½ÃÀ庸°í¼­
»óǰÄÚµå
1577383

¼¼°èÀÇ ÀÌÁ¾Á¢ÇÕ Å¾çÀüÁö ½ÃÀå : Àç·á, ¼¿ À¯Çü, ÃÖÁ¾ »ç¿ëÀÚ, ÄÄÆ÷³ÍÆ®º° ¿¹Ãø(2025-2030³â)

Heterojunction Photovoltaic Cells Market by Material (Cadmium Telluride, Copper Indium Gallium Selenide, Silicon-Based Rec), Cell Type (Multi-Junction Cells, Single-Junction Cells), End-User, Component - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 197 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

ÀÌÁ¾Á¢ÇÕ Å¾çÀüÁö ½ÃÀåÀº 2023³â¿¡ 16¾ï 7,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2024³â¿¡´Â 19¾ï 5,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, CAGR 16.28%·Î ¼ºÀåÇØ 2030³â¿¡´Â 48¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÀÌÁ¾Á¢ÇÕ Å¾çÀüÁö(HJT ¼¿)´Â °áÁ¤ ½Ç¸®Äܰú ¹Ú¸· ºñÁ¤Áú ½Ç¸®ÄÜÃþÀ» Á¶ÇÕÇÑ Çõ½ÅÀûÀΠž翡³ÊÁö µð¹ÙÀ̽º·Î ±âÁ¸ÀÇ ½Ç¸®ÄÜ ¼¿¿¡ ºñÇØ ³ôÀº È¿À²°ú ¶Ù¾î³­ ¼º´ÉÀ» ½ÇÇöÇÕ´Ï´Ù. HJT ¼¿ÀÇ Çʿ伺Àº ºñ¿ë È¿À²ÀûÀ̰í ȯ°æ ģȭÀûÀÎ Àç»ý °¡´É ¿¡³ÊÁö ¼Ö·ç¼ÇÀÇ ¼¼°è ÃßÁø¿¡ ±âÀÎÇÕ´Ï´Ù. HJT¼¿ÀÇ ¿ëµµ´Â ÁÖÅÃ, »ó¾÷½Ã¼³, À¯Æ¿¸®Æ¼ ±Ô¸ðÀÇ Å¾翡³ÊÁö¡¤ÇÁ·ÎÁ§Æ® µî ±¤¹üÀ§ÇÏ°í ¿¡³ÊÁö ¼öÀ² Áõ°¡³ª ÀúÁ¶µµ ÇÏ¿¡¼­ÀÇ ¼º´É Çâ»ó µî Å« ÀÌÁ¡À» °¡Á®¿À°í ÀÖ½À´Ï´Ù. ÃÖÁ¾ ¿ëµµÀÇ ¹üÀ§´Â Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö ¼Ö·ç¼ÇÀ» ¿ä±¸ÇÏ´Â ÁÖÅÃ, ´ë±Ô¸ð ž籤 ¹ßÀü¼Ò, È¿À²¼º°ú ³»±¸¼ºÀÌ ÃÖ¿ì¼±ÀÎ ÀüÀÚ±â±â¿¡ ÅëÇÕÇÏ´Â µî ´Ù¾çÇÑ ºÐ¾ß¸¦ ´Ù·ç°í ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ(2023) 16¾ï 7,000¸¸ ´Þ·¯
¿¹Ãø³â(2024) 19¾ï 5,000¸¸ ´Þ·¯
¿¹Ãø³â(2030) 48¾ï ´Þ·¯
CAGR(%) 16.28%

