½ÃÀ庸°í¼­
»óǰÄÚµå
1612167

¼¼°èÀÇ AaaS(Analytics-as-a-Service) ½ÃÀå : ¼­ºñ½ºº°, À¯Çüº°, ¼Ö·ç¼Çº°, Àü°³º°, ¾÷°èº° - ¿¹Ãø(2025-2030³â)

Analytics-as-a-Service Market by Services (Consulting Services, Managed Services, Support & Maintenance Services), Type (Descriptive Analytics, Diagnostic Analytics, Predictive Analytics), Solution, Deployment, Verticals - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 196 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

AaaS(Analytics-as-a-Service) ½ÃÀåÀÇ 2023³â ½ÃÀå ±Ô¸ð´Â 165¾ï 4,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2024³â¿¡´Â 208¾ï 2,000¸¸ ´Þ·¯·Î ÃßÁ¤µÇ¸ç, CAGR 26.98%·Î ¼ºÀåÇÒ Àü¸ÁÀ̰í, 2030³â¿¡´Â 880¾ï 8,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

AaaS(Analytics-as-a-Service)´Â µ¥ÀÌÅÍ ºÐ¼® ÇÁ·Î¼¼½º¸¦ ±â¾÷¿¡ Á¦°øÇϴ Ŭ¶ó¿ìµå ±â¹Ý ±¸µ¶ ¸ðµ¨À» º¸¿©ÁÝ´Ï´Ù. AaaSÀÇ Çʿ伺Àº ÀÇ»ç°áÁ¤ °­È­, ¾÷¹« ÃÖÀûÈ­, °í°´ °æÇè °³ÀÎÈ­ µî ¸ðµç ºÐ¾ß¿¡¼­ µ¥ÀÌÅÍ ÁÖµµ ÀλçÀÌÆ®¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁö°í ÀÖ´Â µ¥ ±âÀÎÇÕ´Ï´Ù. ±× ¿ëµµ´Â, ÀÚ¿ø ÇÒ´çÀ» À§ÇÑ ¿¹Ãø ºÐ¼®À¸·ÎºÎÅÍ, ºñÁî´Ï½º ÀÎÅÚ¸®Àü½º °­È­¸¦ À§ÇÑ ½Ç½Ã°£ µ¥ÀÌÅÍ °¡½ÃÈ­±îÁö ´Ù¹æ¸é¿¡ °ÉĨ´Ï´Ù. ÃÖÁ¾ ¿ëµµ ºÐ¾ß´Â ÇコÄɾî, IT ¹× Åë½Å, BFSI, ¼Ò¸Å, Á¦Á¶ µî ´Ù¹æ¸é¿¡ °ÉÃÄ, ±× ¹ü¿ë¼ºÀÇ ³ôÀ̸¦ ¸»ÇØÁÖ°í ÀÖ½À´Ï´Ù. ½ÃÀå ¼ºÀåÀ» ÃËÁøÇÏ´Â ÁÖ¿ä ¿äÀÎÀ¸·Î´Â ºòµ¥ÀÌÅÍ ºÐ¼®ÀÇ Áøº¸, Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ ±â¼úÀÇ Ã¤Åà Áõ°¡, ¾÷°è ÀüüÀÇ µ¥ÀÌÅÍ ¼öÁýÀÇ ±Þ°ÝÇÑ Áõ°¡ µîÀ» µé ¼ö ÀÖ½À´Ï´Ù. »ç¹°ÀÎÅͳÝ(IoT) µð¹ÙÀ̽ºÀÇ º¸±Þ°ú µðÁöÅÐ Æ®·£½ºÆ÷¸ÞÀ̼ÇÀ» ÇâÇÑ ¼¼°èÀÇ ÀüȯÀº AaaSÀÇ ¼ö¿ä¸¦ ´õ¿í ³ôÀÌ´Â ¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. AI¸¦ ÅëÇÕÇÑ ºÐ¼® ¼ºÀå, °í°´ Áß½ÉÀÇ ¼Ö·ç¼Ç Áß½Ã, Áß¼Ò±â¾÷ÀÇ ºÐ¼® È®´ë¿¡´Â ÀáÀçÀû ±âȸ°¡ Á¸ÀçÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±âȸ¸¦ Æ÷ÂøÇϱâ À§Çؼ­, ±â¾÷Àº ƯÁ¤ ¾÷°èÀÇ ¿ä±¸¿¡ ´ëÀÀÇÏ´Â, È®À强°ú Ä¿½ºÅ͸¶ÀÌÁÀÌ ¶Ù¾î³­ ¾Ö³Î¸®Æ½½º ¼Ö·ç¼ÇÀÇ Á¦°ø¿¡ ÁÖ·ÂÇØ¾ß ÇÕ´Ï´Ù. ±×·¯³ª µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¿¡ °üÇÑ ¿ì·Á, ±âÁ¸ ½Ã½ºÅÛ°úÀÇ ÅëÇÕ ¹®Á¦, ¼÷·ÃµÈ Àü¹®°¡ ºÎÁ·°ú °°Àº °úÁ¦°¡ ½ÃÀåÀÇ ¼ºÀåÀ» ¹æÇØÇÒ °¡´É¼ºÀÌ ÀÖ½À´Ï´Ù. ¶Ç, µ¥ÀÌÅÍ Ç°Áú¿¡ ´ëÇÑ ÀÇÁ¸À̳ª, °æÀï·ÂÀ» À¯ÁöÇϱâ À§ÇÑ °è¼ÓÀûÀÎ ±â¼ú Áøº¸ÀÇ Çʿ伺À¸·ÎºÎÅ͵µ ÇѰ谡 »ý±é´Ï´Ù. AaaS Çõ½ÅÀº ¿¡Áö ºÐ¼® Á¶»ç, ±â¼ú¿¡ Á¤ÅëÇÏÁö ¾ÊÀº »ç¿ëÀÚ¸¦ À§ÇÑ Á÷°üÀûÀÎ »ç¿ëÀÚ ÀÎÅÍÆäÀ̽º °³¹ß, ±â°è ÇнÀÀ» Ȱ¿ëÇÑ ºÐ¼® ÇÁ·Î¼¼½º ÀÚµ¿È­¸¦ ÅëÇØ ÃßÁøÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ±â¾÷Àº ¾ÈÀüÇÑ µ¥ÀÌÅÍ °Å·¡¸¦ À§ÇÑ ºí·ÏüÀεµ °ËÅäÇØ¾ß ÇÕ´Ï´Ù. ½ÃÀåÀº ±Þ¼ÓÇÑ ±â¼ú Áøº¸¿Í ÁøÈ­ÇÏ´Â °í°´ ¿ä°ÇÀ» Ư¡À¸·Î Çϰí ÀÖÀ¸¸ç, °æÀï·ÂÀ» À¯ÁöÇϱâ À§Çؼ­´Â Áö¼ÓÀûÀÎ ÀûÀÀ°ú Çõ½ÅÀÌ ÇÊ¿äÇÕ´Ï´Ù. ½ÃÀåÀÌ ¼º¼÷ÇØÁü¿¡ µû¶ó »óÈ£¿î¿ë¼º Çâ»ó°ú À±¸®ÀûÀÎ µ¥ÀÌÅÍ ÀÌ¿ë Á߽ð¡ °¡Àå Áß¿äÇÑ °úÁ¦°¡ µÉ °¡´É¼ºÀÌ ³ô½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ(2023³â) 165¾ï 4,000¸¸ ´Þ·¯
ÃßÁ¤³â(2024³â) 208¾ï 2,000¸¸ ´Þ·¯
¿¹Ãø³â(2030³â) 880¾ï 8,000¸¸ ´Þ·¯
CAGR(%) 26.98%

