시장보고서
상품코드
1807552

자동 주사기 시장 : 유형, 투여 방법, 적응증, 유통 채널, 최종 용도별 - 세계 예측(2025-2030년)

Auto-Injectors Market by Type, Mode of Administration, Indication, Distribution Channel, End Use - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 185 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

자동 주사기 시장은 2024년에 12억 2,000만 달러로 평가되며, 2025년에는 13억 7,000만 달러, CAGR 12.22%로 성장하며, 2030년에는 24억 5,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준연도 2024 12억 2,000만 달러
추정연도 2025 13억 7,000만 달러
예측연도 2030 24억 5,000만 달러
CAGR(%) 12.22%

환자 중심주의, 연결성, 규제 명확화가 어떻게 융합되어 현대 의료 서비스 제공에서 자동주사기의 전략적 역할을 재정의하고 있는가?

자동 주사기는 환자 중심의 치료 제공과 신속한 기기 혁신의 교차점에 있으며, 전통적인 임상 환경 외의 주사 요법 투여 방법을 재구성하고 있습니다. 신뢰성이 높고 스트레스가 적은 자가 투약에 대한 환자들의 선호는 직관적인 폼팩터, 간소화된 워크플로우, 투약 오류를 줄이고 순응도를 향상시키는 강력한 안전 기능에 대한 수요를 지속적으로 촉진하고 있습니다. 동시에 제약사들은 자동 주사기를 생물제제 치료의 전략적 원동력으로 간주하여 보다 광범위한 외래 환자 및 재택치료에서 사용할 수 있도록 하여 만성질환의 치료 장벽을 낮추고 있습니다.

기기 연결성, 제약사와의 협력, 지속가능성에 대한 헌신으로 자동 주사기 혁신과 상업적 차별화의 새로운 시대를 열어가겠습니다.

자동 주사기를 둘러싼 환경은 기기의 혁신, 치료 프로파일의 진화, 데이터베이스 치료에 대한 새로운 기대감으로 인해 변화의 물결이 일고 있습니다. 휴먼팩터 엔지니어링의 발전과 센서 및 무선 모듈의 통합으로 단일 목적의 전달 장치는 순응도를 파악하고, 투약 확인을 제공하며, 임상의가 원격으로 모니터링할 수 있는 플랫폼으로 변모하고 있습니다. 제조업체는 기계적인 신뢰성과 안전한 데이터 아키텍처 및 상호운용성 표준을 조화시켜야 하므로 이러한 변화는 제품 개발의 장벽을 높이고 있습니다.

2025년 관세 전환이 자동 주사기 생태계 전반에 걸쳐 전략적 공급망 현지화, 조달 재설계, 기능 간 조정을 강제하는 방법

2025년에 발표된 관세 조치는 자동주사기 생태계에 심각한 영향을 미쳐 부품 조달, 생산 경제성, 상업 계획에 영향을 미칠 것입니다. 많은 어셈블리는 플라스틱, 정밀 스프링, 전자 모듈, 무균 포장을 전 세계에 분산된 공급업체에 의존하고 있습니다. 수입 관세는 조달 계산을 바꾸고, 비용과 납기 리스크를 줄이기 위해 생산의 지역화를 촉진할 수 있습니다. 수직적으로 통합된 공급망과 지역적 제조 거점을 보유한 제조업체는 관세 변동으로부터 가격 책정 및 주문 처리를 분리하는 데 유리합니다.

세분화 중심의 제품 및 상업 전략은 디바이스 유형, 투여 방법, 임상 적응증, 채널 선택이 설계 및 채택의 우선순위를 결정하는 방법을 보여줍니다.

미묘한 세분화의 렌즈는 임상적 요구, 사용자 선호도, 채널의 역학이 제품 우선순위를 형성하기 위해 수렴하는 지점을 명확히 합니다. 디바이스를 일회용과 재사용 가능한 형식으로 분류하면, 일회용의 편리함과 재사용 가능한 플랫폼의 수명주기 이점 사이의 트레이드오프가 발생합니다. 일회용 장치는 종종 저렴한 비용과 단순성을 우선시하는 반면, 재사용 가능한 시스템은 효과적인 세척 경로, 내구성있는 재료, 반복 투여를 지원하기 위해 명확한 사용 지침이 필요합니다. 근육주사기는 일반적으로 더 큰 작동력과 대용량 제제나 점성 제제에 적합한 주사바늘의 안전성이 요구되는 반면, 피하주사기는 미세한 주사바늘 모양, 용량 안정성, 잦은 투여를 지원하기 위한 주사부위 불편감 감소가 중요시됩니다.

