½ÃÀ庸°í¼­
»óǰÄÚµå
1585409

¼¼°èÀÇ ÀÚÀ²¹«ÀÎÀá¼öÁ¤(AUV) ½ÃÀå : ±â¼úº°, µ¿ÀÛ ½Éµµº°, ÆäÀ̷ε庰, Çü»óº°, ¿ëµµº°-¿¹Ãø(2025-2030³â)

Autonomous Underwater Vehicles Market by Technology (Collision Avoidance, Communication, Imaging), Depth of Operation (Deep-Water, Shallow-Water), Payload, Shape, Application - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 193 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

ÀÚÀ²¹«ÀÎÀá¼öÁ¤ ½ÃÀåÀº 2023³â¿¡ 18¾ï 5,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2024³â¿¡´Â 21¾ï 2,000¸¸ ´Þ·¯·Î ÃßÁ¤µÇ¸ç, CAGR 16.08%·Î ¼ºÀåÇÒ Àü¸ÁÀ̰í, 2030³â¿¡´Â 52¾ï 6,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÀÚÀ²¹«ÀÎÀá¼öÁ¤(AUVs)Àº ÁÖ·Î Àΰ£ÀÌ Á÷Á¢ Á¶ÀÛÇÏÁö ¾Ê°í ¼öÁß Å½»ç¿¡ »ç¿ëµÇ´Â ½Â¹«¿øÀÌ ¾ø´Â ÀÚµ¿ ·Îº¿ Ç÷§ÆûÀÔ´Ï´Ù. ´Ù¾çÇÑ ¼¾¼­¿Í Ä«¸Þ¶ó¸¦ žÀçÇÏ¿© ÇØ¾ç ȯ°æ¿¡¼­ ȯ°æ ¸ð´ÏÅ͸µ, ¼öÁß Á¶»ç, µ¥ÀÌÅÍ ¼öÁý µîÀÇ ÀÛ¾÷À» ¼öÇàÇÕ´Ï´Ù. AUVÀÇ Çʿ伺Àº ¾î·Æ°í Á¢±ÙÀÌ ¾î·Á¿î ¼öÁß ÁöÇü¿¡¼­ Ȱµ¿ÇÏ´Â ´É·Â¿¡¼­ ºñ·ÔµÇ¸ç, Àΰ£ ´ÙÀ̹ö¿Í °ü·ÃµÈ ¿î¿µ ºñ¿ë°ú À§ÇèÀ» Å©°Ô ÁÙÀÔ´Ï´Ù. AUV´Â ÇØ¾çÇÐ, ¹æÀ§, ¼®À¯ ¹× °¡½º Ž»ç, °í°íÇÐÀû Á¶»ç µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ ÀÀ¿ëµÇ°í ÀÖ½À´Ï´Ù. AUVÀÇ ÃÖÁ¾ ¿ëµµ´Â ±º»ç, »ó¾÷, ¿¬±¸ ±â°ü, ½ÉÁö¾î ȯ°æ º¸È£¿¡ ÁßÁ¡À» µÐ »ê¾÷À¸·Î È®»êµÇ°í ÀÖ½À´Ï´Ù. ½ÃÀå ¼ºÀåÀÇ ¿øµ¿·ÂÀº ÇØÀú ¸ÅÇÎ, ÇØ±º ¹æÀ§ ½Ã½ºÅÛÀÇ °­È­, ¼®À¯ ¹× °¡½º¿Í ½ÅÀç»ý ¿¡³ÊÁö »ê¾÷¿¡ ÀÇÇÑ Áß¿äÇÑ Å½»ç Ȱµ¿¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ÀÔ´Ï´Ù. Åë½Å ±â¼úÀÇ Áøº¸¿Í º¸´Ù °ß°íÇÏ°í ¹èÅ͸® È¿À²ÀûÀÎ ¼³°èÀÇ ¹ßÀüÀÌ ½ÃÀåÀ» °ßÀÎÇÏ´Â ÁÖ¿ä ¿äÀÎÀÔ´Ï´Ù. ÇØ¾çÁ¶»ç¿¡ ´ëÇÑ ÅõÀÚ°¡ ±ÞÁõÇϰí ÇØ¾çº¸Àü¿¡ ´ëÇÑ ±ÔÁ¦´ç±¹ÀÇ Áö¿øÀÌ °­È­µÇ°í ÀÖ´Â °Íµµ ½ÃÀå ±âȸ¸¦ ´õ¿í µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª AUVÀÇ °³¹ßÀº ³ôÀº Ãʱâ ÅõÀÚ ºñ¿ë, ±â¼ú º¹À⼺, ¹° °£¼·À¸·Î ÀÎÇÑ ½ÉÇØ Ç×ÇØ ¹× µ¥ÀÌÅÍ Åë½Å ¹®Á¦ µîÀÇ Á¦¾à¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù. AI¸¦ Ȱ¿ëÇÑ ³×ºñ°ÔÀÌ¼Ç ½Ã½ºÅÛ, ¹èÅ͸® ¼ö¸í °³¼±, ¼¾¼­ ¼ÒÇüÈ­, µ¥ÀÌÅÍ ºÐ¼® ´É·Â °­È­ µîÀÇ Çõ½ÅÀº ¹ßÀüÀ» À§ÇÑ À¯¸ÁÇÑ ±æÀ» Á¦°øÇÕ´Ï´Ù. Á¤ºÎ Áö¿ø°ú ¹Î°£ Çõ½ÅÀ» °áÇÕÇÑ Çù·ÂÀûÀÎ ³ë·ÂÀº ±âÁ¸ ½ÃÀå °úÁ¦¸¦ ±Øº¹ÇÏ´Â µ¥ Å« ·¹¹ö¸®Áö¸¦ ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¬±¸´Â ÇØÀú¿Í Áö»óÀ» ¿øÈ°ÇÏ°Ô ¿À°¡´Â ´Ù¸ñÀû AUVÀÇ °³¹ß¿¡ Á¡Á¡ ÃÊÁ¡ÀÌ ¸ÂÃß¾îÁö°í ÀÖ½À´Ï´Ù. Áß°£ Á¤µµºÎÅÍ ³ôÀº °æÀïÀ» Ư¡À¸·Î ÇÏ´Â ÀÌ ½ÃÀåÀº ÇØ¾çÀÚ¿ø Ž»ç¿Í ȯ°æ ¸ð´ÏÅ͸µ¿¡ ÁßÁ¡À» µÑ ¼ö ÀÖ´Â ±âȸ¸¦ Ȱ¿ëÇϱâ À§ÇØ Áö¼ÓÀûÀÎ ±â¼úÀû Áøº¸¿Í Àü·«Àû ÆÄÆ®³Ê½ÊÀÌ ÇÊ¿äÇÕ´Ï´Ù. ±â¼ú Çõ½ÅÀ» ÅëÇØ AUVÀÇ ´É·ÂÀ» °­È­Çϰí Àü·«Àû Á¦ÈÞ¸¦ ¸Î´Â µ¥ ÁÖ·ÂÇÔÀ¸·Î½á ±â¾÷Àº ¿©·¯ ºÐ¾ß¿¡¼­ ±ÞÁõÇÏ´Â ¼ö¿ä¸¦ È¿°úÀûÀ¸·Î Ȱ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ(2023³â) 18¾ï 5,000¸¸ ´Þ·¯
¿¹Ãø³â(2024³â) 21¾ï 2,000¸¸ ´Þ·¯
¿¹Ãø³â(2030³â) 52¾ï 6,000¸¸ ´Þ·¯
CAGR(%) 16.08%

