시장보고서
상품코드
1642341

세계의 가상 발전소 시장 : 시장 규모, 점유율, 동향 분석 보고서 - 기술별, 최종 용도별, 지역별 전망 및 예측(2024-2031년)

Global Virtual Power Plant Market Size, Share & Trends Analysis Report By Technology, By End Use (Industrial, Commercial, and Residential), By Regional Outlook and Forecast, 2024 - 2031

발행일: | 리서치사: KBV Research | 페이지 정보: 영문 200 Pages | 배송안내 : 즉시배송

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

가상 발전소 시장 규모는 예측 기간 동안 21.8%의 연평균 복합 성장률(CAGR)로 시장 성장할 전망이며, 2031년까지 189억 7,000만 달러에 달할 것으로 예상되고 있습니다.

KBV Cardinal matrix-가상 발전소 시장 경쟁 분석

KBV Cardinal matrix에서 제시된 분석을 바탕으로 Shell plc와 Tesla, Inc.는 가상 발전소 시장의 선구자입니다. 2021년 2월, Shell은 Next Kraftwerke 인수를 발표했습니다. 이 인수는 2030년까지 연간 560TWh의 전력을 판매하는 쉘의 목표를 지원할 것입니다. Next Kraftwerke는 유럽의 분산형 에너지 유닛을 연결하여 쉘의 신재생 포트폴리오를 강화합니다. Cisco Systems, Inc., Siemens AG 및 Schneider Electric SE와 같은 기업은 가상 발전소 시장의 주요 혁신자의 일부입니다.

시장 성장 요인

풍력, 태양광, 수력 발전과 같은 신재생 에너지원으로의 세계의 전환은 이 시장의 주요 추진력 중 하나입니다. 세계가 탄소 배출량을 줄이고 기후 변화에 대한 노력을 추진하고 있는 가운데, 보다 깨끗하고 지속 가능한 에너지원의 채용이 점점 중시되고 있습니다. 그러나, 신재생 에너지 발전의 변동성(태양광 및 풍력 발전의 간헐성 등)은 그리드의 안정성에 과제를 초래합니다. 따라서 신재생 에너지원과 그리드의 안정성에 대한 수요 증가는 시장의 성장을 견인합니다.

또한 스마트 그리드 기술과 에너지 전환 이니셔티브를 지원하는 정부 정책과 규제는 시장 성장의 주요 원동력입니다. 세계의 많은 정부들은 보다 광범위한 에너지 전환 전략의 일환으로 스마트 그리드 개발을 선호합니다. 스마트 그리드에는 분산 에너지 자원 통합 및 관리에 필수적인 실시간 모니터링, 자동 제어, 데이터 분석 등의 고급 기술이 통합되어 있습니다. 그러므로 세계 정부가 보다 깨끗하고 스마트하며 효율적인 에너지 시스템을 추진하고 있는 가운데 스마트 그리드와 에너지 전환을 지원하는 정부 정책과 규제가 시장 성장을 이끌고 있습니다.

시장 성장 억제요인

그러나 시장 성장을 막는 주요 요인 중 하나는 인프라 개발에 필요한 높은 초기 자본 투자액입니다. VPP의 도입에는 통신 시스템, 에너지 관리 플랫폼, 에너지 저장 시스템의 복잡한 네트워크 구축과 태양광 패널, 풍력 터빈, 배터리 등 다양한 분산 에너지 자원(DER)의 통합이 필요합니다. 그러므로 인프라 개발을 위한 높은 초기 자본 투자액은 시장 성장을 방해하고 있습니다.

기술 전망

기술을 바탕으로 시장은 분산 에너지 자원, 수요 반응 및 혼합 자산으로 나뉩니다. 혼합 자산 부문은 2023년 시장에서 36%의 수익 점유율을 차지했습니다. 혼합 자산은 신재생(태양광, 풍력)과 비신재생 자원(천연가스, 배터리 저장장치)을 포함한 다양한 에너지원을 결합하여 단일 가상 발전소 내에 통합됩니다. 이 부문을 통해 운영자는 신재생 에너지의 변동성과 가스 및 저장 시스템과 같은 보다 안정적인 전원 공급 장치의 균형을 맞추어 운영 유연성을 극대화할 수 있습니다.