HJT ¼¿ ½ÃÀåÀº ½ÅÀç»ý¿¡³ÊÁö ¼ö¿ä Áõ°¡, ±â¼ú Áøº¸, ³ì»ö ¿¡³ÊÁö ±¸»ó¿¡ ´ëÇÑ Á¤ºÎÀÇ Áö¿ø¿¡ ÀÇÇØ °ßÀεǰí ÀÖ½À´Ï´Ù. ÁÖ¿ä ¼ºÀå ¿äÀÎÀ¸·Î´Â Á¦Á¶ ºñ¿ëÀÇ ±Þ¼ÓÇÑ ÀúÇÏ, Àüȯ È¿À²ÀÇ Çâ»ó, °ÇÃàÀÚÀçÀÇ ÅëÇÕ °¡´É¼º µîÀÌ ÀÖ½À´Ï´Ù. ÀáÀçÀûÀÎ ºñÁî´Ï½º ±âȸ·Î´Â ÅëÇÕÇü ž籤 ¼Ö·ç¼ÇÀ» À§ÇÑ °Ç¼³ ȸ»ç¿ÍÀÇ Á¦ÈÞ, º¸´Ù È¿À²ÀûÀÎ Á¦Á¶ ±â¼ú °³¹ß µîÀÌ ÀÖ½À´Ï´Ù. ½ÃÀåÀÇ ÇѰè´Â Ãʱâ ÅõÀÚ ºñ¿ëÀÇ ³ôÀÌ, ´ë·® »ý»êÀÇ ±â¼úÀû °úÁ¦, Æä·Îºê½ºÄ«ÀÌÆ® žçÀüÁö¿Í °°Àº ´Ù¸¥ žçÀüÁö ±â¼ú°úÀÇ °æÀï µîÀ» Æ÷ÇÔÇÕ´Ï´Ù. ÀÌ·¯ÇÑ °úÁ¦¸¦ ÇØ°áÇÔÀ¸·Î½á, ƯÈ÷ ÅÂ¾ç ¹æ»çÁ¶µµ°¡ ³ôÀº Áö¿ª¿¡¼­ ½Å½ÃÀåÀ» °³Ã´ÇÒ ¼ö ÀÖ½À´Ï´Ù.

±â¼ú Çõ½Å¿¡ ÀûÇÕÇÑ ºÐ¾ß·Î´Â º¸´Ù ºñ¿ë È¿À²ÀûÀÎ »ý»ê °øÁ¤ °³¹ß, HJT ¼¿ÀÇ ¼ö¸í ¿¬Àå, »ç¿ë Àç·áÀÇ ÀçȰ¿ë¼º Çâ»ó µîÀ» µé ¼ö ÀÖ½À´Ï´Ù. ÀÌ ¿¬±¸´Â ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼Ç¿¡ HJT ±â¼úÀ» ÅëÇÕÇÑ ÇÏÀ̺긮µå ½Ã½ºÅÛ¿¡ ÃÊÁ¡À» ¸ÂÃâ ¼öµµ ÀÖ½À´Ï´Ù. ½ÃÀåÀº ¿ªµ¿ÀûÀÌ¸ç ´ë±â¾÷ÀÌ ½ÅÀç»ý¿¡³ÊÁö Æ÷Æ®Æú¸®¿À¸¦ ´Ù¾çÈ­Çϱâ À§ÇØ ±â¼ú¿¡ ƯȭµÈ Áß¼Ò±â¾÷À» Èí¼öÇϰí ÅëÇÕÇÏ´Â °æÇâÀÌ ÀÖ½À´Ï´Ù. ÇöÀçÀÇ ±Ëµµ¸¦ °¨¾ÈÇϸé, HJT ¼¿À» Ȱ¿ëÇÏ´Â °ÍÀ» ¸ñÇ¥·Î ÇÏ´Â ÀÌÇØ°ü°èÀÚ´Â ÀÌ ±â¼úÀÇ ÀÌÁ¡À» ½ÇÁõÇÏ´Â ¿¬±¸ Çù·ÂÀ̳ª ÆÄÀÏ·µ ÇÁ·ÎÁ§Æ®¿¡ ÅõÀÚÇØ, º¸±Þ¿¡ÀÇ ±æÀ» ¿­¾î, ¼¼°èÀÇ Å¾翡³ÊÁö »óȲ¿¡ º¯È­¸¦ °¡Á®¿Ã ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå ¿ªÇÐ: ±Þ¼ÓÈ÷ ÁøÈ­ÇÏ´Â ÀÌÁ¾Á¢ÇÕ Å¾çÀüÁö ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