½ÃÀå ¿ªÇÐ : ±Þ¼ÓÈ÷ ÁøÈ­ÇÏ´Â ÀÚÀ²¹«ÀÎÀá¼öÁ¤ ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

ÀÚÀ²¹«ÀÎÀá¼öÁ¤ ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ ÀÛ¿ëÀ¸·Î º¯¸ðÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ ÁøÈ­¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÅõÀÚ°áÁ¤, Àü·«Àû ÀÇ»ç°áÁ¤, »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ ȹµæÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ °æ°¨ÇÒ ¼ö ÀÖÀ» »Ó¸¸ ¾Æ´Ï¶ó, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë ¶Ç´Â ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ»º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ȯ°æ ¸ð´ÏÅ͸µ ¹× ÇØ¾ç Á¶»ç¸¦ À§ÇÑ »ó¼¼Çϰí Á¤È®ÇÑ ¼öÁß µ¥ÀÌÅÍ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
    • ¼¼°èÀÇ ¼®À¯ ¹× °¡½º¿Í ½ÅÀç»ý ¿¡³ÊÁö ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡
    • ´Ù¾çÇÑ Áö¿ªÀÇ ÇØ»ó º¸¾È °­È­¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • AUVÀÇ Ãʱâ ÅõÀÚ¿Í Á¤±âÀûÀÎ À¯Áöº¸¼ö¿¡ µå´Â ³ôÀº ºñ¿ë
  • ½ÃÀå ±âȸ
    • ½ÉÇØ¿¡¼­ÀÇ Æ¯Á¤ ÀÛ¾÷¿ëÀ¸·Î Ä¿½ºÅ͸¶ÀÌÁî °¡´ÉÇÑ AUVÀÇ ¿ëµµ Áõ°¡
    • ¹èÅ͸®ÀÇ ¼ö¸í°ú ¼¾½Ì ±â¼úÀ» °­È­Çϱâ À§ÇÑ ±â¼ú Çõ½Å°ú ¿¬±¸
  • ½ÃÀåÀÇ °úÁ¦
    • ¹èÅ͸® ¼ö¸í°ú ¼öÁß Åë½Å¿¡ °üÇÑ ±â¼úÀû ³­Á¦

Porter's Five Forces : ÀÚÀ²¹«ÀÎÀá¼öÁ¤ ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Forces ÇÁ·¹ÀÓ ¿öÅ©´Â ½ÃÀå »óȲ°æÀï ±¸µµ¸¦ ÆÄ¾ÇÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Porter's Five Forces ÇÁ·¹ÀÓ ¿öÅ©´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ ޱ¸ÇÏ´Â ¸íÈ®ÇÑ ±â¼úÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» °áÁ¤ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÀλçÀÌÆ®¸¦ ÅëÇØ ±â¾÷Àº ÀÚ»çÀÇ °­Á¡À» Ȱ¿ëÇϰí, ¾àÁ¡À» ÇØ°áÇϰí, ÀáÀçÀûÀÎ °úÁ¦¸¦ ÇÇÇÒ ¼ö ÀÖÀ¸¸ç, º¸´Ù °­ÀÎÇÑ ½ÃÀå¿¡¼­ÀÇ Æ÷Áö¼Å´×À» º¸ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : ÀÚÀ²¹«ÀÎÀá¼öÁ¤ ½ÃÀå¿¡¼­ ¿ÜºÎ ¿µÇâ ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº ÀÚÀ²¹«ÀÎÀá¼öÁ¤ ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀÎ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¾ÕÀ¸·Î ¿¹»óµÇ´Â Àû±ØÀûÀÎ ÀÇ»ç °áÁ¤À» ÇÒ Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® : ÀÚÀ²¹«ÀÎÀá¼öÁ¤ ½ÃÀå¿¡¼­ °æÀï ±¸µµ ÆÄ¾Ç

ÀÚÀ²¹«ÀÎÀá¼öÁ¤ ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍ, °í°´ ±â¹Ý, ¼ºÀå·ü µî ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀï Æ÷Áö¼Å´×À» ¹àÈú ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ½ÃÀå ÁýÁß, ´ÜÆíÈ­, ÅëÇÕ µ¿ÇâÀ» ¹àÇô³»°í º¥´õµéÀº °æÀïÀÌ Ä¡¿­ÇØÁö´Â °¡¿îµ¥ ÀÚ»çÀÇ ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç °áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ Áö½ÄÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º : ÀÚÀ²¹«ÀÎÀá¼öÁ¤ ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â ÀÚÀ²¹«ÀÎÀá¼öÁ¤ ½ÃÀå¿¡¼­ °ø±Þ¾÷ü¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ Çà·ÄÀ» ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº °ø±Þ¾÷üÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±âÁØÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ¸Â´Â ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ³× °¡Áö »çºÐ¸éÀ» ÅëÇØ °ø±Þ¾÷ü¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ºÎ¹®È­Çϰí Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× Ãßõ : ÀÚÀ²¹«ÀÎÀá¼öÁ¤ ½ÃÀå¿¡¼­ ¼º°øÀ» À§ÇÑ ±æ ±×¸®±â