최종 용도 전망

최종 용도에 따라 시장은 산업용, 상업용, 주택용으로 나뉩니다. 2023년에는 주택 부문이 시장에서 25%의 수익 점유율을 획득했습니다. 이 부문의 성장은 스마트 홈 기술, 에너지 저장 시스템(가정용 배터리), 신재생 에너지 소스(솔러 패널 등)의 채용 증가에 의해 추진되고 있습니다. 주택 소비자는 에너지 소비를 관리하고 수요 반응 프로그램에 참여하기 위해 이러한 플랜트를 점점 더 많이 사용하고 있으며 에너지 비용을 줄이면서 그리드 안정성에 기여하고 있습니다.

지역 전망

지역별로 보면 시장은 북미, 유럽, 아시아태평양, 라틴아메리카, 중동 및 아프리카에 걸쳐 분석되고 있습니다. 아시아태평양은 2023년 시장에서 27%의 수익 점유율을 창출했습니다. 중국, 일본, 인도 등의 국가에서는 에너지 분배를 최적화하고, 그리드의 혼잡을 줄이고, 태양광과 풍력 등의 신재생 자원을 도입하기 위해서 이러한 플랜트를 채용하고 있습니다. 에너지 안보를 해결하고, 그리드의 신뢰성을 향상시키고, 환경 목표를 달성할 필요성으로 인해 주택과 산업 부문 모두에서 VPP 기술의 채택이 촉진되고 있습니다.

시장 경쟁 및 특성

가상 발전소(VPP) 시장은 지역 기업, 신흥 기업, 틈새 기술 공급자가 지배하는 단편화된 상황입니다. 경쟁의 핵심은 소프트웨어 플랫폼, 통합 기능, 현지화된 에너지 관리 솔루션의 혁신입니다. 소규모 기업은 파트너십, 비용 효율적인 솔루션 및 민첩성을 활용하여 서비스가 뛰어난 시장을 목표로 하고 있으며, 주요 업계 리더가 없는데도 역동적인 기회를 창출하고 있습니다.

목차

제1장 시장 범위 및 조사 방법

  • 시장의 정의
  • 목적
  • 시장 범위
  • 세분화
  • 조사 방법

제2장 시장 요람

  • 주요 하이라이트

제3장 시장 개요

  • 서문
    • 개요
      • 시장구성 및 시나리오
  • 시장에 영향을 미치는 주요 요인
    • 시장 성장 촉진요인
    • 시장 성장 억제요인
    • 시장 기회
    • 시장의 과제

제4장 경쟁 분석-세계

  • KBV Cardinal Matrix
  • 최근 업계 전체의 전략적 전개
    • 파트너십, 협업 및 계약
    • 제품 출시 및 제품 확대
    • 인수 및 합병
  • 시장 점유율 분석(2023년)
  • 주요 성공 전략
    • 주요 전략
    • 주요 전략적 움직임
  • Porter's Five Forces 분석

제5장 세계 시장 : 기술별

  • 세계의 수요 반응 시장 : 지역별
  • 세계의 분산형 에너지 자원 시장 : 지역별
  • 세계의 혼합 자산 시장 : 지역별

제6장 세계 시장 : 최종 용도별

  • 세계의 산업 시장 : 지역별
  • 세계의 상업 시장 : 지역별
  • 세계의 주택 시장 : 지역별

제7장 세계 시장 : 지역별

  • 북미
    • 북미 시장 : 국가별
      • 미국
      • 캐나다
      • 멕시코
      • 기타 북미
  • 유럽
    • 유럽 시장 : 국가별
      • 독일
      • 영국
      • 프랑스
      • 러시아
      • 스페인
      • 이탈리아
      • 기타 유럽
  • 아시아태평양
    • 아시아태평양 시장 : 국가별
      • 중국
      • 일본
      • 인도
      • 한국
      • 호주
      • 말레이시아
      • 기타 아시아태평양
  • 라틴아메리카, 중동 및 아프리카
    • 라틴아메리카, 중동 및 아프리카 시장 : 국가별
      • 브라질
      • 아르헨티나
      • 아랍에미리트(UAE)
      • 사우디아라비아
      • 남아프리카
      • 나이지리아
      • 기타 라틴아메리카, 중동 및 아프리카

제8장 기업 프로파일

  • Siemens AG
  • Toshiba Corporation
  • Shell plc
  • Hitachi, Ltd
  • ABB Ltd
  • Tesla, Inc
  • Robert Bosch GmbH
  • GE Vernova Group
  • Schneider Electric SE
  • Cisco Systems, Inc

제9장 가상 발전소 시장의 성공 필수 조건

AJY 25.03.06

The Global Virtual Power Plant Market size is expected to reach $18.97 billion by 2031, rising at a market growth of 21.8% CAGR during the forecast period.

