½ÃÀ庸°í¼­
»óÇ°ÄÚµå
1574787

¼¼°èÀÇ À¯Àü ¿¡Ã³ ½ÃÀå : ÀåÄ¡ À¯Çü, ¿ëµµ, Çü»ó ½ºÄÉÀϸµ, ÃÖÁ¾»ç¿ëÀÚ »ê¾÷, ¿¡Äª ±â¼ú, Àç·á À¯Çüº° ¿¹Ãø(2025-2030³â)

Dielectric Etchers Market by Equipment Type, Application, Geometry Scaling, End-User Industry, Etching Technology, Material Type - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 188 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

À¯Àü ¿¡Ã³ ½ÃÀåÀº 2023³â¿¡ 15¾ï ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2024³â¿¡´Â 16¾ï 3,000¸¸ ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, CAGR 8.08%·Î ¼ºÀåÇÏ°í, 2030³â¿¡´Â 25¾ï 9,000¸¸ ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

À¯Àü ¿¡Ã³´Â ¹ÝµµÃ¼ Á¦Á¶¿¡ ÇʼöÀûÀÎ ±¸¼º¿ä¼ÒÀ̸ç, ¸¶ÀÌÅ©·ÎĨ »ó¿¡ Á¤¹ÐÇÑ È¸·Î ÆÐÅÏÀ» Çü¼ºÇϱâ À§ÇØ Àý¿¬¸·À» ¿¡ÄªÇϴµ¥ »ç¿ëµË´Ï´Ù. ÀÌ·¯ÇÑ ¿¡Ã³´Â ½º¸¶Æ®Æù, ³ëÆ®ºÏ ¹× ±âŸ µðÁöÅÐ Àåºñ¿Í °°Àº ÃֽŠÀüÀÚ Àåºñ¿¡ ÇʼöÀûÀÎ ³ôÀº ¿¡Äª ¼Óµµ, ¼±Åüº ¹× À̹漺ÀÌ ÇÊ¿äÇÑ ÇÁ·Î¼¼½º¿¡¼­ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. À¯Àü ¿¡Ã³°¡ ¿ä±¸µÇ´Â ¹è°æ¿¡´Â ¹ÝµµÃ¼ »ê¾÷¿¡¼­ ¼ÒÇüÈ­ µ¿ÇâÀÌ ÀÖ¾î º¸´Ù ÀÛ°í °í¼º´ÉÀΠĨ ¼ö¿ä°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ±× ¿ëµµ´Â ¸Þ¸ð¸® Ĩ, ÇÁ·Î¼¼¼­, ´Ù¾çÇÑ ½º¸¶Æ® ±â¼ú ºÎÇ°À» Æ÷ÇÔÇÑ ¿©·¯ ¹ÝµµÃ¼ ÀåÄ¡¸¦ Æ÷ÇÔÇÕ´Ï´Ù. À¯Àü ¿¡Ã³´Â ÁÖ·Î Åë½Å, °¡Àü, ÀÚµ¿Â÷, »ê¾÷±â°è µîÀÇ »ê¾÷¿ëÀ¸·Î °³¹ßµÇ¾î ÀÌ·¯ÇÑ ºÐ¾ßÀÇ ¼ºÀå°ú È®´ë¿¡ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ°í ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ(2023) 15¾ï ´Þ·¯
¿¹Ãø ¿¬µµ (2024) 16¾ï 3,000¸¸ ´Þ·¯
¿¹Ãø³â(2030) 25¾ï 9,000¸¸ ´Þ·¯
CAGR(%) 8.08%

