½ÃÀ庸°í¼­
»óǰÄÚµå
1600243

¼¼°èÀÇ ½ºÆ®¸®¹Ö ¾Ö³Î¸®Æ½½º ½ÃÀå : ÄÄÆ÷³ÍÆ®, Àü°³, ¿ëµµ, »ê¾÷, Á¶Á÷ ±Ô¸ðº° ¿¹Ãø(2025-2030³â)

Streaming Analytics Market by Component (Services, Software), Deployment (Cloud, On-Premises), Application, Industry, Organization Size - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 180 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

½ºÆ®¸®¹Ö ¾Ö³Î¸®Æ½½º ½ÃÀåÀº 2023³â¿¡ 275¾ï ´Þ·¯·Î Æò°¡µÇ¾úÀ¸¸ç, 2024³â¿¡´Â 344¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµÇ¸ç, CAGR 25.14%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 1,322¾ï 6,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

½ºÆ®¸®¹Ö ¾Ö³Î¸®Æ½½º´Â µ¥ÀÌÅÍ ½ºÆ®¸²À» ½Ç½Ã°£À¸·Î ó¸®ÇÏ°í ºÐ¼®ÇÏ°í ½Ç¿ëÀûÀÎ ÅëÂû·ÂÀ» ½Å¼ÓÇÏ°Ô ÃßÃâÇÕ´Ï´Ù. ½Ç½Ã°£ ÀÇ»ç °áÁ¤ÀÇ Çʿ伺À¸·Î ÀÎÇØ ¹ß»ýÇÕ´Ï´Ù. ÃÖÁ¾ ¿ëµµÀÇ ¹üÀ§´Â ¹Ýº¹ÀûÀÎ °³¼±°ú °æÀï»óÀÇ ¿ìÀ§¼ºÀ» À§ÇØ ºò µ¥ÀÌÅÍÀÇ È°¿ëÀ» ¸ñÇ¥·Î ÇÏ´Â ´Ù¾çÇÑ »ê¾÷¿¡ °¡±õ½À´Ï´Ù. ½º¸¶Æ® ±â¼úÀÇ º¸±ÞÀÌ ½ºÆ®¸®¹Ö ¾Ö³Î¸®Æ½½º ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ÁÖ¿ä ¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¸Ó½Å ·¯´×ÀÇ ÅëÇÕÀº ÀáÀçÀûÀÎ ºñÁî´Ï½º ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. ±â¾÷ÀÌ ÀÌ·¯ÇÑ ±âȸ¸¦ Ȱ¿ëÇϱâ À§Çؼ­´Â Ŭ¶ó¿ìµå ±â¹Ý ½ºÆ®¸®¹Ö ¾Ö³Î¸®Æ½½º Ç÷§Æû¿¡ ÅõÀÚÇÏ¿© AI ¹× ¸Ó½Å ·¯´× ´É·ÂÀ» °­È­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÇÏÁö¸¸, ½ÃÀå ¼ºÀå¿¡ À־ Ãʱ⼳Á¤ ºñ¿ëÀÇ ³ôÀÌ¿Í Æ¯È÷ ±¸Á¶È­µÇÁö ¾ÊÀº µ¥ÀÌÅ͸¦ ´Ù·ê ¶§ÀÇ µ¥ÀÌÅÍ ÅëÇÕ ¹× °ü¸®ÀÇ º¹À⼺ ÀÌ¿Í °°Àº °úÁ¦°¡ ÀÖ½À´Ï´Ù. ¶ÇÇÑ µ¥ÀÌÅÍ º¸¾È°ú ÇÁ¶óÀ̹ö½ÃÀÇ ¿ì·Á´Â º¸´Ù Æø³ÐÀº ä¿ëÀ» Á¦¾àÇÒ °¡´É¼ºÀÌ ÀÖ½À´Ï´Ù. ¼Ö·ç¼Ç °³¹ß, µ¥ÀÌÅÍ Ã³¸® È¿À²¼º Çâ»óÀ» À§ÇÑ ¿§Áö ÄÄÇ»ÆÃ ¿¬±¸ µîÀÌ ÀÖ½À´Ï´Ù. ±â¾÷Àº ¶ÇÇÑ ÀûÀÀ¼º°ú È®À强À» Çâ»ó½Ã۱â À§ÇØ »ç¿ëÀÚ Ä£È­ÀûÀÎ ÀÎÅÍÆäÀ̽º¿¡µµ ÁÖ·ÂÇØ¾ß ÇÕ´Ï´Ù. ±â¼ú ¹× ÆÄÆ®³Ê½ÊÀ» Áß½ÃÇÏ°í »ê¾÷ °íÀ¯ÀÇ ¿ä±¸¿¡ ´ëÀÀÇÔÀ¸·Î½á ¼­ºñ½º ³»¿ëÀ» ´Ù¾çÈ­ÇÏ´Â ±â¾÷Àº °æÀïÀ» ȹµæÇÒ °¡´É¼ºÀÌ ³ô½À´Ï´Ù. ½ÃÀå ¼ºÀå°ú Áö¼ÓÀûÀÎ °ü·Ã¼º¿¡ ÇʼöÀûÀÔ´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ (2023³â) 275¾ï ´Þ·¯
¿¹Ãø³â(2024³â) 344¾ï ´Þ·¯
¿¹Ãø³â(2030³â) 1,322¾ï 6,000¸¸ ´Þ·¯
CAGR(%) 25.14%