ÀÚÀ²¹«ÀÎÀá¼öÁ¤ ½ÃÀåÀÇ Àü·« ºÐ¼®Àº ¼¼°è ½ÃÀå¿¡¼­ÀÇ ÇöÀå °­È­¸¦ ¸ñÇ¥·Î ÇÏ´Â ±â¾÷¿¡ ÇʼöÀûÀÔ´Ï´Ù. ÁÖ¿ä ÀÚ¿ø, ´É·Â, ½ÇÀû ÁöÇ¥¸¦ °ËÅäÇÔÀ¸·Î½á ±â¾÷Àº ¼ºÀå ±âȸ¸¦ ƯÁ¤ÇÏ°í °³¼±¿¡ ÀÓÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ °æÀï »óȲ¿¡¼­ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÎ±â À§ÇÑ Ã¼Á¦¸¦ ¸¶·ÃÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀåÀÇ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ : ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·ÂÀ» Æò°¡ÇÕ´Ï´Ù.

2. ½ÃÀå °³Ã´µµ : ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡ÇÏ¸ç ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­ : ÃÖ±Ù Á¦Ç° ½ÃÀå, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, ¿¬±¸°³¹ß Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾ò°í ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡ ´ë´äÇϰí ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð ¹× ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹® ¹× Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ ¹× ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À² ¹× °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ ¹× ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • ȯ°æ ¸ð´ÏÅ͸µ ¹× ÇØ¾çÇÐ ¿¬±¸¸¦ À§ÇÑ »ó¼¼Çϰí Á¤È®ÇÑ ¼öÁß µ¥ÀÌÅÍ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
      • ¼¼°è ÇØ»ó ¼®À¯ ¹× °¡½º¿Í ½ÅÀç»ý ¿¡³ÊÁö ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡
      • ´Ù¾çÇÑ Áö¿ª¿¡¼­ ÇØ»ó¾Èº¸ °­È­¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
    • ¾ïÁ¦¿äÀÎ
      • AUVÀÇ Ãʱâ ÅõÀÚ¿Í Á¤±âÀûÀÎ À¯Áö º¸¼öÀÇ ³ôÀº ºñ¿ë
    • ±âȸ
      • ½ÉÇØ¿¡¼­ÀÇ Æ¯Á¤ ÀÛ¾÷¿ëÀ¸·Î Ä¿½ºÅ͸¶ÀÌÁî °¡´ÉÇÑ AUVÀÇ ¿ëµµ Áõ°¡
      • ¹èÅ͸® ¼ö¸í°ú ¼¾½Ì ±â¼úÀ» Çâ»ó½Ã۱â À§ÇÑ Çõ½Å°ú Á¶»ç
    • °úÁ¦
      • ¹èÅ͸® ¼ö¸í°ú ¼öÁß Åë½Å¿¡ °üÇÑ ±â¼úÀû ¹®Á¦
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
    • ¿ëµµº° : Á¤È®ÇÑ ³×ºñ°ÔÀ̼ǰú ½ºÅÚ½º Á¶ÀÛÀ¸·Î ±º»ç ¹× ¹æÀ§¿¡ À־ÀÇ AUVÀÇ Ã¤¿ë Áõ°¡
    • ±â¼úº° : ¾èÀº ÇØ¿ª¿¡¼­ÀÇ °íÁ¤¹ÐµµÈ­¿¡ ÀÇÇØ AUV¿¡¼­ LiDARÀÇ Á߿伺 Áõ°¡
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡Àû
    • °æÁ¦
    • »ç±³
    • ±â¼úÀû
    • ¹ý·ü»ó
    • ȯ°æ