À¯Àü ¿¡Ã³ ½ÃÀåÀº IoT µð¹ÙÀ̽ºÀÇ ±Þ¼ÓÇÑ º¸±Þ, 5G ±â¼ú ÃßÁø, ÀÚµ¿Â÷ ÀüÀÚ Á¦Ç°ÀÇ ¹ßÀü, °í¼º´É ¸¶ÀÌÅ©·ÎĨÀ» ÇÊ¿ä·Î ÇÏ´Â µ¥ÀÌÅͼ¾ÅÍÀÇ Æø¹ßÀûÀÎ ¼ºÀå µî ¸î °¡Áö ÁÖ¿ä ¿äÀε鿡 ÀÇÇØ °ßÀεǰí ÀÖ½À´Ï´Ù. ±×·¯³ª ½ÃÀåÀº ¿¬±¸ °³¹ß°ú °ü·ÃµÈ ³ôÀº ºñ¿ë, ±â¼ú ÁøÈ­ÀÇ º¹ÀâÇÑ ¼ºÁú, ÁÖ¿ä ½ÃÀå ±â¾÷ °£ÀÇ Å« °æÀï°ú °°Àº °úÁ¦¿¡ Á÷¸éÇÏ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Áö¿ª ±ÔÁ¦ ¹× ¹«¿ª ¸¶ÂûÀÌ Á¦Á¶ ¹× °ø±Þ¸Á¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ¼ºÀåÀ» ´õ¿í ÀúÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

¹Ý´ë·Î º¸´Ù ¿¡³ÊÁö È¿À²ÀûÀÎ °øÁ¤ °³¹ß, ¿¡Ã³ Á¤¹Ðµµ Çâ»ó, ¹ÝµµÃ¼ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇÏ´Â »ý»ê ´É·Â È®´ë µî ¿¡Ã³ ±â¼ú °³¼±¿¡ ÀýÈ£ÀÇ ±âȸ°¡ ÀÖ½À´Ï´Ù. Áö¼Ó °¡´ÉÇÏ°í ȯ°æ ģȭÀû ÀÎ ¿¡Äª ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÅõÀÚ´Â ³ì»ö Á¦Á¶ °üÇàÀ¸·ÎÀÇ ¼¼°è º¯È­¿¡ µû¸¥ Çõ½ÅÀÇ À¯¸Á ºÐ¾ßÀÔ´Ï´Ù. ½ÃÀå °æÀïÀÌ Ä¡¿­ÇÏ°í ºü¸£°Ô º¯È­ÇÏ°í Àֱ⠶§¹®¿¡ »õ·Î¿î ±âȸ¸¦ È¿°úÀûÀ¸·Î ÆľÇÇϱâ À§Çؼ­´Â Áö¼ÓÀûÀÎ Çõ½Å, Çù¾÷, ±â¼ú Çâ»óÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾ç µî ÀÏ·ºÆ®·Î´Ð½º »ê¾÷ÀÌ ±Þ¼ºÀåÇÏ°í ÀÖ´Â Áö¿ª¿¡ ÃÊÁ¡À» ¸ÂÃß°í, AI¸¦ È°¿ëÇÑ ÇÁ·Î¼¼½º ÃÖÀûÈ­ ¹× ÀÚµ¿È­ µîÀÇ ÃÖ÷´Ü ±â¼úÀ» ä¿ëÇÔÀ¸·Î½á °æÀï ¿ìÀ§¿Í ½ÃÀå Æ÷Áö¼Å´×À» ´õ¿í ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå ¿ªÇÐ: ±Þ¼ÓÈ÷ ÁøÈ­ÇÏ´Â À¯Àü ¿¡Ã³ ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