½ÃÀå ¿ªÇÐ: ºü¸£°Ô ÁøÈ­ÇÏ´Â ½ºÆ®¸®¹Ö ¾Ö³Î¸®Æ½½º ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

½ºÆ®¸®¹Ö ¾Ö³Î¸®Æ½½º ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ëÀ» ÅëÇØ º¯¸ð¸¦ ÀÌ·ç°í ÀÖ½À´Ï´Ù. ºñÁî´Ï½º ±âȸ¸¦ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ °æ°¨ÇÒ ¼ö ÀÖÀ½°ú µ¿½Ã¿¡ ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë°ú ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ÄÁÅÙÃ÷ÀÇ °³¼±°ú µðÁöÅÐÈ­ÀÇ ¿ä±¸ÀÇ ¼¼°èÀÇ °íÁ¶
    • Ŭ¶ó¿ìµå ±â¹Ý ½ºÆ®¸®¹Ö ¾Ö³Î¸®Æ½½º ¼Ö·ç¼Ç äÅÃ
    • ±ÝÀ¶ ¼­ºñ½º¿¡¼­ ½ºÆ®¸®¹Ö ¾Ö³Î¸®Æ½½º ÀÌ¿ë È®´ë
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ·¹°Å½Ã ½Ã½ºÅÛ°ú ºò µ¥ÀÌÅÍ ¼Ö·ç¼ÇÀÇ ÅëÇÕ ºÎÁ·
    • µ¥ÀÌÅÍ Áý¾àÇü ±â¾÷ÀÇ µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¿¡ ´ëÇÑ ¿ì·Á
  • ½ÃÀå ±âȸ
    • ¿þ¾î·¯ºí·ÎºÎÅÍ ½ºÆ®¸®¹ÖµÇ´Â ¸®¾óŸÀÓÀÇ Çコ µ¥ÀÌÅ͸¦ Ȱ¿ëÇØ, ȯÀÚ Äɾî¿Í ÇÁ·Î¾×Ƽºê ÀÇ·á ¼Ö·ç¼Ç¿¡ Çõ¸íÀ» °¡Á®´Ù ÁÜ
    • ³×Æ®¿öÅ© ¼º´ÉÀÇ ÃÖÀûÈ­°¡ ÁøÇàµÇ¾î ½Ç½Ã°£ ¸ð´ÏÅ͸µÀÌ °­È­µÇ¾î °³ÀÎÈ­µÈ ¼­ºñ½º°¡ Á¦°ø
  • ½ÃÀåÀÇ °úÁ¦
    • ºÐ»êÇü ȯ°æ¿¡¼­ÀÇ ´ë±Ô¸ð µ¥ÀÌÅÍ Ã³¸®°¡ °ï¶õ