Á¦6Àå ÀÚÀ²¹«ÀÎÀá¼öÁ¤ ½ÃÀå : ±â¼úº°

  • Ãæµ¹ ȸÇÇ
  • Ä¿¹Â´ÏÄÉÀ̼Ç
  • À̹Ì¡
  • ³×ºñ°ÔÀ̼Ç
  • ÃßÁø

Á¦7Àå ÀÚÀ²¹«ÀÎÀá¼öÁ¤ ½ÃÀå : ÀÛÀü ½Éµµº°

  • ½ÉÇØ
  • ¾Æ»ç¼¼

Á¦8Àå ÀÚÀ²¹«ÀÎÀá¼öÁ¤ ½ÃÀå : ÆäÀ̷ε庰

  • À½Çâ µµÇ÷¯ À¯¼Ó°è
  • Ä«¸Þ¶ó
  • ¿¡ÄÚ »ç¿î´õ½º
  • ÇÕ¼º °³±¸ ¼Ò³ª

Á¦9Àå ÀÚÀ²¹«ÀÎÀá¼öÁ¤ ½ÃÀå : Çü»óº°

  • Ãþ·ù ¹Ùµð
  • ´Ùµ¿Â÷
  • À¯¼±ÇüÀÇ Á÷»ç°¢Çü ½ºÅ¸ÀÏ
  • ¾î·Ú

Á¦10Àå ÀÚÀ²¹«ÀÎÀá¼öÁ¤ ½ÃÀå : ¿ëµµº°

  • °í°íÇÐ ¹× ŽÇè
  • ȯ°æº¸È£ ¹× °¨½Ã
  • ±º ¹× ¹æÀ§
  • ÇØ¾çÇÐ
  • ÇØ»ó ½ÅÀç»ý ¿¡³ÊÁö
  • ¼®À¯ ¹× °¡½º
  • ¼ö»ö ±¸Á¶ Ȱµ¿

Á¦11Àå ¾Æ¸Þ¸®Ä«ÀÇ ÀÚÀ²¹«ÀÎÀá¼öÁ¤ ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦12Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÀÚÀ²¹«ÀÎÀá¼öÁ¤ ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦13Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ÀÚÀ²¹«ÀÎÀá¼öÁ¤ ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦14Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®(2023³â)
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º(2023³â)
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
    • Nauticus Robotics°¡ Àü·«Àû ÀüÁÖ½Ä °Å·¡·Î ±íÀÌÀÇ 3D Àμö
    • Anduril Industries, ÀÚÀ²¹«ÀÎÀá¼öÁ¤(AUV)ÀÇ ´ë±Ô¸ð »ý»ê ½Ã¼³ °Ç¼³
    • Teledyne Technologies, Â÷¼¼´ë Slocum Sentinel Glider ÀÚÀ²¹«ÀÎÀá¼öÁ¤ ¹ßÇ¥
  • Àü·« ºÐ¼® ¹× Á¦¾È
    • Lockheed MartinÀÇ ÀÚÀ²¹«ÀÎÀá¼öÁ¤ ºÐ¾ß¿¡¼­ÀÇ Àü·«Àû ¿òÁ÷ÀÓ°ú ½ÃÀå Æ÷Áö¼Å´× ºÐ¼®

±â¾÷ ¸ñ·Ï

  • ASELSAN AS
  • ECA GROUP
  • GateHouse Group A/S
  • General Dynamics Mission Systems
  • Huntington Ingalls Industries, Inc.
  • IHI Corporation
  • International Submarine Engineering Ltd.
  • Klein Marine Systems, Inc.
  • Kongsberg Maritime AS
  • L3Harris Technologies, Inc.
  • Lockheed Martin Corporation
  • Naval Group
  • Ocean Aero, Inc.
  • RUAG International Holding Ltd.
  • Saab AB
  • Schilling Robotics, LLC
  • Teledyne Technologies Incorporated
  • Terradepth, Inc.
  • Thales SA
  • The Boeing Company
AJY 24.11.14

The Autonomous Underwater Vehicles Market was valued at USD 1.85 billion in 2023, expected to reach USD 2.12 billion in 2024, and is projected to grow at a CAGR of 16.08%, to USD 5.26 billion by 2030.

Autonomous Underwater Vehicles (AUVs) are uncrewed, self-operating robotic platforms used primarily for underwater exploration without direct human control. They are equipped with a range of sensors and cameras to perform tasks such as environmental monitoring, underwater surveying, and data collection in marine environments. The necessity of AUVs arises from their ability to operate in challenging and inaccessible underwater terrains, considerably reducing operational costs and risks associated with human divers. They find applications across diverse fields including oceanography, defense, oil and gas exploration, and archaeological surveys. The end-use scope of AUVs extends to military and commercial sectors, research institutions, and even to industries focused on environmental conservation. Market growth is driven by increasing demands for seabed mapping, naval defense systems enhancements, and significant exploration activities undertaken by oil, gas, and renewable energy industries. Advances in communication technologies and developments in more robust, battery-efficient designs are key factors driving the market. The surge in investment in marine research and increased regulatory support for ocean conservation further propels market opportunities. AUV deployment, however, faces limitations from high initial investment costs, technological complexities, and challenges in deep-sea navigation and data communication due to water interference. Innovations in AI-driven navigation systems, improved battery life, miniaturization of sensors, and enhanced data analytics capabilities offer promising avenues for advancement. Collaborative efforts combining government support and private sector innovation could yield significant leverage in overcoming existing market challenges. Research is increasingly focused on developing multipurpose AUVs capable of transitioning between subsea and surface operation realms seamlessly. The market, characterized by moderate-to-high competition, necessitates continual technological advancements and strategic partnerships to leverage the opportunities presented by the growing emphasis on marine resource exploration and environmental monitoring. By focusing on enhancing AUV capabilities through technological innovation and forming strategic alliances, companies can effectively capitalize on the burgeoning demand across multiple sectors.