À¯Àü ¿¡Ã³ ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿Àû ÀÎ »óÈ£ ÀÛ¿ë¿¡ ÀÇÇØ º¯¸ðÇÏ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ ÁøÈ­¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÅõÀÚ°áÁ¤, Àü·«Àû °áÁ¤ Á¤¹ÐÈ­, »õ·Î¿î ºñÁî´Ï½º ±âȸ ȹµæ¿¡ ´ëºñÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆľÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ °æ°¨ÇÒ ¼ö ÀÖÀ» »Ó¸¸ ¾Æ´Ï¶ó, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë ¶Ç´Â ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ»º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ´Ù¾çÇÑ ÃÖÁ¾ ÀÌ¿ë »ê¾÷¿¡¼­ÀÇ Ã·´Ü ¸¶ÀÌÅ©·Î ÀÏ·ºÆ®·Î´Ð½º ¹× ¹ÝµµÃ¼ µð¹ÙÀ̽º ¼ö¿ä Áõ°¡
    • º¸´Ù È¿À²ÀûÀÌ°í Á¤¹ÐÇÑ À¯Àüü ¿¡Äª °øÁ¤À¸·Î À̾îÁö´Â Áö¼ÓÀûÀÎ ±â¼ú Áøº¸
    • ¹ÝµµÃ¼ Á¦Á¶ ±â¼úÀÇ ¿¬±¸ °³¹ß¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡
    • »ç¹°ÀÎÅͳÝ(IoT) ¹× ½ÅÈï±â¼úÀÇ Ã¤¿ë È®´ë°¡ ÷´Ü ¹ÝµµÃ¼ µð¹ÙÀ̽ºÀÇ Çʿ伺À» ÃËÁø
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ±Þ¼ÓÇÑ ±â¼ú Çõ½Å°ú À¯Àüü ¿¡Äª¿ë ±âÁ¸ ÀåÄ¡ÀÇ ¾÷±×·¹À̵忡 °É¸®´Â °íºñ¿ë
    • À¯Àüü ¿¡ÄªÀÇ ÀÛ¾÷ È¿À²¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ¼÷·Ã ³ëµ¿ÀÚ ºÎÁ·°ú ±¤¹üÀ§ÇÑ ÈÆ·Ã ¿ä°Ç
  • ½ÃÀå ±âȸ
    • ½ÃÀå ¿ä±¸¸¦ ÃæÁ·½ÃÅ°±â À§ÇØ 5G ¹× IoT µð¹ÙÀ̽º Á¦Á¶¿¡ À־ÀÇ À¯Àü ¿¡Ã³ÀÇ ÅëÇÕÀÌ È®´ë
    • °íÁ¤¹Ð ¸¶ÀÌÅ©·Î ÀÏ·ºÆ®·Î´Ð½º µð¹ÙÀ̽ºÀÇ »ý»ê¿¡ À־ÀÇ À¯Àü ¿¡Ã³ÀÇ Ä¿½ºÅ͸¶ÀÌÁî
    • À¯Àü ¿¡Ã³¿¡ À־ÀÇ ÀÚµ¿È­¿Í AIÀÇ Ã¤¿ë¿¡ ÀÇÇÑ È¿À²°ú Á¤¹ÐµµÀÇ Çâ»ó
  • ½ÃÀåÀÇ °úÁ¦
    • ±ÔÁ¦ ¿ä°ÇÀ» ÃæÁ·Çϱâ À§ÇØ À¯Àü ¿¡Ã³ÀÇ Á¦Á¶¿¡ À־ Áö¼Ó °¡´ÉÇÏ°í ȯ°æ ģȭÀûÀÎ Á¦Á¶ °øÁ¤À» È®º¸ÇÏ´Â °Í
    • ´Ù¾çÇÑ ¾÷°è ƯÀ¯ÀÇ ¿ëµµ¿¡ ´ëÀÀÇÏ´Â Ä¿½ºÅ͸¶ÀÌÁî °¡´ÉÇÑ À¯Àü ¿¡Ã³¿¡ ´ëÇÑ ¼ö¿äÀÇ °íÁ¶¿¡ ´ëÀÀ

Porter's Five Forces : À¯Àü ¿¡Ã³ ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â À¯Àü ¿¡Ã³ ½ÃÀå °æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Porter's Five Force Framework´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡ÇÏ°í Àü·«Àû ±âȸ¸¦ Ž±¸ÇÏ´Â ¸íÈ®ÇÑ ±â¼úÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÅëÂûÀ» ÅëÇØ ±â¾÷Àº ÀÚ»çÀÇ °­Á¡À» È°¿ëÇÏ°í, ¾àÁ¡À» ÇØ°áÇÏ°í, ÀáÀçÀûÀÎ °úÁ¦¸¦ ÇÇÇÒ ¼ö ÀÖÀ¸¸ç, º¸´Ù °­ÀÎÇÑ ½ÃÀå¿¡¼­ÀÇ Æ÷Áö¼Å´×À» º¸ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : À¯Àü ¿¡Ã³ ½ÃÀå¿¡¼­ ¿ÜºÎ ¿µÇâÀ» ÆľÇ