The North America region witnessed 37% revenue share in the market in 2023. This growth is largely attributed to the region's advanced energy infrastructure, high adoption rates of renewable energy, and strong governmental support for energy innovation. The United States and Canada have been at the forefront of adopting these plants, with numerous pilot projects and state-level incentives encouraging the integration of decentralized energy systems.

The major strategies followed by the market participants are Acquisitions as the key developmental strategy to keep pace with the changing demands of end users. For instance, In May, 2022, Schneider Electric SE announced the acquisition of AutoGrid, an AI-driven optimization specialist for distributed energy resources (DERs). This acquisition strengthens their shared vision for sustainability, electrification, and decarbonization. AutoGrid's AI-powered platform enhances grid efficiency by integrating renewable energy sources, while Schneider Electric continues expanding its residential and commercial focus. Moreover, In January, 2025, ABB Ltd. announced the acquisition of Lumin, a U.S.-based provider of residential energy management systems. The acquisition enhances ABB's position amid growing electricity demand and electrification needs in homes. Lumin's platform enables the integration of energy systems, offering load management and sustainability solutions for smarter communities.

KBV Cardinal Matrix - Virtual Power Plant Market Competition Analysis

Based on the Analysis presented in the KBV Cardinal matrix; Shell plc and Tesla, Inc. are the forerunners in the Virtual Power Plant Market. In February, 2021, Shell plc announced the acquisition of Next Kraftwerke. The acquisition will support Shell's goal of selling 560 TWh of electricity annually by 2030. Next Kraftwerke connects decentralized energy units across Europe, enhancing Shell's renewable portfolio. Companies such as Cisco Systems, Inc., Siemens AG, and Schneider Electric SE are some of the key innovators in Virtual Power Plant Market.

Market Growth Factors

The global shift toward renewable energy sources, such as wind, solar, and hydroelectric power, is one of the key drivers for this market. As the world seeks to reduce carbon emissions and combat climate change, there is an increasing emphasis on adopting cleaner and sustainable energy sources. However, the variable nature of renewable energy generation - such as the intermittent of solar and wind power - creates challenges for grid stability. Thus, increasing demand for renewable energy sources and grid stability drives the market's growth.

Additionally, Government policies and regulations supporting smart grid technologies and energy transition initiatives are major drivers for the growth of the market. Many governments worldwide prioritize developing smart grids as part of their broader energy transition strategies. Smart grids incorporate advanced technologies such as real-time monitoring, automated control, and data analytics, essential for integrating and managing decentralized energy resources. Therefore, as governments worldwide continue to push for cleaner, smarter, and more efficient energy systems, government policies and regulations supporting smart grids and energy transition are driving the market's growth.

Market Restraining Factors

However, One of the primary restraints on the growth of the market is the high initial capital investment required for infrastructure development. Deploying VPPs involves setting up complex networks of communication systems, energy management platforms, and energy storage systems and integrating various distributed energy resources (DERs), such as solar panels, wind turbines, and batteries. Therefore, high initial capital investment for infrastructure development is hindering market growth.

Technology Outlook

Based on technology, the market is divided into distributed energy resource, demand response, and mixed asset. The mixed asset segment held 36% revenue share in the market in 2023. Mixed assets combine different energy sources, including renewable (solar, wind) and non-renewable resources (natural gas, battery storage), integrated within a single virtual power plant. This segment allows operators to maximize operational flexibility by balancing the variability of renewable energy with more stable power sources, such as gas or storage systems.

End Use Outlook

On the basis of end use, the market is segmented into industrial, commercial, and residential. In 2023, the residential segment attained 25% revenue share in the market. This segment's growth is driven by the increasing adoption of smart home technologies, energy storage systems (home batteries), and renewable energy sources (like solar panels). Residential consumers increasingly use these plants to manage their energy consumption and participate in demand response programs, thus contributing to grid stability while lowering energy costs.

Regional Outlook

Region-wise, the market is analyzed across North America, Europe, Asia Pacific, and LAMEA. The Asia Pacific region generated 27% revenue share in the market in 2023. Countries like China, Japan, and India embrace these plants to optimize energy distribution, reduce grid congestion, and incorporate renewable resources such as solar and wind. The need to address energy security, improve grid reliability, and meet environmental goals has spurred the adoption of VPP technologies across both the residential and industrial sectors.