미국, 유럽, 중동 및 아프리카, 아시아태평양의 규제 조정, 결제자 역학, 제조 발자국이 채택 경로를 재편

미국, 유럽, 중동/아프리카, 아시아태평양 각 지역에서 규제 당국의 기대, 제조 전략, 상업적 접근은 지역적 힘의 관계로 인해 독특한 형태로 형성되고 있습니다. 미국 대륙에서는 민간 및 공공 지불 기관의 강력한 참여와 잘 구축된 외래 및 재택치료 인프라가 사용 편의성과 비용 효율성이 입증된 기기의 빠른 보급을 지원하고 있습니다. 현지 제조 능력과 탄탄한 개발 및 제조 위탁 기반은 국경을 초월한 혼란을 완화하는 근해 조달 옵션을 제공합니다.

전략적 파트너십, 제조 규모, 디지털 대응력이 장비 제조업체와 수탁제조 파트너사 간의 결정적인 차별화 요소로 부상

의료기기 제조업체, 제약 스폰서, 제조 위탁업체 간의 경쟁 역학은 부문 간 협력, 포트폴리오 다각화, 디지털 역량에 의해 점점 더 정의되고 있습니다. 주요 기업은 기기 엔지니어링을 의약품의 제형 요구 및 규제 전략과 일치시키는 통합 개발 프로그램을 통해 차별화를 꾀하고 있으며, 이를 통해 보다 원활한 복합제 승인과 환자 접근 시간을 단축할 수 있습니다. 제약회사와 기기 벤더의 파트너십은 공급자 관계에서 인적 요소 시험, 임상 지원, 시판 후 데이터 수집에 대한 공동 투자를 수반하는 공동 개발 제휴로 진화하고 있습니다.

의료기기 및 제약업계 리더들에게 지속가능한 상업적 우위 제공, 공급 탄력성, 증거 기반 채택, 디지털 기술을 활용한 차별화를 구축하기 위한 실천적 조치

업계 리더는 혼란을 경쟁 우위로 전환하기 위해 일련의 협력적 행동을 추구해야 합니다. 첫째, 조달처를 다양화하고 현지 제조 옵션에 투자함으로써 관세 관련 비용 충격에 노출될 기회를 줄이고 핵심 부품의 리드 타임을 단축할 수 있습니다. 자동화와 효과적인 현지화에 대한 투자를 결합하여 단위당 경제성을 유지하면서 규제 및 수요 변화에 신속하게 대응할 수 있습니다. 둘째, 개발 초기 단계에서 인적 요소와 임상적 증거를 우선시함으로써 규제 당국의 검토를 가속화하고, 지불자에게 유리한 조달 결정을 지원하는 실제 성능 데이터를 제공합니다.

이해관계자 인터뷰 규제 분석과 기술적 검증을 결합한 투명성 높은 다중 방법론별 조사 접근법을 통해 실용적인 상업적 지침의 기초를 마련

이 조사는 1차 조사와 2차 조사 및 기술 검증을 결합한 다원적 접근 방식에 의존하고 있습니다. 1차 정보에는 설계 기술자, 임상 전문가, 조달 책임자, 최종사용자와의 심층 인터뷰를 통해 사용성, 조달 제약, 유통 선호도에 대한 생생한 관점을 포착했습니다. 이러한 질적 인사이트는 규제 지침 문서, 기기 표준, 공급업체 카탈로그, 출판된 임상 문헌과 같은 2차 정보와 삼각관계를 맺어 기기 요건과 컴플라이언스 경로에 대한 견고한 이해를 구축했습니다.