ÀÌÁ¾Á¢ÇÕ Å¾çÀüÁö ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ë¿¡ ÀÇÇØ º¯¸ð¸¦ ÀÌ·ç°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ ÁøÈ­¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÅõÀÚ°áÁ¤, Àü·«Àû °áÁ¤ Á¤¹ÐÈ­, »õ·Î¿î ºñÁî´Ï½º ±âȸ ȹµæ¿¡ ´ëºñÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ À§ÇèÀ» ¿ÏÈ­ÇÒ ¼ö ÀÖÀ¸¸ç, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë°ú ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ»º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ±âÈÄ º¯È­ ´ëÃ¥°ú ź¼Ò¹ßÀÚ±¹ »è°¨À» ¸ñÀûÀ¸·Î ÇÑ Àç»ý °¡´É ¿¡³ÊÁö¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
    • °íÈ¿À²È­¿Í »ý»ê ºñ¿ë Àý°¨À¸·Î À̾îÁö´Â žçÀüÁö ±â¼úÀÇ Áøº¸
    • ž翡³ÊÁö µµÀÔ¿¡ ´ëÇÑ Á¤ºÎÀÇ Àμ¾Æ¼ºê¿Í º¸Á¶±ÝÀÌ ½ÃÀå ¼ºÀåÀ» °¡¼Ó
    • ž翡³ÊÁö ÀÎÇÁ¶ó¿Í À¯Æ¿¸®Æ¼ ±Ô¸ðÀÇ Å¾翡³ÊÁö ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • º¹ÀâÇÏ°í °ªºñ½Ñ Á¦Á¶ °øÁ¤¿¡ ÀÇÇÑ ÀÌÁ¾Á¢ÇÕ Å¾ç ÀüÁöÀÇ Á¦Á¶ ºñ¿ë »ó½Â
    • ¿Âµµ º¯È­¿¡ ´ëÇÑ °¨µµ°¡ ³ô°í, ¿­È­ÀÇ °¡´É¼ºÀÌ ÀÌÁ¾Á¢ÇÕ Å¾ç ÀüÁöÀÇ °æ½Ã È¿À²¿¡ ¿µÇâ
  • ½ÃÀå ±âȸ
    • Àü±âÀÚµ¿Â÷ ÃæÀü ÀÎÇÁ¶ó¿¡ ÀÌÁ¾Á¢ÇÕ Å¾ç ÀüÁö ±â¼úÀÇ ÅëÇÕ¿¡ ÀÇÇÑ ±×¸° ¸ðºô¸®Æ¼ÀÇ Çâ»ó
    • ´Ù¾çÇÑ ±âÈÄ Á¶°Ç ÇÏ¿¡¼­ÀÇ ¿¡³ÊÁö ¼öÀ² Áõ°¡¸¦ À§ÇÑ 2¸é ÀÌÁ¾Á¢ÇÕ Å¾çÀüÁöÀÇ ÃßÁø
    • Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö ÀÌ¿ëÀ» À§ÇÑ ¼ÒºñÀÚ¿ë ÀüÀÚ±â±â¿¡ ÀÌÁ¾Á¢ÇÕ ¼¿À» ÅëÇÕÇϱâ À§ÇÑ ±â¼ú ±â¾÷°úÀÇ Çù·Â
  • ½ÃÀåÀÇ °úÁ¦
    • ÀÌÁ¾Á¢ÇÕ Å¾ç ÀüÁöÀÇ º¸±ÞÀ» ¸·´Â ÇÑÁ¤µÈ È®À强°ú ³ôÀº Á¦Á¶ ºñ¿ë
    • ÀÌÁ¾Á¢ÇÕ Å¾çÀüÁöÀÇ È¿À²¿¡ ¿µÇâÀ» ÁÖ´Â ±âÁ¸ÀÇ Á¦Á¶ °øÁ¤³ª Àç·á¿ÍÀÇ È£È¯¼ºÀÇ ¹®Á¦