Market Competition and Attributes

The Virtual Power Plant (VPP) market presents a fragmented landscape dominated by regional players, startups, and niche technology providers. Competition centers around innovation in software platforms, integration capabilities, and localized energy management solutions. Smaller players leverage partnerships, cost-effective solutions, and agility to target underserved markets, creating dynamic opportunities despite the absence of major industry leaders.

Recent Strategies Deployed in the Market

  • Dec-2024: ABB Ltd. announced the acquisition of Gamesa Electric's power electronics business from Siemens Gamesa to enhance its renewable power conversion offerings. This acquisition, focusing on wind converters, solar inverters, and battery storage systems, strengthens ABB's position in the growing renewable energy market.
  • Aug-2024: Tesla, Inc. teamed up with Sunrun and expanded its support for Texas' energy grid. Over 150 customers are already enrolled in the program, dispatching solar energy from home batteries during high demand. The collaboration aims to improve grid resilience, lower energy costs, and address weather-related vulnerabilities.
  • Feb-2024: Cisco Systems, Inc. announced the partnership with IGNIS to purchase 60,000 MWh of solar energy annually, covering its European operations. This partnership supports Spain's digital transformation, creates jobs, and contributes to the country's clean energy goals.
  • Jan-2024: Hitachi, Ltd. announced the acquisition of COET, a leading manufacturer of power equipment for electric mobility, rail, and industry. This acquisition strengthens Hitachi Energy's global position in high-power EV charging infrastructure, power electronics, and the grid edge. COET will remain a standalone business, enhancing Hitachi Energy's offerings for sustainable mobility and energy.
  • Nov-2023: Tesla, Inc. launched a Virtual Power Plant (VPP) in Puerto Rico, connecting Powerwall owners to support the power grid. Participants can earn $1 per kWh contributed, with payouts four times a year. The VPP helps prevent outages, reduces reliance on fossil fuels, and could become the world's largest.

List of Key Companies Profiled

  • Siemens AG
  • Toshiba Corporation
  • Shell plc
  • Hitachi, Ltd.
  • ABB Ltd.
  • Tesla, Inc.
  • Robert Bosch GmbH
  • GE Vernova Group
  • Schneider Electric SE
  • Cisco Systems, Inc.

Global Virtual Power Plant Market Report Segmentation

By Technology

  • Demand Response
  • Distributed Energy Resource
  • Mixed Asset

By End Use

  • Industrial
  • Commercial
  • Residential

By Geography

  • North America
    • US
    • Canada
    • Mexico
    • Rest of North America
  • Europe
    • Germany
    • UK
    • France
    • Russia
    • Spain
    • Italy
    • Rest of Europe
  • Asia Pacific
    • China
    • Japan
    • India
    • South Korea
    • Australia
    • Malaysia
    • Rest of Asia Pacific
  • LAMEA
    • Brazil
    • Argentina
    • UAE
    • Saudi Arabia
    • South Africa
    • Nigeria
  • Rest of LAMEA

Table of Contents

Chapter 1. Market Scope & Methodology

  • 1.1 Market Definition
  • 1.2 Objectives
  • 1.3 Market Scope
  • 1.4 Segmentation
    • 1.4.1 Global Virtual Power Plant Market, by Technology
    • 1.4.2 Global Virtual Power Plant Market, by End Use
    • 1.4.3 Global Virtual Power Plant Market, by Geography
  • 1.5 Methodology for the research

Chapter 2. Market at a Glance

  • 2.1 Key Highlights

Chapter 3. Market Overview

  • 3.1 Introduction
    • 3.1.1 Overview
      • 3.1.1.1 Market Composition and Scenario
  • 3.2 Key Factors Impacting the Market
    • 3.2.1 Market Drivers
    • 3.2.2 Market Restraints
    • 3.2.3 Market Opportunities
    • 3.2.4 Market Challenges