Porter's Five Force: ½ºÆ®¸®¹Ö ¾Ö³Î¸®Æ½½º ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Force Framework´Â ½ºÆ®¸®¹Ö ¾Ö³Î¸®Æ½½º ½ÃÀå °æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ´õ °­ÀÎÇÑ ½ÃÀå¿¡¼­ Æ÷Áö¼Å´×À» º¸Àå ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : ½ºÆ®¸®¹Ö ¾Ö³Î¸®Æ½½º ½ÃÀå¿¡¼­ ¿ÜºÎÀÇ ¿µÇâ ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº ½ºÆ®¸®¹Ö ¾Ö³Î¸®Æ½½º ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ»ÇÕ´Ï´Ù. ±â¾÷Àº PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ¾ÕÀ¸·Î ¿¹»óÇÑ Àû±ØÀûÀÎ ÀÇ»ç °áÁ¤À» ÇÒ Áغñ°¡ µÇ¾î ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® : ½ºÆ®¸®¹Ö ¾Ö³Î¸®Æ½½º ½ÃÀå¿¡¼­ °æÀï ±¸µµ ÆÄ¾Ç

½ºÆ®¸®¹Ö ¾Ö³Î¸®Æ½½º ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ºÐ¸íÈ÷ ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®Àº ½ÃÀå ÁýÁß, ¼¼ºÐÈ­ ¹× ÅëÇÕ µ¿ÇâÀ» º¸¿©ÁÖ°í °ø±Þ¾÷ü´Â °æÀïÀÌ Ä¡¿­ÇØÁü¿¡ µû¶ó ÀÚ»çÀÇ ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç °áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ Áö½ÄÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º: ½ºÆ®¸®¹Ö ¾Ö³Î¸®Æ½½º ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â ½ºÆ®¸®¹Ö ¾Ö³Î¸®Æ½½º ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ±âº» °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ³× °¡Áö »çºÐ¸éÀ» ÅëÇØ º¥´õ¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ºÐÇÒÇϰí Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× Ãßõ: ½ºÆ®¸®¹Ö ¾Ö³Î¸®Æ½½º ½ÃÀå¿¡¼­ ¼º°øÀ» À§ÇÑ ±æÀ» ±×¸®±â

½ºÆ®¸®¹Ö ¾Ö³Î¸®Æ½½º ½ÃÀåÀÇ Àü·«Àû ºÐ¼®Àº ¼¼°è ½ÃÀå¿¡¼­ÀÇ ÇÁ·¹Á𽺠°­È­¸¦ ¸ñÇ¥·Î ÇÏ´Â ±â¾÷¿¡ ÇʼöÀûÀÎ ¿ä¼ÒÀÔ´Ï´Ù. ÀÌ Á¢±Ù¹ýÀ» ÅëÇØ °æÀï ±¸µµ¿¡¼­ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö Àִ üÁ¦¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ ´Ù·ç´Â ½ÃÀå¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ: ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·ÂÀ» Æò°¡ÇÕ´Ï´Ù.