Porter's Five Forces : ÀÌÁ¾ Á¢ÇÕ Å¾ç ÀüÁö ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Forces ÇÁ·¹ÀÓ ¿öÅ©´Â ½ÃÀå »óȲ°æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Porter's Five Force Framework´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ ޱ¸ÇÏ´Â ¸íÈ®ÇÑ ±â¼úÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» °áÁ¤ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÅëÂûÀ» ÅëÇØ ±â¾÷Àº ÀÚ»çÀÇ °­Á¡À» Ȱ¿ëÇÏ°í ¾àÁ¡À» ÇØ°áÇϰí ÀáÀçÀûÀÎ °úÁ¦¸¦ ÇÇÇÔÀ¸·Î½á º¸´Ù °­ÀÎÇÑ ½ÃÀå¿¡¼­ÀÇ Æ÷Áö¼Å´×À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : ÀÌÁ¾Á¢ÇÕ Å¾ç ÀüÁö ½ÃÀå¿¡¼­ ¿ÜºÎ·ÎºÎÅÍÀÇ ¿µÇâ ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº ÀÌÁ¾Á¢ÇÕ Å¾ç ÀüÁö ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇϴµ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ»ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀÎ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¾ÕÀ¸·Î ¿¹»óµÇ´Â Àû±ØÀûÀÎ ÀÇ»ç °áÁ¤À» ÇÒ Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® : ÀÌÁ¾Á¢ÇÕ Å¾ç ÀüÁö ½ÃÀå °æÀï ±¸µµ ÆÄ¾Ç

ÀÌÁ¾Á¢ÇÕ Å¾ç ÀüÁö ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍ, °í°´ ±â¹Ý, ¼ºÀå·ü µî ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀï Æ÷Áö¼Å´×À» ¹àÈú ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ½ÃÀå ÁýÁß, ´ÜÆíÈ­, ÅëÇÕ µ¿ÇâÀ» ¹àÇô³»°í º¥´õµéÀº °æÀïÀÌ Ä¡¿­ÇØÁö´Â °¡¿îµ¥ ÀÚ»çÀÇ ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç °áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ Áö½ÄÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× : ¸ÅÆ®¸¯½º ÀÌÁ¾Á¢ÇÕ Å¾ç ÀüÁö ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â ÀÌÁ¾Á¢ÇÕ Å¾ç ÀüÁö ½ÃÀå¿¡¼­ °ø±Þ¾÷ü¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ Çà·ÄÀ» ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº °ø±Þ¾÷üÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±âÁØÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ¸Â´Â ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ³× °¡Áö »çºÐ¸éÀ» ÅëÇØ °ø±Þ¾÷ü¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ºÎ¹®È­Çϰí Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× ±ÇÀå : ÀÌÁ¾Á¢ÇÕ Å¾çÀüÁö ½ÃÀå¿¡¼­ ¼º°øÀ» À§ÇÑ ±æÀ» ±×¸®±â