제품 진보를 임상적, 상업적 성공으로 연결하기 위한 전략적 필수 사항 강조, 기기 혁신공급 탄력성 및 증거 생성의 통합

급격한 변화의 시대에 기기 혁신, 진화하는 치료 전략, 정책 역학의 융합은 자동주사기 산업 전반의 이해관계자들에게 기회와 경영상의 도전을 동시에 가져다 줄 것입니다. 성공 여부는 사용자 중심의 엔지니어링, 탄탄한 증거 창출, 탄력적인 공급망, 병원, 소매 및 재택치료 채널의 현실을 반영하는 사려 깊은 상업적 모델과 조화를 이룰 수 있는지에 달려 있습니다. 모듈식 설계, 초기 인적 요소 테스트, 실용적인 임상 정보를 제공하는 디지털 기능에 투자하는 기업은 임상의의 수용과 지불자의 참여를 이끌어낼 수 있는 명확한 경로를 찾을 수 있을 것으로 보입니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 자동 주사기 시장 : 유형별

  • 일회용
  • 재사용 가능

제9장 자동 주사기 시장 : 투여 방법별

  • 근육내
  • 피하

제10장 자동 주사기 시장 : 적응증별

  • 아나필락시스
  • 당뇨병
  • 다발성 경화증
  • 류마티스 관절염

제11장 자동 주사기 시장 : 유통 채널별

  • 오프라인
    • 병원 약국
    • 소매 약국
  • 온라인

제12장 자동 주사기 시장 : 최종 용도별

  • 외래 진료 센터
  • 홈케어 설정
  • 병원과 진료소

제13장 아메리카의 자동 주사기 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제14장 유럽, 중동 및 아프리카의 자동 주사기 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제15장 아시아태평양의 자동 주사기 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • AbbVie Inc.
    • Aktiv Medical Systems
    • Amgen Inc.
    • Amneal Pharmaceuticals, Inc.
    • AptarGroup, Inc.
    • Bayer AG
    • Becton, Dickinson and Company
    • Biogen Inc.
    • Eli Lilly and Company
    • Gerresheimer AG
    • GlaxoSmithKline PLC
    • Halozyme Therapeutics, Inc.
    • Johnson & Johnson Services, Inc.
    • Medeca Pharma AB
    • Merck KGaA
    • Mylan N.V. by Viatris Inc.
    • NEMERA Group
    • Novartis AG
    • Pfizer, Inc.
    • Ravimed Sp. z o.o.
    • Recipharm AB
    • Sanofi S.A.
    • SHL Medical AG
    • Stevanato Group
    • Teva Pharmaceutical Industries Ltd.
    • West Pharmaceutical Services, Inc.
    • Ypsomed Holding AG

제17장 리서치 AI

제18장 리서치 통계

제19장 리서치 컨택

제20장 리서치 기사

제21장 부록

KSA 25.09.16

The Auto-Injectors Market was valued at USD 1.22 billion in 2024 and is projected to grow to USD 1.37 billion in 2025, with a CAGR of 12.22%, reaching USD 2.45 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 1.22 billion
Estimated Year [2025] USD 1.37 billion
Forecast Year [2030] USD 2.45 billion
CAGR (%) 12.22%

How patient centricity, connectivity and regulatory clarity are converging to redefine the strategic role of auto-injectors in modern healthcare delivery

Auto-injectors are at the intersection of patient-centered therapy delivery and rapid device innovation, reshaping how injectable therapies are administered outside traditional clinical environments. Patient preference for reliable, low-stress self-administration continues to drive demand for intuitive form factors, simplified workflows, and robust safety features that reduce dosing errors and increase adherence. Concurrently, pharmaceutical manufacturers view auto-injectors as strategic enablers of biologic therapies, enabling broader outpatient and homecare use and lowering treatment barriers for chronic conditions.

Technological advances in materials, electronics and human factors have accelerated a shift from purely mechanical devices to smart-enabled systems that provide injection feedback, digital adherence tracking and connectivity to telehealth platforms. Regulatory agencies have responded by clarifying requirements for combination products and post-market surveillance expectations, prompting device and drug developers to invest earlier in integrated design and evidence generation. At the same time, supply chain volatility and cost pressures have elevated sourcing strategies and manufacturing resilience as board-level priorities.