2. ½ÃÀå °³Ã´µµ: ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇϰí, ±âÁ¸ ºÎ¹®¿¡¼­ÀÇ È®Àå °¡´É¼ºÀ» Æò°¡Çϸç, ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» ¼³¸íÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­: ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, »ê¾÷ÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, R&D Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾ò°í ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡µµ ´ë´äÇϰí ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ¡¤Ã¶¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • ÄÁÅÙÃ÷ °³¼± ¹× µðÁöÅÐÈ­¿¡ ´ëÇÑ ¼¼°èÀÇ ¿ä±¸ Áõ°¡
      • Ŭ¶ó¿ìµå ±â¹Ý ½ºÆ®¸®¹Ö ¾Ö³Î¸®Æ½½º ¼Ö·ç¼Ç µµÀÔ
      • ±ÝÀ¶ ¼­ºñ½º¿¡¼­ ½ºÆ®¸®¹Ö ¾Ö³Î¸®Æ½½º »ç¿ë Áõ°¡
    • ¾ïÁ¦¿äÀÎ
      • ·¹°Å½Ã ½Ã½ºÅÛ°ú ºò µ¥ÀÌÅÍ ¼Ö·ç¼ÇÀÇ ÅëÇÕÀÌ ºÒÃæºÐ
      • µ¥ÀÌÅÍ Áý¾àÇü ±â¾÷¿¡ À־ÀÇ µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½ÃÀÇ ¿ì·Á
    • ±âȸ
      • ¿þ¾î·¯ºí·ÎºÎÅÍ ½ºÆ®¸®¹ÖµÇ´Â ½Ç½Ã°£ÀÇ °Ç°­ µ¥ÀÌÅ͸¦ Ȱ¿ëÇØ, ȯÀÚ Äɾî¿Í Àû±ØÀûÀÎ ÀÇ·á ¼Ö·ç¼Ç¿¡ Çõ¸íÀ» ÀÏÀ¸Å²´Ù
      • ³×Æ®¿öÅ© ¼º´É ÃÖÀûÈ­ÀÇ Çâ»ó°ú ½Ç½Ã°£ ¸ð´ÏÅ͸µÀ» °­È­Çϱâ À§ÇÑ °³ÀÎÈ­µÈ ¼­ºñ½º Á¦°ø
    • °úÁ¦
      • ºÐ»ê ȯ°æ¿¡¼­ ´ë±Ô¸ð µ¥ÀÌÅ͸¦ Ãë±ÞÇÏ´Â °ÍÀº °ï¶õ
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
    • ¿ëµµ - ¸®½ºÅ© ¿äÀÎÀÇ Àû½Ã ½Äº° ¹× °æ°¨ Àü·«ÀÇ ½Ç½Ã¸¦ À§ÇÑ ¸®½ºÅ© °ü¸®¿¡ À־ÀÇ ½ºÆ®¸®¹Ö ¾Ö³Î¸®Æ½½ºÀÇ Ã¤¿ë Áõ°¡
    • Á¦°ø Á¦Ç° - ½ºÆ®¸®¹Ö ¾Ö³Î¸®Æ½½º ±â´ÉÀÇ ÀáÀç·ÂÀ» ±Ø´ëÈ­Çϱâ À§ÇÑ Àü¹® ¼­ºñ½º Ȱ¿ë
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡
    • °æÁ¦
    • »çȸ
    • ±â¼ú
    • ¹ý·ü
    • ȯ°æ

Á¦6Àå ½ºÆ®¸®¹Ö ¾Ö³Î¸®Æ½½º ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • ¼Ò°³
  • ¼­ºñ½º
    • ¹èÆ÷ ¹× ÅëÇÕ
    • ¸Å´ÏÁöµå ¼­ºñ½º
    • Àü¹® ¼­ºñ½º
    • Áö¿ø ¹× À¯Áö º¸¼ö
  • ¼ÒÇÁÆ®¿þ¾î

Á¦7Àå ½ºÆ®¸®¹Ö ¾Ö³Î¸®Æ½½º ½ÃÀå : Àü°³º°

  • ¼Ò°³
  • Ŭ¶ó¿ìµå
  • ¿ÂÇÁ·¹¹Ì½º

Á¦8Àå ½ºÆ®¸®¹Ö ¾Ö³Î¸®Æ½½º ½ÃÀå : ¿ëµµº°

  • ¼Ò°³
  • ºÎÁ¤ ÇàÀ§ °ËÃâ
  • À§Ä¡ ÀÎÅÚ¸®Àü½º
  • ³×Æ®¿öÅ© °ü¸® ¹× ÃÖÀûÈ­
  • ¿¹Ãø ÀÚ»ê °ü¸®
  • ¸®½ºÅ© °ü¸®
  • ÆÇ¸Å ¹× ¸¶ÄÉÆÃ
  • °ø±Þ¸Á °ü¸®

Á¦9Àå ½ºÆ®¸®¹Ö ¾Ö³Î¸®Æ½½º ½ÃÀå : »ê¾÷º°

  • ¼Ò°³
  • ÀºÇà/±ÝÀ¶¼­ºñ½º/º¸Çè
  • ¿¡³ÊÁö ¹× À¯Æ¿¸®Æ¼
  • Á¤ºÎ
  • ÀÇ·á ¹× »ý¸í °úÇÐ
  • Á¦Á¶¾÷
  • ¹Ìµð¾î ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ®
  • ¼Ò¸Å ¹× E-Commerce
  • Åë½Å ¹× IT
  • ¿î¼Û ¹× ¹°·ù