KEY MARKET STATISTICS
Base Year [2023] USD 1.85 billion
Estimated Year [2024] USD 2.12 billion
Forecast Year [2030] USD 5.26 billion
CAGR (%) 16.08%

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Autonomous Underwater Vehicles Market

The Autonomous Underwater Vehicles Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Growing demand for detailed and accurate underwater data for environmental monitoring and oceanographic studies
    • Increasing investments in offshore oil & gas and renewable energy projects across the globe
    • Rising demand for enhanced maritime security across various geographies
  • Market Restraints
    • High initial cost of investment and regular maintenance of AUVs
  • Market Opportunities
    • Rising applications of customizable AUVs for specific operations in deep waters
    • Innovation and research for enhancing battery life and sensing technologies
  • Market Challenges
    • Technological difficulties related to battery life and underwater communication

Porter's Five Forces: A Strategic Tool for Navigating the Autonomous Underwater Vehicles Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Autonomous Underwater Vehicles Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Autonomous Underwater Vehicles Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Autonomous Underwater Vehicles Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Autonomous Underwater Vehicles Market

A detailed market share analysis in the Autonomous Underwater Vehicles Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Autonomous Underwater Vehicles Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Autonomous Underwater Vehicles Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Autonomous Underwater Vehicles Market

A strategic analysis of the Autonomous Underwater Vehicles Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Autonomous Underwater Vehicles Market, highlighting leading vendors and their innovative profiles. These include ASELSAN A.S., ECA GROUP, GateHouse Group A/S, General Dynamics Mission Systems, Huntington Ingalls Industries, Inc., IHI Corporation, International Submarine Engineering Ltd., Klein Marine Systems, Inc., Kongsberg Maritime AS, L3Harris Technologies, Inc., Lockheed Martin Corporation, Naval Group, Ocean Aero, Inc., RUAG International Holding Ltd., Saab AB, Schilling Robotics, LLC, Teledyne Technologies Incorporated, Terradepth, Inc., Thales S.A., and The Boeing Company.

Market Segmentation & Coverage

This research report categorizes the Autonomous Underwater Vehicles Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Technology, market is studied across Collision Avoidance, Communication, Imaging, Navigation, and Propulsion.
  • Based on Depth of Operation, market is studied across Deep-Water and Shallow-Water.
  • Based on Payload, market is studied across Acoustic Doppler Current Profilers, Cameras, Echo Sounders, and Synthetic Aperture Sonars.
  • Based on Shape, market is studied across Laminar Flow Body, Multi-hull Vehicle, Streamlined Rectangular Style, and Torpedo.
  • Based on Application, market is studied across Archeological & Exploration, Environmental Protection & Monitoring, Military & Defense, Oceanography, Offshore Renewable Energy, Oil & Gas, and Search & Salvage Operation.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Growing demand for detailed and accurate underwater data for environmental monitoring and oceanographic studies
      • 5.1.1.2. Increasing investments in offshore oil & gas and renewable energy projects across the globe
      • 5.1.1.3. Rising demand for enhanced maritime security across various geographies
    • 5.1.2. Restraints
      • 5.1.2.1. High initial cost of investment and regular maintenance of AUVs
    • 5.1.3. Opportunities
      • 5.1.3.1. Rising applications of customizable AUVs for specific operations in deep waters
      • 5.1.3.2. Innovation and research for enhancing battery life and sensing technologies
    • 5.1.4. Challenges
      • 5.1.4.1. Technological difficulties related to battery life and underwater communication
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Application: Higher adoption of AUVs in military and defense due to precise navigation and stealth operations
    • 5.2.2. Technology: Growing significance of LiDAR in AUVs owing to high accuracy in shallow waters
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Autonomous Underwater Vehicles Market, by Technology