ÀÌÁ¾Á¢ÇÕ Å¾çÀüÁö ½ÃÀåÀÇ Àü·« ºÐ¼®Àº ¼¼°è ½ÃÀå¿¡¼­ÀÇ ÇÁ·¹Á𽺠°­È­¸¦ ¸ñÇ¥·Î ÇÏ´Â ±â¾÷¿¡ ÇʼöÀûÀÔ´Ï´Ù. ÁÖ¿ä ÀÚ¿ø, ¿ª·® ¹× ¼º°ú ÁöÇ¥¸¦ °ËÅäÇÔÀ¸·Î½á ±â¾÷Àº ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í °³¼±À» À§ÇØ ³ë·ÂÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ °æÀï ±¸µµ¿¡¼­ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö Àִ üÁ¦¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀåÀÇ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ: ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ: ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡ÇÏ¸ç ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­: ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, R&D Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾ò°í ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡ ´ë´äÇϰí ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹® ¹× Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ¡¤Ã¶¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • ±âÈÄ º¯È­¿Í ½Î¿ì°í ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀ̱â À§ÇÑ Àç»ý°¡´É ¿¡³ÊÁö¿ø ¼ö¿ä Áõ°¡
      • žçÀüÁö ±â¼úÀÇ Áøº¸¿¡ ÀÇÇØ È¿À²ÀÌ Çâ»óµÇ¾î, »ý»ê ÄÚ½ºÆ®°¡ »è°¨µÈ´Ù
      • ž翡³ÊÁö µµÀÔ¿¡ ´ëÇÑ Á¤ºÎÀÇ Àμ¾Æ¼ºê¿Í º¸Á¶±ÝÀÌ ½ÃÀå ¼ºÀåÀ» °ßÀÎ
      • ž翡³ÊÁö ÀÎÇÁ¶ó¿Í ´ë±Ô¸ð ž籤 ¹ßÀü ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡
    • ¾ïÁ¦¿äÀÎ
      • º¹ÀâÇÏ°í °ª ºñ½Ñ Á¦Á¶ °øÁ¤Àº ÀÌÁ¾Á¢ÇÕ Å¾ç ÀüÁöÀÇ »ý»ê ºñ¿ëÀ» Áõ°¡½Ãŵ´Ï´Ù.
      • ¿Âµµ º¯È­¿Í ÀáÀçÀû ¿­È­¿¡ ´ëÇÑ ³ôÀº ¹Î°¨¼ºÀº ½Ã°£ÀÌ Áö³²¿¡ µû¶ó ÀÌÁ¾ Á¢ÇÕ Å¾ç ÀüÁöÀÇ È¿À²¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù.
    • ±âȸ
      • ±×¸° ¸ðºô¸®Æ¼¸¦ °­È­Çϱâ À§ÇØ Àü±âÀÚµ¿Â÷ ÃæÀü ÀÎÇÁ¶ó¿¡ ÀÌÁ¾Á¢ÇÕÇü ž籤 ¹ßÀü ±â¼úÀ» ÅëÇÕ
      • ´Ù¾çÇÑ ±âÈÄ Á¶°Ç¿¡¼­ ¿¡³ÊÁö ¼öÀ²À» ´Ã¸®±â À§ÇÑ ¾ç¸é ÀÌÁ¾Á¢ÇÕ Å¾çÀüÁöÀÇ Áøº¸
      • Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö ÀÌ¿ëÀ» À§ÇØ, ¼ÒºñÀÚ¿ë ÀüÀÚ±â±â¿¡ ÀÌÁ¾Á¢ÇÕ ¼¿À» ÅëÇÕÇϱâ À§ÇØ ±â¼ú ±â¾÷°ú Çù·Â
    • °úÁ¦
      • È®À强ÀÇ Á¦ÇѰú Á¦Á¶ ºñ¿ëÀÇ ³ôÀ̰¡ ÀÌÁ¾Á¢ÇÕ Å¾çÀüÁöÀÇ º¸±ÞÀ» ¹æÇØÇϰí ÀÖ´Ù
      • ÀÌÁ¾Á¢ÇÕÇü žçÀüÁöÀÇ È¿À²¿¡ ¿µÇâÀ» ÁÖ´Â ±âÁ¸ÀÇ Á¦Á¶ °øÁ¤°ú Àç·á¿ÍÀÇ ÀûÇÕ¼ºÀÇ ¹®Á¦
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡Àû
    • °æÁ¦
    • »ç±³
    • ±â¼úÀû
    • ¹ý·ü»ó
    • ȯ°æ