Á¦10Àå ½ºÆ®¸®¹Ö ¾Ö³Î¸®Æ½½º ½ÃÀå : Á¶Á÷ ±Ô¸ðº°

  • ¼Ò°³
  • ´ë±â¾÷
  • Áß¼Ò±â¾÷

Á¦11Àå ¾Æ¸Þ¸®Ä«ÀÇ ½ºÆ®¸®¹Ö ¾Ö³Î¸®Æ½½º ½ÃÀå

  • ¼Ò°³
  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦12Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ½ºÆ®¸®¹Ö ¾Ö³Î¸®Æ½½º ½ÃÀå

  • ¼Ò°³
  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦13Àå À¯·´¡¤Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ½ºÆ®¸®¹Ö ¾Ö³Î¸®Æ½½º ½ÃÀå

  • ¼Ò°³
  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦14Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2023³â
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023³â
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
    • Irdeto¿Í BitmovinÀÌ Çù·ÂÇÏ¿© ¾ÈÀüÇϰí ÀúÁö¿¬ÀÇ ½ºÆ®¸®¹Ö ¼Ö·ç¼ÇÀ» °­È­
    • Confluent°¡ Warpstream Àμö·Î ½ºÆ®¸®¹Ö ¾Ö³Î¸®Æ½½º ±â´ÉÀ» °­È­
    • Elon Musk´Â ¼Ò¼È ¹Ìµð¾î¸¦ ÅëÇÕÇÏ¿© »ç¿ëÀÚ °æÇèÀ» °­È­Çϰí X TV º£Å¸·Î ½ºÆ®¸®¹Ö¿¡ Çõ¸íÀ» ÀÏÀ¸Å²´Ù
  • Àü·« ºÐ¼®°ú Á¦¾È

±â¾÷ ¸ñ·Ï

  • Altair Engineering Inc.
  • Cisco Systems, Inc.
  • Confluent, Inc.
  • Crosser Technologies
  • DataStax, Inc.
  • EsperTech Inc.
  • Fujitsu Limited
  • Google LLC by Alphabet Inc.
  • Impetus Technologies, Inc.
  • INETCO Systems Limited
  • Informatica Inc.
  • Intel Corporation
  • International Business Machines Corporation
  • Kx Systems
  • Lightbend, Inc.
  • Materialize, Inc.
  • Microsoft Corporation
  • Oracle Corporation
  • SAP SE
  • SAS Institute Inc.
  • Software AG
  • Striim, Inc.
  • Tibco Software Inc.
  • WSO2 LLC
JHS 24.12.09

The Streaming Analytics Market was valued at USD 27.50 billion in 2023, expected to reach USD 34.40 billion in 2024, and is projected to grow at a CAGR of 25.14%, to USD 132.26 billion by 2030.

Streaming analytics involves the real-time processing and analysis of data streams to extract actionable insights promptly. The necessity of streaming analytics arises from the exponential growth of data and the need for real-time decision-making in various sectors such as finance, healthcare, retail, and telecommunications. Applications include fraud detection, predictive maintenance, customer experience management, and IoT analytics. The end-use scope spans diverse industries aiming to harness big data for iterative improvement and competitive advantage. Market insights suggest that the increasing adoption of IoT devices and the proliferation of smart technologies are key factors driving growth in the streaming analytics market. Further, the upsurge in digitalization and the integration of machine learning to improve data accuracy and predictive capability are providing potential opportunities. For businesses to capitalize on these opportunities, it is recommended to invest in cloud-based streaming analytics platforms and enhance capabilities in AI and machine learning. However, market growth is challenged by limitations such as high initial setup costs and complexities in data integration and management, especially when handling unstructured data. Additionally, data security and privacy concerns can constrain wider adoption. The best areas for innovation and research include enhancing real-time analytical tools, developing hybrid analytics solutions that integrate with existing systems, and exploring edge computing for improved data processing efficiency. Businesses should also focus on user-friendly interfaces for better adaptability and scalability. The nature of the market is highly dynamic, characterized by rapid technological advancements and innovation. Companies that emphasize technology partnerships and diversify their service offerings by addressing industry-specific needs are likely to gain a competitive edge. Constant adaptation to emerging trends and customer demand will be imperative for growth and sustained market relevance.