  • 6.1. Introduction
  • 6.2. Collision Avoidance
  • 6.3. Communication
  • 6.4. Imaging
  • 6.5. Navigation
  • 6.6. Propulsion

7. Autonomous Underwater Vehicles Market, by Depth of Operation

  • 7.1. Introduction
  • 7.2. Deep-Water
  • 7.3. Shallow-Water

8. Autonomous Underwater Vehicles Market, by Payload

  • 8.1. Introduction
  • 8.2. Acoustic Doppler Current Profilers
  • 8.3. Cameras
  • 8.4. Echo Sounders
  • 8.5. Synthetic Aperture Sonars

9. Autonomous Underwater Vehicles Market, by Shape

  • 9.1. Introduction
  • 9.2. Laminar Flow Body
  • 9.3. Multi-hull Vehicle
  • 9.4. Streamlined Rectangular Style
  • 9.5. Torpedo

10. Autonomous Underwater Vehicles Market, by Application

  • 10.1. Introduction
  • 10.2. Archeological & Exploration
  • 10.3. Environmental Protection & Monitoring
  • 10.4. Military & Defense
  • 10.5. Oceanography
  • 10.6. Offshore Renewable Energy
  • 10.7. Oil & Gas
  • 10.8. Search & Salvage Operation

11. Americas Autonomous Underwater Vehicles Market

  • 11.1. Introduction
  • 11.2. Argentina
  • 11.3. Brazil
  • 11.4. Canada
  • 11.5. Mexico
  • 11.6. United States

12. Asia-Pacific Autonomous Underwater Vehicles Market

  • 12.1. Introduction
  • 12.2. Australia
  • 12.3. China
  • 12.4. India
  • 12.5. Indonesia
  • 12.6. Japan
  • 12.7. Malaysia
  • 12.8. Philippines
  • 12.9. Singapore
  • 12.10. South Korea
  • 12.11. Taiwan
  • 12.12. Thailand
  • 12.13. Vietnam

13. Europe, Middle East & Africa Autonomous Underwater Vehicles Market

  • 13.1. Introduction
  • 13.2. Denmark
  • 13.3. Egypt
  • 13.4. Finland
  • 13.5. France
  • 13.6. Germany
  • 13.7. Israel
  • 13.8. Italy
  • 13.9. Netherlands
  • 13.10. Nigeria
  • 13.11. Norway
  • 13.12. Poland
  • 13.13. Qatar
  • 13.14. Russia
  • 13.15. Saudi Arabia
  • 13.16. South Africa
  • 13.17. Spain
  • 13.18. Sweden
  • 13.19. Switzerland
  • 13.20. Turkey
  • 13.21. United Arab Emirates
  • 13.22. United Kingdom

14. Competitive Landscape

  • 14.1. Market Share Analysis, 2023
  • 14.2. FPNV Positioning Matrix, 2023
  • 14.3. Competitive Scenario Analysis
    • 14.3.1. Nauticus Robotics, Inc. to acquire 3D at Depth in a strategic all-stock transaction
    • 14.3.2. Anduril Industries to establish large-scale production facility for autonomous underwater vehicles (AUVs)
    • 14.3.3. Teledyne Technologies Incorporated unveils next-gen Slocum Sentinel Glider autonomous underwater vehicle
  • 14.4. Strategy Analysis & Recommendation
    • 14.4.1. Analyzing Lockheed Martin's strategic moves and market positioning in the autonomous underwater vehicle sector

Companies Mentioned

  • 1. ASELSAN A.S.
  • 2. ECA GROUP
  • 3. GateHouse Group A/S
  • 4. General Dynamics Mission Systems
  • 5. Huntington Ingalls Industries, Inc.
  • 6. IHI Corporation
  • 7. International Submarine Engineering Ltd.
  • 8. Klein Marine Systems, Inc.
  • 9. Kongsberg Maritime AS
  • 10. L3Harris Technologies, Inc.
  • 11. Lockheed Martin Corporation
  • 12. Naval Group
  • 13. Ocean Aero, Inc.
  • 14. RUAG International Holding Ltd.
  • 15. Saab AB
  • 16. Schilling Robotics, LLC
  • 17. Teledyne Technologies Incorporated
  • 18. Terradepth, Inc.
  • 19. Thales S.A.
  • 20. The Boeing Company
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