Á¦6Àå ÀÌÁ¾Á¢ÇÕ Å¾çÀüÁö ½ÃÀå : ¼ÒÀ纰

  • Ä«µå¹Å ÅÚ·ê¶óÀ̵å
  • ±¸¸® Àε㠰¥·ý ¼¿·¹´½
  • ½Ç¸®ÄÜ ±â¹Ý
    • °áÁ¤ ½Ç¸®ÄÜ

Á¦7Àå ÀÌÁ¾Á¢ÇÕ Å¾çÀüÁö ½ÃÀå : ¼¿ À¯Çüº°

  • ¸ÖƼ Á¢ÇÕ ¼¿
    • Á¦2¼¼´ë ¼¿
    • Á¦3¼¼´ë ¼¿
  • ´ÜÁ¢ÇÕ ¼¿
    • Á¦1¼¼´ë ¼¿

Á¦8Àå ÀÌÁ¾Á¢ÇÕ Å¾çÀüÁö ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • »ó¿ë »ç¿ëÀÚ
  • »ê¾÷ »ç¿ëÀÚ
  • ÁÖÅà »ç¿ëÀÚ

Á¦9Àå ÀÌÁ¾Á¢ÇÕ Å¾çÀüÁö ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • ¼¿
  • ¸ðµâ
    • ĸ½¶È­Ãþ
    • À¯¸®
  • ±¤ÇÐ/ž籤 Áý±¤ÀåÄ¡

Á¦10Àå ¾Æ¸Þ¸®Ä«ÀÇ ÀÌÁ¾Á¢ÇÕ Å¾çÀüÁö ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦11Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÀÌÁ¾Á¢ÇÕ Å¾çÀüÁö ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦12Àå À¯·´¡¤Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ÀÌÁ¾Á¢ÇÕ Å¾çÀüÁö ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦13Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼® 2023
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
  • Àü·« ºÐ¼®°ú Á¦¾È
JHS 24.11.01

The Heterojunction Photovoltaic Cells Market was valued at USD 1.67 billion in 2023, expected to reach USD 1.95 billion in 2024, and is projected to grow at a CAGR of 16.28%, to USD 4.80 billion by 2030.

Heterojunction photovoltaic cells (HJT cells) are innovative solar energy devices that combine crystalline silicon with thin-film amorphous silicon layers, resulting in higher efficiency and better performance compared to traditional silicon cells. The necessity for HJT cells stems from the global push for renewable energy solutions that are both cost-effective and environmentally friendly. Their applications are widespread, including residential, commercial, and utility-scale solar energy projects, offering significant benefits such as increased energy yield and performance in low-light conditions. The end-use scope covers a variety of sectors: residential buildings seeking sustainable energy solutions, large-scale solar farms, and integration into electronic devices where efficiency and durability are paramount.

KEY MARKET STATISTICS
Base Year [2023] USD 1.67 billion
Estimated Year [2024] USD 1.95 billion
Forecast Year [2030] USD 4.80 billion
CAGR (%) 16.28%

The market for HJT cells is driven by the increasing demand for renewable energy, technological advancements, and government support for green energy initiatives. Key growth factors include the rapid decrease in production costs, higher conversion efficiencies, and the cells' potential to be integrated into building materials. Potential opportunities include collaborations with construction companies for integrated solar solutions and the development of more efficient manufacturing techniques. Market limitations include high initial investment costs, technical challenges in mass production, and competition from other solar technologies like perovskite cells. Addressing these challenges can open up new markets, particularly in regions with high solar irradiance.

Areas ripe for innovation include developing more cost-effective production processes, increasing the lifespan of HJT cells, and enhancing the recyclability of materials used. Research could focus on hybrid systems that incorporate HJT technologies for energy storage solutions. The market is dynamic, with a trend towards consolidation as larger companies absorb smaller, technology-focused firms to diversify their renewable energy portfolios. Given the current trajectory, stakeholders aiming to capitalize on HJT cells should invest in research collaborations and pilot projects that demonstrate the technology's benefits, paving the way for widespread adoption and potentially transformative impacts on the global solar energy landscape.