Taken together, these dynamics are redefining competitive advantage: innovation that meaningfully improves usability and safety, while aligning with commercial distribution channels and reimbursement realities, will determine which offerings capture sustained clinical adoption and payer acceptance. This introduction frames the ensuing sections, which examine structural shifts, trade policy impacts, segmentation insights, and recommended strategic responses for stakeholders across the value chain.

Device connectivity, pharma collaboration and sustainability commitments are catalyzing a new era of auto-injector innovation and commercial differentiation

The landscape for auto-injectors is undergoing transformative shifts driven by device innovation, evolving therapeutic profiles, and new expectations for data-driven care. Advances in human factors engineering and the integration of sensors and wireless modules are transforming single-purpose delivery devices into platforms that capture adherence, provide dosing confirmation and enable remote clinician oversight. These shifts are raising the bar for product development, as manufacturers must harmonize mechanical reliability with secure data architectures and interoperability standards.

Simultaneously, pharmaceutical strategies increasingly prioritize patient-administered biologics and chronic disease therapies, creating opportunities for closer pharma-device collaboration and novel commercial models. Makers of auto-injectors are exploring modular designs and multi-dose solutions to balance convenience with cost-efficiency, while contract manufacturers are expanding cleanroom and assembly capabilities to support scale-up. Environmental concerns and circularity considerations are prompting reexamination of disposable versus reusable designs, with regulatory pathways adapting to assess lifecycle impacts and sterilization protocols.

Financial pressures are also reconfiguring the competitive ecosystem. Payers and healthcare providers demand clear evidence of clinical and economic value, accelerating the need for real-world data streams and post-market performance metrics. As a result, companies that combine user-centric design, digital health integration, and robust regulatory strategies will be best positioned to capture adoption in ambulatory and homecare settings, and to respond rapidly to policy or supply chain disruptions.

How 2025 tariff shifts are forcing strategic supply chain localization, procurement redesign and cross-functional alignment across the auto-injector ecosystem

Tariff actions announced for 2025 have material implications for the auto-injector ecosystem, affecting component sourcing, production economics and commercial planning. Many assemblies rely on globally dispersed suppliers for plastics, precision springs, electronic modules and sterile packaging; import duties alter sourcing calculus and can precipitate shifts toward regionalization of production to mitigate cost and delivery risk. Manufacturers with vertically integrated supply chains or regional manufacturing footprints will be better equipped to insulate pricing and fulfillment from tariff volatility.

Beyond direct cost impacts, tariffs influence strategic decisions about inventory buffers, contractual terms with suppliers, and near-term capital allocation. Companies may prioritize capital investments in local tooling, automation and supplier development to reduce exposure to cross-border duty fluctuations. Healthcare providers and payers, facing downstream pricing pressures, may accelerate adoption of procurement practices that emphasize total cost of ownership, longer-term purchasing agreements, and standardized device specifications that reduce complexity.

Importantly, tariff-driven dynamics also reshape partnerships between device OEMs and pharmaceutical companies. Sponsors may elect to reassess preferred device suppliers, seeking co-investment in localization or alternate designs that reduce reliance on tariff-exposed components. Regulatory implications follow suit, as any change in manufacturing sites, sterilization processes or component suppliers requires coordinated validation and submission strategies to maintain product continuity and patient safety. In sum, tariffs act as a multiplier on existing supply chain stresses and compel proactive, integrated responses across R&D, procurement and commercial functions.

Segmentation-driven product and commercial strategies show how device type, administration mode, clinical indication and channel selection jointly define design and adoption priorities

A nuanced segmentation lens reveals where clinical needs, user preferences and channel dynamics converge to shape product priorities. When devices are grouped by type into disposable and reusable formats, tradeoffs emerge between single-use convenience and the lifecycle advantages of reusable platforms; disposable units often prioritize low cost and simplicity while reusable systems require validated cleaning paths, durable materials and clear user instructions to support repeated administration. Mode of administration further differentiates design requirements: intramuscular injectors typically necessitate higher actuation forces and needle safety features suited to larger volume or viscous formulations, whereas subcutaneous devices emphasize fine needle geometry, dose consistency and minimal injection-site discomfort to support frequent dosing.