KEY MARKET STATISTICS
Base Year [2023] USD 27.50 billion
Estimated Year [2024] USD 34.40 billion
Forecast Year [2030] USD 132.26 billion
CAGR (%) 25.14%

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Streaming Analytics Market

The Streaming Analytics Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Growing need to improve and digitalize content globally
    • Adoption of cloud-based streaming analysis solutions
    • Growing usages of streaming analytics for financial services
  • Market Restraints
    • Lack of integrating legacy systems with big data solutions
    • Data privacy concerns with data-intensive companies
  • Market Opportunities
    • Harnessing real-time health data streaming from wearables to revolutionize patient care and proactive healthcare solutions
    • Rising optimization of network performance and offer personalized services to enhance real time monitoring
  • Market Challenges
    • Difficult to handle large-scale data in a decentralized environment

Porter's Five Forces: A Strategic Tool for Navigating the Streaming Analytics Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Streaming Analytics Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Streaming Analytics Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Streaming Analytics Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Streaming Analytics Market

A detailed market share analysis in the Streaming Analytics Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Streaming Analytics Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Streaming Analytics Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Streaming Analytics Market

A strategic analysis of the Streaming Analytics Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Streaming Analytics Market, highlighting leading vendors and their innovative profiles. These include Altair Engineering Inc., Cisco Systems, Inc., Confluent, Inc., Crosser Technologies, DataStax, Inc., EsperTech Inc., Fujitsu Limited, Google LLC by Alphabet Inc., Impetus Technologies, Inc., INETCO Systems Limited, Informatica Inc., Intel Corporation, International Business Machines Corporation, Kx Systems, Lightbend, Inc., Materialize, Inc., Microsoft Corporation, Oracle Corporation, SAP SE, SAS Institute Inc., Software AG, Striim, Inc., Tibco Software Inc., and WSO2 LLC.

Market Segmentation & Coverage

This research report categorizes the Streaming Analytics Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Component, market is studied across Services and Software. The Services is further studied across Deployment & Integration, Managed Services, Professional Services, and Support & Maintenance.
  • Based on Deployment, market is studied across Cloud and On-Premises.
  • Based on Application, market is studied across Fraud Detection, Location Intelligence, Network Management & Optimization, Predictive Asset Management, Risk Management, Sales & Marketing, and Supply Chain Management.
  • Based on Industry, market is studied across Banking, Financial Services & Insurance, Energy & Utilities, Government, Healthcare & Life Sciences, Manufacturing, Media & Entertainment, Retail & E-Commerce, Telecommunication & IT, and Transportation & Logistics.
  • Based on Organization Size, market is studied across Large Enterprises and Small and Medium-Sized Enterprises (SMEs).
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Growing need to improve and digitalize content globally
      • 5.1.1.2. Adoption of cloud-based streaming analysis solutions
      • 5.1.1.3. Growing usages of streaming analytics for financial services
    • 5.1.2. Restraints
      • 5.1.2.1. Lack of integrating legacy systems with big data solutions
      • 5.1.2.2. Data privacy concerns with data-intensive companies
    • 5.1.3. Opportunities
      • 5.1.3.1. Harnessing real-time health data streaming from wearables to revolutionize patient care and proactive healthcare solutions
      • 5.1.3.2. Rising optimization of network performance and offer personalized services to enhance real time monitoring
    • 5.1.4. Challenges
      • 5.1.4.1. Difficult to handle large-scale data in a decentralized environment
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Application- Rising adoption of streaming analytics in risk management for timely identification of risk factors and implementation of mitigation strategies
    • 5.2.2. Offerings- Utilisation of professional services to maximize the potential of streaming analytics capabilities
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Streaming Analytics Market, by Component