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº À¯Àü ½Ä°¢ ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇϴµ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀÎ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¾ÕÀ¸·Î ¿¹»óµÇ´Â Àû±ØÀûÀÎ ÀÇ»ç °áÁ¤À» ÇÒ Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® : À¯Àü ¿¡Ã³ ½ÃÀå °æÀï ±¸µµ ÆľÇ

À¯Àü ¿¡Ã³ ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍ, °í°´ ±â¹Ý, ¼ºÀå·ü µî ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀï Æ÷Áö¼Å´×À» ¹àÈú ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ½ÃÀå ÁýÁß, ´ÜÆíÈ­, ÅëÇÕ µ¿ÇâÀ» ¹àÇô³»°í º¥´õµéÀº °æÀïÀÌ Ä¡¿­ÇØÁö´Â °¡¿îµ¥ ÀÚ»çÀÇ ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç °áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ Áö½ÄÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º : À¯Àü ¿¡Ã³ ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â À¯Àü ¿¡Ã³ ½ÃÀå¿¡¼­ °ø±Þ¾÷ü¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ Çà·ÄÀ» ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº °ø±Þ¾÷üÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±âÁØÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ¸Â´Â ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ³× °¡Áö »çºÐ¸éÀ» ÅëÇØ °ø±Þ¾÷ü¸¦ ¸íÈ®ÇÏ°í Á¤È®ÇÏ°Ô ¼¼ºÐÈ­ÇÏ¿© Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ÆľÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× Ãßõ : À¯Àü ¿¡Ã³ ½ÃÀå¿¡¼­ ¼º°øÀ» À§ÇÑ ±æÀ» ±×¸®±â