Chapter 4. Competition Analysis - Global

  • 4.1 KBV Cardinal Matrix
  • 4.2 Recent Industry Wide Strategic Developments
    • 4.2.1 Partnerships, Collaborations and Agreements
    • 4.2.2 Product Launches and Product Expansions
    • 4.2.3 Acquisition and Mergers
  • 4.3 Market Share Analysis, 2023
  • 4.4 Top Winning Strategies
    • 4.4.1 Key Leading Strategies: Percentage Distribution (2020-2024)
    • 4.4.2 Key Strategic Move: (Mergers & Acquisition: 2021, Feb - 2025, Jan) Leading Players
  • 4.5 Porter Five Forces Analysis

Chapter 5. Global Virtual Power Plant Market by Technology

  • 5.1 Global Demand Response Market by Region
  • 5.2 Global Distributed Energy Resource Market by Region
  • 5.3 Global Mixed Asset Market by Region

Chapter 6. Global Virtual Power Plant Market by End Use

  • 6.1 Global Industrial Market by Region
  • 6.2 Global Commercial Market by Region
  • 6.3 Global Residential Market by Region

Chapter 7. Global Virtual Power Plant Market by Region

  • 7.1 North America Virtual Power Plant Market
    • 7.1.1 North America Virtual Power Plant Market by Technology
      • 7.1.1.1 North America Demand Response Market by Country
      • 7.1.1.2 North America Distributed Energy Resource Market by Country
      • 7.1.1.3 North America Mixed Asset Market by Country
    • 7.1.2 North America Virtual Power Plant Market by End Use
      • 7.1.2.1 North America Industrial Market by Country
      • 7.1.2.2 North America Commercial Market by Country
      • 7.1.2.3 North America Residential Market by Country
    • 7.1.3 North America Virtual Power Plant Market by Country
      • 7.1.3.1 US Virtual Power Plant Market
        • 7.1.3.1.1 US Virtual Power Plant Market by Technology
        • 7.1.3.1.2 US Virtual Power Plant Market by End Use
      • 7.1.3.2 Canada Virtual Power Plant Market
        • 7.1.3.2.1 Canada Virtual Power Plant Market by Technology
        • 7.1.3.2.2 Canada Virtual Power Plant Market by End Use
      • 7.1.3.3 Mexico Virtual Power Plant Market
        • 7.1.3.3.1 Mexico Virtual Power Plant Market by Technology
        • 7.1.3.3.2 Mexico Virtual Power Plant Market by End Use
      • 7.1.3.4 Rest of North America Virtual Power Plant Market
        • 7.1.3.4.1 Rest of North America Virtual Power Plant Market by Technology
        • 7.1.3.4.2 Rest of North America Virtual Power Plant Market by End Use
  • 7.2 Europe Virtual Power Plant Market
    • 7.2.1 Europe Virtual Power Plant Market by Technology
      • 7.2.1.1 Europe Demand Response Market by Country
      • 7.2.1.2 Europe Distributed Energy Resource Market by Country
      • 7.2.1.3 Europe Mixed Asset Market by Country
    • 7.2.2 Europe Virtual Power Plant Market by End Use
      • 7.2.2.1 Europe Industrial Market by Country
      • 7.2.2.2 Europe Commercial Market by Country
      • 7.2.2.3 Europe Residential Market by Country
    • 7.2.3 Europe Virtual Power Plant Market by Country
      • 7.2.3.1 Germany Virtual Power Plant Market
        • 7.2.3.1.1 Germany Virtual Power Plant Market by Technology
        • 7.2.3.1.2 Germany Virtual Power Plant Market by End Use
      • 7.2.3.2 UK Virtual Power Plant Market
        • 7.2.3.2.1 UK Virtual Power Plant Market by Technology
        • 7.2.3.2.2 UK Virtual Power Plant Market by End Use
      • 7.2.3.3 France Virtual Power Plant Market
        • 7.2.3.3.1 France Virtual Power Plant Market by Technology
        • 7.2.3.3.2 France Virtual Power Plant Market by End Use
      • 7.2.3.4 Russia Virtual Power Plant Market
        • 7.2.3.4.1 Russia Virtual Power Plant Market by Technology
        • 7.2.3.4.2 Russia Virtual Power Plant Market by End Use
      • 7.2.3.5 Spain Virtual Power Plant Market
        • 7.2.3.5.1 Spain Virtual Power Plant Market by Technology
        • 7.2.3.5.2 Spain Virtual Power Plant Market by End Use
      • 7.2.3.6 Italy Virtual Power Plant Market
        • 7.2.3.6.1 Italy Virtual Power Plant Market by Technology
        • 7.2.3.6.2 Italy Virtual Power Plant Market by End Use
