable energy production.

Breakup by End User:

  • Industrial
  • Commercial
  • Residential

Industrial represents the leading market segment

VPPs help industrial facilities manage and optimize their energy consumption by integrating various DERs like solar panels, wind turbines, combined heat and power (CHP) systems, and energy storage devices. Industrial VPPs participate in demand response programs by changing their energy consumption in response to grid signals or price fluctuations. This helps balance supply and demand on the grid and can generate revenue for industrial facilities. They can also automate load shedding or load shifting processes to reduce energy consumption during peak demand events. They also assist in enhancing energy resilience by enabling seamless transitions between grid power and on-site generation/storage during disruptions.

Breakup by Region:

  • North America
  • United States
  • Canada
  • Asia-Pacific
  • China
  • Japan
  • India
  • South Korea
  • Australia
  • Indonesia
  • Others
  • Europe
  • Germany
  • France
  • United Kingdom
  • Italy
  • Spain
  • Russia
  • Others
  • Latin America
  • Brazil
  • Mexico
  • Others
  • Middle East and Africa

North America leads the market, accounting for the largest virtual power plant market share

The report has also provided a comprehensive analysis of all the major regional markets, which include North America (the United States and Canada); Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and others); Europe (Germany, France, the United Kingdom, Italy, Spain, Russia, and others); Latin America (Brazil, Mexico, and others); and the Middle East and Africa. According to the report, North America represents the largest regional market for virtual power plant.

The rising focus on integrating renewable energy sources, such as wind and solar into the grid is supporting the market growth in the North America region. Besides this, there is an increase in the awareness among individuals about the importance of maintaining grid resilience. Furthermore, there is a rise in the conduction of demand response programs that allow individuals to actively participate in managing their energy consumption. Additionally, the increasing construction of solar and hydel power plants is strengthening the market growth. In addition, there is a rise in the adoption of virtual power plants due to favorable government initiatives. For instance, on 26 July 2023, the California Energy Commission (CEC) approved a new VPP program that aims to help thousands of distributed solar-charged and standalone batteries located at homes and businesses throughout the state to meet the state's growing electricity needs.

Competitive Landscape:

The market research report has also provided a comprehensive analysis of the competitive landscape in the market. Detailed profiles of all major companies have also been provided. Some of the major market players in the virtual power plant industry include ABB Ltd., AGL Energy Ltd., Autogrid Systems Inc., Enel Spa, Flexitricity Limited (Reserve Power Holdings (Jersey) Limited), General Electric Company, Hitachi Ltd., Next Kraftwerke GmbH, Osisoft LLC (AVEVA Group plc), Schneider Electric SE, Siemens Aktiengesellschaft, Sunverge Energy Inc.

(Please note that this is only a partial list of the key players, and the complete list is provided in the report.)

Key market players are investing in research and development (R&D) operations to improve the software that manages distributed energy resources (DERs), thereby increasing virtual power plant market revenue. They are enhancing grid integration capabilities and incorporating AI and ML to optimize energy generation and distribution. They are also working on making their solutions more scalable by designing systems that can easily accommodate additional DERs. Top companies are collaborating with utilities, grid operators, and other players to ensure seamless communication and coordination between the VPP and the grid infrastructure. On 30 June 2022, AutoGrid collaborated with Willdan to accelerate the adoption of heat pump water heaters to decarbonize buildings by replacing emissions-intensive, gas-fired water heaters. This collaboration will leverage AutoGrid's virtual power plant platform to add significant levels of flexible grid capacity.

Virtual Power Plant Market Recent Developments:

22 September 2022: AutoGrid launched one of several VPP projects in collaboration with Canadian manufacturer Mysa, whose line of innovative smart thermostats for electric heating and cooling systems offers robust home energy management capabilities for both consumers and utilities. The initial VPP project with Puget Sound Energy (PSE) supports a targeted demand side program to postpone the buildout of a new substation in the Pacific NorthWest.

10 January 2023: Ford announced the formation of the virtual power plant partnership (VP3), a coalition led by the Rocky Mountain Institute (RMI) that aims to scale the market for virtual power plants to help advance affordable and reliable electric sector decarbonization and support grid resiliency.