Indication-specific requirements drive clinical and human factors considerations. Treatments for anaphylaxis demand immediate, fail-safe operation under stress; diabetes therapies require precision dosing and frequent self-administration support; multiple sclerosis and rheumatoid arthritis applications call for devices that accommodate limited dexterity and potentially assisted administration. Distribution channel choices shape commercial positioning: traditional offline pathways such as hospital pharmacies and retail pharmacies support institutional purchasing and clinician-directed training, while online channels enable direct-to-patient fulfillment and require rigorous cold-chain, tamper-evidence and returns protocols. End use contexts also inform product design and support services, with ambulatory care centers prioritizing interoperable device reporting, homecare emphasizing patient education and simplified disposal, and hospitals and clinics demanding integration with institutional inventory and safety systems.

Recognizing the interaction between these segmentation dimensions allows manufacturers and sponsors to prioritize design, clinical evidence, and distribution investments that align with the dominant use scenarios and payer expectations for each therapy area.

Regional regulatory alignment, payer dynamics and manufacturing footprints are reshaping adoption pathways across the Americas, Europe Middle East & Africa and Asia Pacific

Regional dynamics shape regulatory expectations, manufacturing strategies and commercial access in distinctive ways across the Americas, Europe, Middle East & Africa, and Asia-Pacific. In the Americas, strong private and public payer engagement, combined with established outpatient and homecare infrastructures, supports rapid uptake of devices that demonstrate usability benefits and cost-effectiveness. Local manufacturing capacity and a robust contract development and manufacturing base provide options for nearshore sourcing that can mitigate cross-border disruptions.

In Europe, Middle East & Africa, regulatory harmonization across jurisdictions and an emphasis on centralized clinical standards place a premium on thorough human factors data and post-market surveillance plans. Procurement tends to be more centralized in many European healthcare systems, which elevates the importance of comprehensive health economic evidence and tender-ready documentation. In the Gulf and several African markets, rapid growth in private healthcare and telehealth platforms creates demand for solutions that can be deployed with minimal infrastructure and clear product stewardship frameworks.

Asia-Pacific presents a heterogeneous landscape where rapid adoption in certain urban centers coexists with diverse regulatory pathways and variable distribution maturity. Fast-growing homecare adoption and strong manufacturing ecosystems in parts of the region support both local innovation and export-oriented production. However, navigating country-level regulatory requirements, reimbursement policies and distribution channels requires nuanced country strategies and close engagement with regional partners. Across all regions, alignment with local clinician practices, robust training programs, and tailored supply chain solutions are critical to converting clinical potential into sustained adoption.

Strategic partnerships, manufacturing scale and digital enablement are becoming the decisive differentiators among device makers pharmas and contract manufacturing partners

Competitive dynamics among device makers, pharmaceutical sponsors and contract manufacturers are increasingly defined by cross-sector collaboration, portfolio diversification and digital capabilities. Leading companies differentiate through integrated development programs that align device engineering with drug formulation needs and regulatory strategies, enabling smoother combination product approvals and faster time to patient access. Partnerships between pharma and device vendors are evolving from supplier relationships to co-development alliances, with joint investment in human factors testing, clinical support and post-market data collection.

Contract manufacturing organizations are expanding sterile assembly, testing and regulatory support to become strategic partners, particularly for clients seeking localized production footprints. At the same time, a growing cohort of entrants focusing on connected-device layers-software, analytics and adherence platforms-are creating opportunities for incumbents to bolt on digital services that enhance clinical value propositions and support payer discussions. Mergers and acquisitions continue to play a role in capability consolidation, as companies acquire niche engineering skills, specialized materials expertise or regional distribution reach.

Quality systems, regulatory track record and scalability are primary decision levers for customers selecting suppliers. Firms that can demonstrate robust design controls, transparent supply chain traceability, and a clear plan for post-market support will gain preferential access to strategic partnerships with pharmaceutical sponsors and health systems. Ultimately, the most competitive players will be those that couple engineering excellence with commercial agility and a proven ability to deliver evidence that resonates with clinicians and payers.