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Heterojunction Photovoltaic Cells Market

The Heterojunction Photovoltaic Cells Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Increasing demand for renewable energy sources to combat climate change and reduce carbon footprint
    • Advancements in photovoltaic cell technology leading to higher efficiency and lower production costs
    • Government incentives and subsidies for solar energy adoption driving market growth
    • Growing investment in solar energy infrastructure and utility-scale solar projects
  • Market Restraints
    • Complex and expensive manufacturing processes increase production costs for heterojunction photovoltaic cells
    • High sensitivity to temperature variations and potential degradation affects heterojunction photovoltaic cell efficiency over time
  • Market Opportunities
    • Integrating heterojunction photovoltaic technology in electric vehicle charging infrastructure to enhance green mobility
    • Advancing bifacial heterojunction photovoltaic cells for increased energy yield in diverse climatic conditions
    • Collaborating with tech firms to incorporate heterojunction cells in consumer electronic devices for sustainable energy usage
  • Market Challenges
    • Limited scalability and high manufacturing costs hindering widespread adoption of heterojunction photovoltaic cells
    • Compatibility issues with existing manufacturing processes and materials affecting heterojunction photovoltaic cell efficiency

Porter's Five Forces: A Strategic Tool for Navigating the Heterojunction Photovoltaic Cells Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Heterojunction Photovoltaic Cells Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Heterojunction Photovoltaic Cells Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Heterojunction Photovoltaic Cells Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Heterojunction Photovoltaic Cells Market

A detailed market share analysis in the Heterojunction Photovoltaic Cells Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Heterojunction Photovoltaic Cells Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Heterojunction Photovoltaic Cells Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Heterojunction Photovoltaic Cells Market

A strategic analysis of the Heterojunction Photovoltaic Cells Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Heterojunction Photovoltaic Cells Market, highlighting leading vendors and their innovative profiles. These include Anhui Huasun Energy Co., Ltd., Applied Materials, Inc., ENF Ltd., FuturaSun srl, Kaneka Energy Management Solutions, LONGi Green Energy Technology Co., Ltd., PerkinElmer Inc, Sinovoltaics, SunEvo Solar Co., Ltd.., and Zhejiang DongShuo New Energy Co., Ltd.

Market Segmentation & Coverage

This research report categorizes the Heterojunction Photovoltaic Cells Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Material, market is studied across Cadmium Telluride, Copper Indium Gallium Selenide, and Silicon-Based Rec. The Silicon-Based Rec is further studied across Crystalline Silicon.
  • Based on Cell Type, market is studied across Multi-Junction Cells and Single-Junction Cells. The Multi-Junction Cells is further studied across Second-Generation Cells and Third-Generation Cells. The Single-Junction Cells is further studied across First-Generation Cells.
  • Based on End-User, market is studied across Commercial Users, Industrial Users, and Residential Users.
  • Based on Component, market is studied across Cell, Module, and Optics/Solar Concentrators. The Module is further studied across Encapsulant Layer and Glass.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Increasing demand for renewable energy sources to combat climate change and reduce carbon footprint
      • 5.1.1.2. Advancements in photovoltaic cell technology leading to higher efficiency and lower production costs
      • 5.1.1.3. Government incentives and subsidies for solar energy adoption driving market growth
      • 5.1.1.4. Growing investment in solar energy infrastructure and utility-scale solar projects
    • 5.1.2. Restraints
      • 5.1.2.1. Complex and expensive manufacturing processes increase production costs for heterojunction photovoltaic cells
      • 5.1.2.2. High sensitivity to temperature variations and potential degradation affects heterojunction photovoltaic cell efficiency over time
    • 5.1.3. Opportunities
      • 5.1.3.1. Integrating heterojunction photovoltaic technology in electric vehicle charging infrastructure to enhance green mobility
      • 5.1.3.2. Advancing bifacial heterojunction photovoltaic cells for increased energy yield in diverse climatic conditions
      • 5.1.3.3. Collaborating with tech firms to incorporate heterojunction cells in consumer electronic devices for sustainable energy usage
    • 5.1.4. Challenges
      • 5.1.4.1. Limited scalability and high manufacturing costs hindering widespread adoption of heterojunction photovoltaic cells
      • 5.1.4.2. Compatibility issues with existing manufacturing processes and materials affecting heterojunction photovoltaic cell efficiency
  • 5.2. Market Segmentation Analysis
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Heterojunction Photovoltaic Cells Market, by Material