  • 6.1. Introduction
  • 6.2. Services
    • 6.2.1. Deployment & Integration
    • 6.2.2. Managed Services
    • 6.2.3. Professional Services
    • 6.2.4. Support & Maintenance
  • 6.3. Software

7. Streaming Analytics Market, by Deployment

  • 7.1. Introduction
  • 7.2. Cloud
  • 7.3. On-Premises

8. Streaming Analytics Market, by Application

  • 8.1. Introduction
  • 8.2. Fraud Detection
  • 8.3. Location Intelligence
  • 8.4. Network Management & Optimization
  • 8.5. Predictive Asset Management
  • 8.6. Risk Management
  • 8.7. Sales & Marketing
  • 8.8. Supply Chain Management

9. Streaming Analytics Market, by Industry

  • 9.1. Introduction
  • 9.2. Banking, Financial Services & Insurance
  • 9.3. Energy & Utilities
  • 9.4. Government
  • 9.5. Healthcare & Life Sciences
  • 9.6. Manufacturing
  • 9.7. Media & Entertainment
  • 9.8. Retail & E-Commerce
  • 9.9. Telecommunication & IT
  • 9.10. Transportation & Logistics

10. Streaming Analytics Market, by Organization Size

  • 10.1. Introduction
  • 10.2. Large Enterprises
  • 10.3. Small and Medium-Sized Enterprises (SMEs)

11. Americas Streaming Analytics Market

  • 11.1. Introduction
  • 11.2. Argentina
  • 11.3. Brazil
  • 11.4. Canada
  • 11.5. Mexico
  • 11.6. United States

12. Asia-Pacific Streaming Analytics Market

  • 12.1. Introduction
  • 12.2. Australia
  • 12.3. China
  • 12.4. India
  • 12.5. Indonesia
  • 12.6. Japan
  • 12.7. Malaysia
  • 12.8. Philippines
  • 12.9. Singapore
  • 12.10. South Korea
  • 12.11. Taiwan
  • 12.12. Thailand
  • 12.13. Vietnam

13. Europe, Middle East & Africa Streaming Analytics Market

  • 13.1. Introduction
  • 13.2. Denmark
  • 13.3. Egypt
  • 13.4. Finland
  • 13.5. France
  • 13.6. Germany
  • 13.7. Israel
  • 13.8. Italy
  • 13.9. Netherlands
  • 13.10. Nigeria
  • 13.11. Norway
  • 13.12. Poland
  • 13.13. Qatar
  • 13.14. Russia
  • 13.15. Saudi Arabia
  • 13.16. South Africa
  • 13.17. Spain
  • 13.18. Sweden
  • 13.19. Switzerland
  • 13.20. Turkey
  • 13.21. United Arab Emirates
  • 13.22. United Kingdom

14. Competitive Landscape

  • 14.1. Market Share Analysis, 2023
  • 14.2. FPNV Positioning Matrix, 2023
  • 14.3. Competitive Scenario Analysis
    • 14.3.1. Irdeto and Bitmovin collaborate to enhance secure, low-latency streaming solutions
    • 14.3.2. Confluent strengthens streaming analytics capabilities with Warpstream acquisition
    • 14.3.3. Elon Musk revolutionizes streaming with X TV Beta by merging social media for enhanced user experiences
  • 14.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Altair Engineering Inc.
  • 2. Cisco Systems, Inc.
  • 3. Confluent, Inc.
  • 4. Crosser Technologies
  • 5. DataStax, Inc.
  • 6. EsperTech Inc.
  • 7. Fujitsu Limited
  • 8. Google LLC by Alphabet Inc.
  • 9. Impetus Technologies, Inc.
  • 10. INETCO Systems Limited
  • 11. Informatica Inc.
  • 12. Intel Corporation
  • 13. International Business Machines Corporation
  • 14. Kx Systems
  • 15. Lightbend, Inc.
  • 16. Materialize, Inc.
  • 17. Microsoft Corporation
  • 18. Oracle Corporation
  • 19. SAP SE
  • 20. SAS Institute Inc.
  • 21. Software AG
  • 22. Striim, Inc.
  • 23. Tibco Software Inc.
  • 24. WSO2 LLC
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