À¯Àü ¿¡Ã³ ½ÃÀåÀÇ Àü·« ºÐ¼®Àº ¼¼°è ½ÃÀå¿¡¼­ÀÇ Á¸À縦 °­È­ÇÏ·Á´Â ±â¾÷¿¡ ÇʼöÀûÀÔ´Ï´Ù. ÁÖ¿ä ÀÚ¿ø, ´É·Â ¹× ¼º°ú ÁöÇ¥¸¦ °ËÅäÇÔÀ¸·Î½á ±â¾÷Àº ¼ºÀå ±âȸ¸¦ ÆľÇÇÏ°í °³¼±À» À§ÇØ ³ë·ÂÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ °æÀï ±¸µµ¿¡¼­ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ È°¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö Àִ üÁ¦¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀåÀÇ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ: ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ: ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆľÇÇÏ°í ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡ÇÏ¸ç ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­: ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, R&D È°µ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾ò°í ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡ ´ë´äÇÏ°í ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹® ¹× Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ¡¤Ã¶¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • ´Ù¾çÇÑ ÃÖÁ¾ ÀÌ¿ë »ê¾÷¿¡ À־ÀÇ Ã·´Ü ¸¶ÀÌÅ©·Î ÀÏ·ºÆ®·Î´Ð½º ¹× ¹ÝµµÃ¼ µð¹ÙÀ̽º ¼ö¿ä Áõ°¡
      • º¸´Ù È¿À²ÀûÀÌ°í Á¤È®ÇÑ À¯Àüü ¿¡Äª °øÁ¤À¸·Î À̾îÁö´Â Áö¼ÓÀûÀÎ ±â¼ú Áøº¸
      • ¹ÝµµÃ¼ Á¦Á¶ ±â¼úÀÇ ¿¬±¸ °³¹ß¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡
      • »ç¹°ÀÎÅͳÝ(IoT)°ú ½ÅÈï±â¼úÀÇ µµÀÔ È®´ë·Î ÷´Ü ¹ÝµµÃ¼ µð¹ÙÀ̽ºÀÇ Çʿ伺ÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.
    • ¾ïÁ¦¿äÀÎ
      • ±Þ¼ÓÇÑ ±â¼ú º¯È­¿Í À¯Àüü ¿¡Äª¿ë ±âÁ¸ ÀåÄ¡ÀÇ ¾÷±×·¹À̵忡 ÇÊ¿äÇÑ ¸¹Àº ºñ¿ë
      • ¼÷·Ã ³ëµ¿ÀÚÀÇ ºÎÁ·°ú ±¤¹üÀ§ÇÑ Æ®·¹ÀÌ´× ¿ä°ÇÀÌ À¯Àüü ¿¡ÄªÀÇ ¿î¿ë È¿À²¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ´Ù
    • ±âȸ
      • ½ÃÀåÀÇ ¿ä±¸¿¡ ºÎÀÀÇϱâ À§ÇØ, 5G ¹× IoT µð¹ÙÀ̽º »ý»ê¿¡ À־ÀÇ À¯Àü ¿¡Ã³ÀÇ ÅëÇÕÀ» È®´ë
      • °íÁ¤¹Ð ¸¶ÀÌÅ©·Î ÀÏ·ºÆ®·Î´Ð½º µð¹ÙÀ̽º¸¦ Á¦Á¶Çϱâ À§ÇÑ À¯Àü ¿¡Ã³ÀÇ Ä¿½ºÅ͸¶ÀÌÁî
      • À¯Àü ¿¡Ã³¿¡ ÀÚµ¿È­¿Í AI¸¦ µµÀÔÇÏ¿© È¿À²¼º°ú Á¤¹Ðµµ¸¦ Çâ»ó
    • °úÁ¦
      • ±ÔÁ¦ ¿ä°ÇÀ» ¸¸Á·½ÃÅ°±â À§Çؼ­, À¯Àü ¿¡Ã³ÀÇ »ý»ê¿¡ À־ Áö¼Ó °¡´ÉÇÏ°í ȯ°æ ģȭÀûÀÎ Á¦Á¶ °øÁ¤¸¦ È®º¸
      • ´Ù¾çÇÑ ¾÷°è °íÀ¯ÀÇ ¿ëµµ¿¡ ´ëÀÀÇÏ´Â Ä¿½ºÅ͸¶ÀÌÁî °¡´ÉÇÑ À¯Àü ¿¡Ã³ ¼ö¿äÀÇ °íÁ¶¿¡ ´ëÀÀ
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡
    • °æÁ¦
    • »ç±³
    • ±â¼ú
    • ¹ý·ü
    • ȯ°æ

Á¦6Àå À¯Àü ¿¡Ã³ ½ÃÀå : ±â±â À¯Çüº°

  • µà¾ó ÁÖÆļö À¯Àü ¿¡Ã³
  • °íÁ¾È¾ºñ À¯Àü ¿¡Ã³
  • ÀüÅëÀûÀÎ À¯Àü ¿¡Ã³
  • ÃÊ°íÁ¾È¾ºñ ¿¡Ã³

Á¦7Àå À¯Àü ¿¡Ã³ ½ÃÀå : ¿ëµµº°

  • °í±Þ ÆÐŰ¡
  • MEMS Á¦Á¶
  • ¹ÝµµÃ¼ Á¦Á¶
    • ¹é¿£µå Á¦Á¶
    • ÇÁ·ÐÆ®¿£µå Á¦Á¶

Á¦8Àå À¯Àü ¿¡Ã³ ½ÃÀå : Áö¿À¸ÞÆ®¸® ½ºÄÉÀϸµº°

  • 10nm ÀÌ»ó
  • 3nm ÀÌÇÏ
  • 5nm
  • 7nm

Á¦9Àå À¯Àü ¿¡Ã³ ½ÃÀå : ÃÖÁ¾ »ç¿ë ¾÷°èº°

  • ÀÚµ¿Â÷
  • °¡Àü
  • ÇコÄɾî
  • »ê¾÷
  • Åë½Å

Á¦10Àå À¯Àü ¿¡Ã³ ½ÃÀå : ¿¡Äª ±â¼úº°

  • ½ÉÃþ ¹ÝÀÀ¼º ÀÌ¿Â ¿¡Äª
  • ÇöóÁ ¿¡Äª
  • ¹ÝÀÀ¼º ÀÌ¿Â ¿¡Äª
    • ¿ë·® °áÇÕ ÇöóÁ
    • À¯µµ °áÇÕ ÇöóÁ
  • ½À½Ä ¿¡Äª