      • 7.2.3.7 Rest of Europe Virtual Power Plant Market
        • 7.2.3.7.1 Rest of Europe Virtual Power Plant Market by Technology
        • 7.2.3.7.2 Rest of Europe Virtual Power Plant Market by End Use
  • 7.3 Asia Pacific Virtual Power Plant Market
    • 7.3.1 Asia Pacific Virtual Power Plant Market by Technology
      • 7.3.1.1 Asia Pacific Demand Response Market by Country
      • 7.3.1.2 Asia Pacific Distributed Energy Resource Market by Country
      • 7.3.1.3 Asia Pacific Mixed Asset Market by Country
    • 7.3.2 Asia Pacific Virtual Power Plant Market by End Use
      • 7.3.2.1 Asia Pacific Industrial Market by Country
      • 7.3.2.2 Asia Pacific Commercial Market by Country
      • 7.3.2.3 Asia Pacific Residential Market by Country
    • 7.3.3 Asia Pacific Virtual Power Plant Market by Country
      • 7.3.3.1 China Virtual Power Plant Market
        • 7.3.3.1.1 China Virtual Power Plant Market by Technology
        • 7.3.3.1.2 China Virtual Power Plant Market by End Use
      • 7.3.3.2 Japan Virtual Power Plant Market
        • 7.3.3.2.1 Japan Virtual Power Plant Market by Technology
        • 7.3.3.2.2 Japan Virtual Power Plant Market by End Use
      • 7.3.3.3 India Virtual Power Plant Market
        • 7.3.3.3.1 India Virtual Power Plant Market by Technology
        • 7.3.3.3.2 India Virtual Power Plant Market by End Use
      • 7.3.3.4 South Korea Virtual Power Plant Market
        • 7.3.3.4.1 South Korea Virtual Power Plant Market by Technology
        • 7.3.3.4.2 South Korea Virtual Power Plant Market by End Use
      • 7.3.3.5 Australia Virtual Power Plant Market
        • 7.3.3.5.1 Australia Virtual Power Plant Market by Technology
        • 7.3.3.5.2 Australia Virtual Power Plant Market by End Use
      • 7.3.3.6 Malaysia Virtual Power Plant Market
        • 7.3.3.6.1 Malaysia Virtual Power Plant Market by Technology
        • 7.3.3.6.2 Malaysia Virtual Power Plant Market by End Use
      • 7.3.3.7 Rest of Asia Pacific Virtual Power Plant Market
        • 7.3.3.7.1 Rest of Asia Pacific Virtual Power Plant Market by Technology
        • 7.3.3.7.2 Rest of Asia Pacific Virtual Power Plant Market by End Use
  • 7.4 LAMEA Virtual Power Plant Market
    • 7.4.1 LAMEA Virtual Power Plant Market by Technology
      • 7.4.1.1 LAMEA Demand Response Market by Country
      • 7.4.1.2 LAMEA Distributed Energy Resource Market by Country
      • 7.4.1.3 LAMEA Mixed Asset Market by Country
    • 7.4.2 LAMEA Virtual Power Plant Market by End Use
      • 7.4.2.1 LAMEA Industrial Market by Country
      • 7.4.2.2 LAMEA Commercial Market by Country
      • 7.4.2.3 LAMEA Residential Market by Country
    • 7.4.3 LAMEA Virtual Power Plant Market by Country
      • 7.4.3.1 Brazil Virtual Power Plant Market
        • 7.4.3.1.1 Brazil Virtual Power Plant Market by Technology
        • 7.4.3.1.2 Brazil Virtual Power Plant Market by End Use
      • 7.4.3.2 Argentina Virtual Power Plant Market
        • 7.4.3.2.1 Argentina Virtual Power Plant Market by Technology
        • 7.4.3.2.2 Argentina Virtual Power Plant Market by End Use
      • 7.4.3.3 UAE Virtual Power Plant Market
        • 7.4.3.3.1 UAE Virtual Power Plant Market by Technology
        • 7.4.3.3.2 UAE Virtual Power Plant Market by End Use
      • 7.4.3.4 Saudi Arabia Virtual Power Plant Market
        • 7.4.3.4.1 Saudi Arabia Virtual Power Plant Market by Technology
        • 7.4.3.4.2 Saudi Arabia Virtual Power Plant Market by End Use
      • 7.4.3.5 South Africa Virtual Power Plant Market
        • 7.4.3.5.1 South Africa Virtual Power Plant Market by Technology
        • 7.4.3.5.2 South Africa Virtual Power Plant Market by End Use
      • 7.4.3.6 Nigeria Virtual Power Plant Market
        • 7.4.3.6.1 Nigeria Virtual Power Plant Market by Technology
        • 7.4.3.6.2 Nigeria Virtual Power Plant Market by End Use
      • 7.4.3.7 Rest of LAMEA Virtual Power Plant Market
        • 7.4.3.7.1 Rest of LAMEA Virtual Power Plant Market by Technology
        • 7.4.3.7.2 Rest of LAMEA Virtual Power Plant Market by End Use