Practical actions to build supply resilience, evidence led adoption and digital enabled differentiation that drive sustained commercial advantage for device and pharma leaders

Industry leaders should pursue a set of coordinated actions to convert disruption into competitive advantage. First, diversify sourcing and invest in regional manufacturing options to reduce exposure to tariff-related cost shocks and to shorten lead times for critical components. Combined investments in automation and validated localization can preserve unit economics while supporting faster response to regulatory or demand shifts. Second, prioritize human factors and clinical evidence generation early in development to accelerate regulatory reviews and to provide payers with the real-world performance data that supports favorable procurement decisions.

Third, embed digital features thoughtfully to enhance clinical value rather than adding complexity; connectivity should enable actionable clinician insights, adherence monitoring and secure data transfer while maintaining straightforward user experiences. Fourth, align distribution strategies with channel-specific needs: strengthen relationships with hospital and retail pharmacy networks through clinician education programs and ensure that online fulfillment solutions address cold-chain and returns management. Fifth, engage payers and procurement groups proactively with health economic models and real-world evidence that demonstrate reductions in adverse events, improved adherence and total cost benefits.

Finally, adopt sustainability practices in materials selection and product lifecycle management to meet regulatory expectations and payer procurement criteria. By synchronizing supply chain resilience, evidence generation, digital strategy and channel alignment, leaders can reduce commercialization risk and create durable differentiation that supports long-term adoption and reimbursement.

A transparent multi method research approach combining stakeholder interviews regulatory analysis and technical validation to underpin practical commercial guidance

The research relied on a multi-method approach that combined primary stakeholder engagement with systematic secondary review and technical validation. Primary inputs included in-depth interviews with design engineers, clinical specialists, procurement leaders and end users to capture first-hand perspectives on usability, sourcing constraints and distribution preferences. These qualitative insights were triangulated with secondary sources such as regulatory guidance documents, device standards, supplier catalogs and published clinical literature to construct a robust understanding of device requirements and compliance pathways.

Technical validation involved analysis of device design features, materials specifications and component supply chains to identify vulnerability points and innovation opportunities. Regulatory milestones and submission precedents were reviewed to inform development timelines and evidence expectations. Where possible, anonymized operational performance data and case studies from hospital and homecare settings were incorporated to illustrate real-world implications for adoption and support requirements.

Findings were cross-checked through peer review with independent clinical and engineering advisors, and limitations were acknowledged with respect to rapidly evolving tariff policies and confidential commercial arrangements. The methodology emphasizes transparency and reproducibility, and the report's evidence base is designed to support pragmatic decision-making across R&D, procurement and commercial teams.

Synthesis of device innovation supply resilience and evidence generation that highlights the strategic imperatives for converting product advances into clinical and commercial success

In a period of rapid change, the convergence of device innovation, evolving therapeutic strategies and policy dynamics presents both opportunities and operational challenges for stakeholders across the auto-injector landscape. Success will depend on the ability to harmonize user-centered engineering with robust evidence generation, resilient supply chains and thoughtful commercial models that reflect the realities of hospital, retail and homecare channels. Companies that invest in modular design, early human factors testing, and digital features that deliver actionable clinical intelligence will find clearer pathways to clinician acceptance and payer engagement.

At the same time, macroeconomic and policy shifts such as tariff adjustments necessitate proactive supply chain planning and regional production options to sustain competitive pricing and reliable delivery. Cross-functional alignment between device engineering, pharmaceutical sponsors and procurement leads is essential to navigate regulatory updates and to maintain continuity of care. Ultimately, the landscape rewards organizations that combine technical excellence with strategic foresight-those that can translate device innovation into measurable clinical and operational benefits will lead adoption and capture long-term value.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Pharma and tech partnerships accelerate development of next-generation auto-injectors with smart sensors
  • 5.2. Emergence of biodegradable and eco-designed auto-injectors addressing sustainability concerns in healthcare
  • 5.3. Smart connected auto-injectors enable real-time monitoring of patient adherence through digital health platforms
  • 5.4. Adoption of personalized injection settings in auto-injectors driven by AI algorithms for optimal dosing
  • 5.5. Expansion of auto-injector biosimilars market lowers costs and increases access for chronic disease management
  • 5.6. Integration of smartphone apps with autoinjector devices improves patient engagement and treatment outcomes
  • 5.7. Regulatory frameworks evolve to streamline approval pathways for combination drug-device auto-injector products
  • 5.8. Rise of at-home biologics administration drives demand for user-friendly auto-injectors and remote training tools
  • 5.9. Focus on ergonomic design enhancements in auto-injectors to reduce injection pain and improve patient compliance