  • 6.1. Introduction
  • 6.2. Cadmium Telluride
  • 6.3. Copper Indium Gallium Selenide
  • 6.4. Silicon-Based Rec
    • 6.4.1. Crystalline Silicon

7. Heterojunction Photovoltaic Cells Market, by Cell Type

  • 7.1. Introduction
  • 7.2. Multi-Junction Cells
    • 7.2.1. Second-Generation Cells
    • 7.2.2. Third-Generation Cells
  • 7.3. Single-Junction Cells
    • 7.3.1. First-Generation Cells

8. Heterojunction Photovoltaic Cells Market, by End-User

  • 8.1. Introduction
  • 8.2. Commercial Users
  • 8.3. Industrial Users
  • 8.4. Residential Users

9. Heterojunction Photovoltaic Cells Market, by Component

  • 9.1. Introduction
  • 9.2. Cell
  • 9.3. Module
    • 9.3.1. Encapsulant Layer
    • 9.3.2. Glass
  • 9.4. Optics/Solar Concentrators

10. Americas Heterojunction Photovoltaic Cells Market

  • 10.1. Introduction
  • 10.2. Argentina
  • 10.3. Brazil
  • 10.4. Canada
  • 10.5. Mexico
  • 10.6. United States

11. Asia-Pacific Heterojunction Photovoltaic Cells Market

  • 11.1. Introduction
  • 11.2. Australia
  • 11.3. China
  • 11.4. India
  • 11.5. Indonesia
  • 11.6. Japan
  • 11.7. Malaysia
  • 11.8. Philippines
  • 11.9. Singapore
  • 11.10. South Korea
  • 11.11. Taiwan
  • 11.12. Thailand
  • 11.13. Vietnam

12. Europe, Middle East & Africa Heterojunction Photovoltaic Cells Market

  • 12.1. Introduction
  • 12.2. Denmark
  • 12.3. Egypt
  • 12.4. Finland
  • 12.5. France
  • 12.6. Germany
  • 12.7. Israel
  • 12.8. Italy
  • 12.9. Netherlands
  • 12.10. Nigeria
  • 12.11. Norway
  • 12.12. Poland
  • 12.13. Qatar
  • 12.14. Russia
  • 12.15. Saudi Arabia
  • 12.16. South Africa
  • 12.17. Spain
  • 12.18. Sweden
  • 12.19. Switzerland
  • 12.20. Turkey
  • 12.21. United Arab Emirates
  • 12.22. United Kingdom

13. Competitive Landscape

  • 13.1. Market Share Analysis, 2023
  • 13.2. FPNV Positioning Matrix, 2023
  • 13.3. Competitive Scenario Analysis
  • 13.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Anhui Huasun Energy Co., Ltd.
  • 2. Applied Materials, Inc.
  • 3. ENF Ltd.
  • 4. FuturaSun srl
  • 5. Kaneka Energy Management Solutions
  • 6. LONGi Green Energy Technology Co., Ltd.
  • 7. PerkinElmer Inc
  • 8. Sinovoltaics
  • 9. SunEvo Solar Co., Ltd..
  • 10. Zhejiang DongShuo New Energy Co., Ltd
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