Chapter 8. Company Profiles

  • 8.1 Siemens AG
    • 8.1.1 Company Overview
    • 8.1.2 Financial Analysis
    • 8.1.3 Segmental and Regional Analysis
    • 8.1.4 Research & Development Expense
    • 8.1.5 Recent strategies and developments:
      • 8.1.5.1 Product Launches and Product Expansions:
    • 8.1.6 SWOT Analysis
  • 8.2 Toshiba Corporation
    • 8.2.1 Company Overview
    • 8.2.2 Financial Analysis
    • 8.2.3 Segmental and Regional Analysis
    • 8.2.4 Research and Development Expense
    • 8.2.5 Recent strategies and developments:
      • 8.2.5.1 Product Launches and Product Expansions:
    • 8.2.6 SWOT Analysis
  • 8.3 Shell plc
    • 8.3.1 Company Overview
    • 8.3.2 Financial Analysis
    • 8.3.3 Segmental and Regional Analysis
    • 8.3.4 Research & Development Expenses
    • 8.3.5 Recent strategies and developments:
      • 8.3.5.1 Acquisition and Mergers:
    • 8.3.6 SWOT Analysis
  • 8.4 Hitachi, Ltd.
    • 8.4.1 Company Overview
    • 8.4.2 Financial Analysis
    • 8.4.3 Segmental and Regional Analysis
    • 8.4.4 Research & Development Expenses
    • 8.4.5 Recent strategies and developments:
      • 8.4.5.1 Product Launches and Product Expansions:
      • 8.4.5.2 Acquisition and Mergers:
    • 8.4.6 SWOT Analysis
  • 8.5 ABB Ltd.
    • 8.5.1 Company Overview
    • 8.5.2 Financial Analysis
    • 8.5.3 Segmental and Regional Analysis
    • 8.5.4 Research & Development Expense
    • 8.5.5 Recent strategies and developments:
      • 8.5.5.1 Acquisition and Mergers:
    • 8.5.6 SWOT Analysis
  • 8.6 Tesla, Inc.
    • 8.6.1 Company Overview
    • 8.6.2 Financial Analysis
    • 8.6.3 Segmental and Regional Analysis
    • 8.6.4 Research & Development Expense
    • 8.6.5 Recent strategies and developments:
      • 8.6.5.1 Partnerships, Collaborations, and Agreements:
      • 8.6.5.2 Product Launches and Product Expansions:
    • 8.6.6 SWOT Analysis
  • 8.7 Robert Bosch GmbH
    • 8.7.1 Company Overview
    • 8.7.2 Financial Analysis
    • 8.7.3 Segmental and Regional Analysis
    • 8.7.4 Research & Development Expense
    • 8.7.5 SWOT Analysis
  • 8.8 GE Vernova Group
    • 8.8.1 Company Overview
    • 8.8.2 SWOT Analysis
  • 8.9 Schneider Electric SE
    • 8.9.1 Company Overview
    • 8.9.2 Financial Analysis
    • 8.9.3 Segmental and Regional Analysis
    • 8.9.4 Research & Development Expense
    • 8.9.5 Recent strategies and developments:
      • 8.9.5.1 Acquisition and Mergers:
    • 8.9.6 SWOT Analysis
  • 8.10. Cisco Systems, Inc.
    • 8.10.1 Company Overview
    • 8.10.2 Financial Analysis
    • 8.10.3 Regional Analysis
    • 8.10.4 Research & Development Expense
    • 8.10.5 Recent strategies and developments:
      • 8.10.5.1 Partnerships, Collaborations, and Agreements:
    • 8.10.6 SWOT Analysis

Chapter 9. Winning Imperatives of Virtual Power Plant Market

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제