Á¦11Àå À¯Àü ¿¡Ã³ ½ÃÀå : ¼ÒÀç À¯Çüº°

  • ÀúÀ¯ÀüÀ² À¯Àüü
  • ÀÌ»êÈ­±Ô¼Ò(SiO2)
  • ÁúÈ­±Ô¼Ò(Si3N4)

Á¦12Àå ¾Æ¸Þ¸®Ä«ÀÇ À¯Àü ¿¡Ã³ ½ÃÀå

  • ¾Æ¸£ÇîƼ³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦13Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ À¯Àü ¿¡Ã³ ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦14Àå À¯·´¡¤Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ À¯Àü ¿¡Ã³ ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍÅ°
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦15Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼® 2023
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
  • Àü·« ºÐ¼®°ú Á¦¾È
JHS 24.10.30

The Dielectric Etchers Market was valued at USD 1.50 billion in 2023, expected to reach USD 1.63 billion in 2024, and is projected to grow at a CAGR of 8.08%, to USD 2.59 billion by 2030.

Dielectric etchers are integral components in semiconductor manufacturing, used for etching insulating films to create precise circuit patterns on microchips. These etchers are critical in processes requiring high etch rates, selectivity, and anisotropy, which are essential for modern electronics such as smartphones, laptops, and other digital devices. The necessity for dielectric etchers stems from ongoing miniaturization trends in semiconductor industries, where smaller, high-performance chips are in increasing demand. Their applications span across multiple semiconducting devices, including memory chips, processors, and various smart technology components. Tailored mainly for industries like telecommunications, consumer electronics, automotive, and industrial machinery, dielectric etchers play a pivotal role in the growth and expansion of these sectors.

KEY MARKET STATISTICS
Base Year [2023] USD 1.50 billion
Estimated Year [2024] USD 1.63 billion
Forecast Year [2030] USD 2.59 billion
CAGR (%) 8.08%

The market for dielectric etchers is driven by several key factors, including the rapid adoption of IoT devices, the push for 5G technology, advancements in automotive electronics, and the explosive growth in data centers demanding high-performing microchips. However, the market faces challenges such as high costs associated with R&D, the complex nature of technology evolution, and significant competition among key market players. Regional regulations and trade tensions may further impede growth by affecting manufacturing and supply chains.

Conversely, there are excellent opportunities in improving etcher technology, such as developing more energy-efficient processes, enhancing etcher precision, and expanding production capacities to meet the growing semiconductor demand. Investments in sustainable and eco-friendly etching solutions are also promising areas for innovation, aligning with global shifts towards green manufacturing practices. The market's highly competitive and rapidly changing nature necessitates continuous innovation, collaboration, and skill upgrades to seize emerging opportunities effectively. Focusing on regions with burgeoning electronics industries, such as Asia-Pacific, and adopting cutting-edge technologies like AI-driven process optimization and automation can further enhance competitive advantage and market positioning.

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Dielectric Etchers Market

The Dielectric Etchers Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Rising demand for advanced microelectronics and semiconductor devices in various end-use industries
    • Continuous technological advancements leading to more efficient and precise dielectric etching processes
    • Increasing investments in research and development of semiconductor manufacturing technologies
    • Growing adoption of Internet of Things (IoT) and emerging technologies driving the need for advanced semiconductor devices
  • Market Restraints
    • Rapid technological changes and high costs of upgrading existing equipment for dielectric etching
    • Skilled labor shortage and extensive training requirements affecting operational efficiency in dielectric etching
  • Market Opportunities
    • Growing integration of dielectric etchers in 5G and IOT device production to meet market needs
    • Customization of dielectric etchers for producing high-precision microelectronic devices
    • Adoption of automation and AI in dielectric etchers to enhance efficiency and precision
  • Market Challenges
    • Ensuring sustainable and eco-friendly manufacturing processes in the production of dielectric etchers to meet regulatory requirements
    • Meeting the growing demand for customizable dielectric etchers that cater to diverse industry-specific applications