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Auto-Injectors Market, by Type

  • 8.1. Introduction
  • 8.2. Disposable
  • 8.3. Reusable

9. Auto-Injectors Market, by Mode of Administration

  • 9.1. Introduction
  • 9.2. Intramuscular
  • 9.3. Subcutaneous

10. Auto-Injectors Market, by Indication

  • 10.1. Introduction
  • 10.2. Anaphylaxis
  • 10.3. Diabetes
  • 10.4. Multiple Sclerosis
  • 10.5. Rheumatoid Arthritis

11. Auto-Injectors Market, by Distribution Channel

  • 11.1. Introduction
  • 11.2. Offline
    • 11.2.1. Hospital Pharmacies
    • 11.2.2. Retail Pharmacies
  • 11.3. Online

12. Auto-Injectors Market, by End Use

  • 12.1. Introduction
  • 12.2. Ambulatory Care Centers
  • 12.3. Homecare Settings
  • 12.4. Hospitals & Clinics

13. Americas Auto-Injectors Market

  • 13.1. Introduction
  • 13.2. United States
  • 13.3. Canada
  • 13.4. Mexico
  • 13.5. Brazil
  • 13.6. Argentina

14. Europe, Middle East & Africa Auto-Injectors Market

  • 14.1. Introduction
  • 14.2. United Kingdom
  • 14.3. Germany
  • 14.4. France
  • 14.5. Russia
  • 14.6. Italy
  • 14.7. Spain
  • 14.8. United Arab Emirates
  • 14.9. Saudi Arabia
  • 14.10. South Africa
  • 14.11. Denmark
  • 14.12. Netherlands
  • 14.13. Qatar
  • 14.14. Finland
  • 14.15. Sweden
  • 14.16. Nigeria
  • 14.17. Egypt
  • 14.18. Turkey
  • 14.19. Israel
  • 14.20. Norway
  • 14.21. Poland
  • 14.22. Switzerland

15. Asia-Pacific Auto-Injectors Market

  • 15.1. Introduction
  • 15.2. China
  • 15.3. India
  • 15.4. Japan
  • 15.5. Australia
  • 15.6. South Korea
  • 15.7. Indonesia
  • 15.8. Thailand
  • 15.9. Philippines
  • 15.10. Malaysia
  • 15.11. Singapore
  • 15.12. Vietnam
  • 15.13. Taiwan

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. AbbVie Inc.
    • 16.3.2. Aktiv Medical Systems
    • 16.3.3. Amgen Inc.
    • 16.3.4. Amneal Pharmaceuticals, Inc.
    • 16.3.5. AptarGroup, Inc.
    • 16.3.6. Bayer AG
    • 16.3.7. Becton, Dickinson and Company
    • 16.3.8. Biogen Inc.
    • 16.3.9. Eli Lilly and Company
    • 16.3.10. Gerresheimer AG
    • 16.3.11. GlaxoSmithKline PLC
    • 16.3.12. Halozyme Therapeutics, Inc.
    • 16.3.13. Johnson & Johnson Services, Inc.
    • 16.3.14. Medeca Pharma AB
    • 16.3.15. Merck KGaA
    • 16.3.16. Mylan N.V. by Viatris Inc.
    • 16.3.17. NEMERA Group
    • 16.3.18. Novartis AG
    • 16.3.19. Pfizer, Inc.
    • 16.3.20. Ravimed Sp. z o.o.
    • 16.3.21. Recipharm AB
    • 16.3.22. Sanofi S.A.
    • 16.3.23. SHL Medical AG
    • 16.3.24. Stevanato Group
    • 16.3.25. Teva Pharmaceutical Industries Ltd.
    • 16.3.26. West Pharmaceutical Services, Inc.
    • 16.3.27. Ypsomed Holding AG

17. ResearchAI

18. ResearchStatistics

19. ResearchContacts

20. ResearchArticles

21. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제