24 August 2023: The Public Utility Commission of Texas (PUCT) approved Tesla for launching two energy storage system users in Texas. The first VPP is a distributed energy resource (ADER) project that aims to provide dispatchable power for peak demand loads on the state's electricity grid in Houston and Dallas.

Key Questions Answered in This Report

  • 1.What was the size of the global virtual power plant market in 2024?
  • 2.What is the expected growth rate of the global virtual power plant market during 2025-2033?
  • 3.What are the key factors driving the global virtual power plant market?
  • 4.What has been the impact of COVID-19 on the global virtual power plant market?
  • 5.What is the breakup of the global virtual power plant market based on the technology?
  • 6.What is the breakup of the global virtual power plant market based on the end user?
  • 7.What are the key regions in the global virtual power plant market?
  • 8.Who are the key players/companies in the global virtual power plant market?

Table of Contents

1 Preface

2 Scope and Methodology

  • 2.1 Objectives of the Study
  • 2.2 Stakeholders
  • 2.3 Data Sources
    • 2.3.1 Primary Sources
    • 2.3.2 Secondary Sources
  • 2.4 Market Estimation
    • 2.4.1 Bottom-Up Approach
    • 2.4.2 Top-Down Approach
  • 2.5 Forecasting Methodology

3 Executive Summary

4 Introduction

  • 4.1 Overview
  • 4.2 Key Industry Trends

5 Global Virtual Power Plant Market

  • 5.1 Market Overview
  • 5.2 Market Performance
  • 5.3 Impact of COVID-19
  • 5.4 Market Forecast

6 Market Breakup by Technology

  • 6.1 Distribution Generation
    • 6.1.1 Market Trends
    • 6.1.2 Market Forecast
  • 6.2 Demand Response
    • 6.2.1 Market Trends
    • 6.2.2 Market Forecast
  • 6.3 Mixed Asset
    • 6.3.1 Market Trends
    • 6.3.2 Market Forecast

7 Market Breakup by Source

  • 7.1 Renewable Energy
    • 7.1.1 Market Trends
    • 7.1.2 Market Forecast
  • 7.2 Cogeneration
    • 7.2.1 Market Trends
    • 7.2.2 Market Forecast
  • 7.3 Energy Storage
    • 7.3.1 Market Trends
    • 7.3.2 Market Forecast

8 Market Breakup by End User

  • 8.1 Industrial
    • 8.1.1 Market Trends
    • 8.1.2 Market Forecast
  • 8.2 Commercial
    • 8.2.1 Market Trends
    • 8.2.2 Market Forecast
  • 8.3 Residential
    • 8.3.1 Market Trends
    • 8.3.2 Market Forecast

9 Market Breakup by Region

  • 9.1 North America
    • 9.1.1 United States
      • 9.1.1.1 Market Trends
      • 9.1.1.2 Market Forecast
    • 9.1.2 Canada
      • 9.1.2.1 Market Trends
      • 9.1.2.2 Market Forecast
  • 9.2 Asia-Pacific
    • 9.2.1 China
      • 9.2.1.1 Market Trends
      • 9.2.1.2 Market Forecast
    • 9.2.2 Japan
      • 9.2.2.1 Market Trends
      • 9.2.2.2 Market Forecast
    • 9.2.3 India
      • 9.2.3.1 Market Trends
      • 9.2.3.2 Market Forecast
    • 9.2.4 South Korea
      • 9.2.4.1 Market Trends
      • 9.2.4.2 Market Forecast
    • 9.2.5 Australia
      • 9.2.5.1 Market Trends
      • 9.2.5.2 Market Forecast
    • 9.2.6 Indonesia
      • 9.2.6.1 Market Trends
      • 9.2.6.2 Market Forecast
    • 9.2.7 Others
      • 9.2.7.1 Market Trends
      • 9.2.7.2 Market Forecast
  • 9.3 Europe
    • 9.3.1 Germany
      • 9.3.1.1 Market Trends
      • 9.3.1.2 Market Forecast
    • 9.3.2 France
      • 9.3.2.1 Market Trends
      • 9.3.2.2 Market Forecast
    • 9.3.3 United Kingdom
      • 9.3.3.1 Market Trends
      • 9.3.3.2 Market Forecast
    • 9.3.4 Italy
      • 9.3.4.1 Market Trends
      • 9.3.4.2 Market Forecast
    • 9.3.5 Spain
      • 9.3.5.1 Market Trends
      • 9.3.5.2 Market Forecast
    • 9.3.6 Russia
      • 9.3.6.1 Market Trends
      • 9.3.6.2 Market Forecast
    • 9.3.7 Others
      • 9.3.7.1 Market Trends
      • 9.3.7.2 Market Forecast
  • 9.4 Latin America
    • 9.4.1 Brazil
      • 9.4.1.1 Market Trends
      • 9.4.1.2 Market Forecast
    • 9.4.2 Mexico
      • 9.4.2.1 Market Trends
      • 9.4.2.2 Market Forecast
    • 9.4.3 Others
      • 9.4.3.1 Market Trends
      • 9.4.3.2 Market Forecast
  • 9.5 Middle East and Africa
    • 9.5.1 Market Trends
    • 9.5.2 Market Breakup by Country
    • 9.5.3 Market Forecast