Porter's Five Forces: A Strategic Tool for Navigating the Dielectric Etchers Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Dielectric Etchers Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Dielectric Etchers Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Dielectric Etchers Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Dielectric Etchers Market

A detailed market share analysis in the Dielectric Etchers Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Dielectric Etchers Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Dielectric Etchers Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Dielectric Etchers Market

A strategic analysis of the Dielectric Etchers Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Dielectric Etchers Market, highlighting leading vendors and their innovative profiles. These include Advanced Energy Industries, Inc., AIXTRON SE, Applied Materials, Inc., ASML Holding N.V., GlobalFoundries Inc., Hitachi High-Tech Corporation, Intel Corporation, KLA Corporation, Lam Research Corporation, Mattson Technology, Inc., NXP Semiconductors N.V., ON Semiconductor Corporation, Oxford Instruments plc, Plasma-Therm LLC, Samsung Electronics Co., Ltd., Screen Holdings Co., Ltd., SPTS Technologies Ltd., Tokyo Electron Limited, ULVAC, Inc., and Veeco Instruments Inc..

Market Segmentation & Coverage

This research report categorizes the Dielectric Etchers Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Equipment Type, market is studied across Dual-frequency Dielectric Etchers, High Aspect Ratio Dielectric Etchers, Traditional Dielectric Etchers, and Ultra-high Aspect Ratio Etchers.
  • Based on Application, market is studied across Advanced Packaging, MEMS Manufacturing, and Semiconductor Manufacturing. The Semiconductor Manufacturing is further studied across Back-end Manufacturing and Front-end Manufacturing.
  • Based on Geometry Scaling, market is studied across 10 nm and above, 3 nm and below, 5 nm, and 7 nm.
  • Based on End-User Industry, market is studied across Automotive, Consumer Electronics, Healthcare, Industrial, and Telecommunications.
  • Based on Etching Technology, market is studied across Deep Reactive Ion Etching, Plasma Etching, Reactive Ion Etching, and Wet Etching. The Reactive Ion Etching is further studied across Capacitive Coupled Plasma and Inductively Coupled Plasma.
  • Based on Material Type, market is studied across Low-K Dielectrics, Silicon Dioxide (SiO2), and Silicon Nitride (Si3N4).
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Rising demand for advanced microelectronics and semiconductor devices in various end-use industries
      • 5.1.1.2. Continuous technological advancements leading to more efficient and precise dielectric etching processes
      • 5.1.1.3. Increasing investments in research and development of semiconductor manufacturing technologies
      • 5.1.1.4. Growing adoption of Internet of Things (IoT) and emerging technologies driving the need for advanced semiconductor devices
    • 5.1.2. Restraints
      • 5.1.2.1. Rapid technological changes and high costs of upgrading existing equipment for dielectric etching
      • 5.1.2.2. Skilled labor shortage and extensive training requirements affecting operational efficiency in dielectric etching
    • 5.1.3. Opportunities
      • 5.1.3.1. Growing integration of dielectric etchers in 5G and IOT device production to meet market needs
      • 5.1.3.2. Customization of dielectric etchers for producing high-precision microelectronic devices
      • 5.1.3.3. Adoption of automation and AI in dielectric etchers to enhance efficiency and precision
    • 5.1.4. Challenges
      • 5.1.4.1. Ensuring sustainable and eco-friendly manufacturing processes in the production of dielectric etchers to meet regulatory requirements
      • 5.1.4.2. Meeting the growing demand for customizable dielectric etchers that cater to diverse industry-specific applications
  • 5.2. Market Segmentation Analysis
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Dielectric Etchers Market, by Equipment Type

  • 6.1. Introduction
  • 6.2. Dual-frequency Dielectric Etchers
  • 6.3. High Aspect Ratio Dielectric Etchers
  • 6.4. Traditional Dielectric Etchers
  • 6.5. Ultra-high Aspect Ratio Etchers