10 SWOT Analysis

  • 10.1 Overview
  • 10.2 Strengths
  • 10.3 Weaknesses
  • 10.4 Opportunities
  • 10.5 Threats

11 Value Chain Analysis

12 Porters Five Forces Analysis

  • 12.1 Overview
  • 12.2 Bargaining Power of Buyers
  • 12.3 Bargaining Power of Suppliers
  • 12.4 Degree of Competition
  • 12.5 Threat of New Entrants
  • 12.6 Threat of Substitutes

13 Price Analysis

14 Competitive Landscape

  • 14.1 Market Structure
  • 14.2 Key Players
  • 14.3 Profiles of Key Players
    • 14.3.1 ABB Ltd.
      • 14.3.1.1 Company Overview
      • 14.3.1.2 Product Portfolio
      • 14.3.1.3 Financials
      • 14.3.1.4 SWOT Analysis
    • 14.3.2 AGL Energy Ltd.
      • 14.3.2.1 Company Overview
      • 14.3.2.2 Product Portfolio
      • 14.3.2.3 Financials
      • 14.3.2.4 SWOT Analysis
    • 14.3.3 Autogrid Systems Inc.
      • 14.3.3.1 Company Overview
      • 14.3.3.2 Product Portfolio
    • 14.3.4 Enel Spa
      • 14.3.4.1 Company Overview
      • 14.3.4.2 Product Portfolio
      • 14.3.4.3 Financials
      • 14.3.4.4 SWOT Analysis
    • 14.3.5 Flexitricity Limited (Reserve Power Holdings (Jersey) Limited)
      • 14.3.5.1 Company Overview
      • 14.3.5.2 Product Portfolio
    • 14.3.6 General Electric Company
      • 14.3.6.1 Company Overview
      • 14.3.6.2 Product Portfolio
      • 14.3.6.3 Financials
      • 14.3.6.4 SWOT Analysis
    • 14.3.7 Hitachi Ltd.
      • 14.3.7.1 Company Overview
      • 14.3.7.2 Product Portfolio
      • 14.3.7.3 Financials
      • 14.3.7.4 SWOT Analysis
    • 14.3.8 Next Kraftwerke GmbH
      • 14.3.8.1 Company Overview
      • 14.3.8.2 Product Portfolio
    • 14.3.9 Osisoft LLC (AVEVA Group plc)
      • 14.3.9.1 Company Overview
      • 14.3.9.2 Product Portfolio
    • 14.3.10 Schneider Electric SE
      • 14.3.10.1 Company Overview
      • 14.3.10.2 Product Portfolio
      • 14.3.10.3 Financials
      • 14.3.10.4 SWOT Analysis
    • 14.3.11 Siemens Aktiengesellschaft
      • 14.3.11.1 Company Overview
      • 14.3.11.2 Product Portfolio
      • 14.3.11.3 Financials
      • 14.3.11.4 SWOT Analysis
    • 14.3.12 Sunverge Energy Inc.
      • 14.3.12.1 Company Overview
      • 14.3.12.2 Product Portfolio
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제