7. Dielectric Etchers Market, by Application

  • 7.1. Introduction
  • 7.2. Advanced Packaging
  • 7.3. MEMS Manufacturing
  • 7.4. Semiconductor Manufacturing
    • 7.4.1. Back-end Manufacturing
    • 7.4.2. Front-end Manufacturing

8. Dielectric Etchers Market, by Geometry Scaling

  • 8.1. Introduction
  • 8.2. 10 nm and above
  • 8.3. 3 nm and below
  • 8.4. 5 nm
  • 8.5. 7 nm

9. Dielectric Etchers Market, by End-User Industry

  • 9.1. Introduction
  • 9.2. Automotive
  • 9.3. Consumer Electronics
  • 9.4. Healthcare
  • 9.5. Industrial
  • 9.6. Telecommunications

10. Dielectric Etchers Market, by Etching Technology

  • 10.1. Introduction
  • 10.2. Deep Reactive Ion Etching
  • 10.3. Plasma Etching
  • 10.4. Reactive Ion Etching
    • 10.4.1. Capacitive Coupled Plasma
    • 10.4.2. Inductively Coupled Plasma
  • 10.5. Wet Etching

11. Dielectric Etchers Market, by Material Type

  • 11.1. Introduction
  • 11.2. Low-K Dielectrics
  • 11.3. Silicon Dioxide (SiO2)
  • 11.4. Silicon Nitride (Si3N4)

12. Americas Dielectric Etchers Market

  • 12.1. Introduction
  • 12.2. Argentina
  • 12.3. Brazil
  • 12.4. Canada
  • 12.5. Mexico
  • 12.6. United States

13. Asia-Pacific Dielectric Etchers Market

  • 13.1. Introduction
  • 13.2. Australia
  • 13.3. China
  • 13.4. India
  • 13.5. Indonesia
  • 13.6. Japan
  • 13.7. Malaysia
  • 13.8. Philippines
  • 13.9. Singapore
  • 13.10. South Korea
  • 13.11. Taiwan
  • 13.12. Thailand
  • 13.13. Vietnam

14. Europe, Middle East & Africa Dielectric Etchers Market

  • 14.1. Introduction
  • 14.2. Denmark
  • 14.3. Egypt
  • 14.4. Finland
  • 14.5. France
  • 14.6. Germany
  • 14.7. Israel
  • 14.8. Italy
  • 14.9. Netherlands
  • 14.10. Nigeria
  • 14.11. Norway
  • 14.12. Poland
  • 14.13. Qatar
  • 14.14. Russia
  • 14.15. Saudi Arabia
  • 14.16. South Africa
  • 14.17. Spain
  • 14.18. Sweden
  • 14.19. Switzerland
  • 14.20. Turkey
  • 14.21. United Arab Emirates
  • 14.22. United Kingdom

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2023
  • 15.2. FPNV Positioning Matrix, 2023
  • 15.3. Competitive Scenario Analysis
  • 15.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Advanced Energy Industries, Inc.
  • 2. AIXTRON SE
  • 3. Applied Materials, Inc.
  • 4. ASML Holding N.V.
  • 5. GlobalFoundries Inc.
  • 6. Hitachi High-Tech Corporation
  • 7. Intel Corporation
  • 8. KLA Corporation
  • 9. Lam Research Corporation
  • 10. Mattson Technology, Inc.
  • 11. NXP Semiconductors N.V.
  • 12. ON Semiconductor Corporation
  • 13. Oxford Instruments plc
  • 14. Plasma-Therm LLC
  • 15. Samsung Electronics Co., Ltd.
  • 16. Screen Holdings Co., Ltd.
  • 17. SPTS Technologies Ltd.
  • 18. Tokyo Electron Limited
  • 19. ULVAC, Inc.
  • 20. Veeco Instruments Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óÇ°À» ¼±Åà Áß
»óÇ° ºñ±³Çϱâ
Àüü»èÁ¦