½ÃÀå ¿ªÇÐ : ±Þ¼ÓÈ÷ ÁøÈ­ÇÏ´Â AaaS(Analytics-as-a-Service) ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

AaaS(Analytics-as-a-Service) ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ ÀÛ¿ë¿¡ ÀÇÇØ º¯¸ð¸¦ ÀÌ·ç°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ ÁøÈ­¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÅõÀÚ°áÁ¤, Àü·«Àû ÀÇ»ç°áÁ¤, »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ ȹµæÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ °æ°¨ÇÒ ¼ö ÀÖÀ» »Ó¸¸ ¾Æ´Ï¶ó, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë ¶Ç´Â ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • Ŭ¶ó¿ìµå¸¦ ÅëÇØ °íºÎÇÏ ¿öÅ©·Îµå¸¦ ½ÃÀÛÇÏ´Â °í±Þ ±â¼úÀÇ Çʿ伺
    • ºñ¿ë È¿À²ÀûÀÎ ºÐ¼® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¿ä±¸ Áõ°¡
    • »ç¹°ÀÎÅͳÝ(IoT)°ú ½º¸¶Æ®Æù º¸±Þ Áõ°¡
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • µ¥ÀÌÅÍ º¸¾È ¹× °³ÀÎ Á¤º¸ º¸È£¿¡ ´ëÇÑ ¿ì·Á
  • ½ÃÀå ±âȸ
    • ¼Ò¼È ¹Ìµð¾î »çÀÌÆ®ÀÇ ±ÞÁõÀ¸·Î »ç¿ëÀÚ¿ÍÀÇ »óÈ£ ÀÛ¿ë ÃßÀû¿¡ ´ëÇÑ ¼ö¿ä ±ÞÁõ
    • ºÐ¼®¿ë ¸ð¹ÙÀÏ µð¹ÙÀ̽ºÀÇ º¸±Þ È®´ë
  • ½ÃÀåÀÇ °úÁ¦
    • ÇÑÁ¤µÈ ºÐ¼® Áö½ÄÀÇ Àü¹®°¡

Porter's Five Forces : AaaS(Analytics-as-a-Service) ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ½ÃÀå »óȲÀÇ °æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Porter's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ ޱ¸ÇÏ´Â ¸íÈ®ÇÑ ±â¼úÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÀλçÀÌÆ®¸¦ ÅëÇØ ±â¾÷Àº ÀÚ»çÀÇ °­Á¡À» Ȱ¿ëÇϰí, ¾àÁ¡À» ÇØ°áÇϰí, ÀáÀçÀûÀÎ °úÁ¦¸¦ ÇÇÇÒ ¼ö ÀÖÀ¸¸ç, º¸´Ù °­ÀÎÇÑ ½ÃÀå¿¡¼­ÀÇ Æ÷Áö¼Å´×À» º¸ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : AaaS(Analytics-as-a-Service) ½ÃÀå¿¡¼­ ¿ÜºÎ ¿µÇâ ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº AaaS(Analytics-as-a-Service) ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀÎ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¾ÕÀ¸·Î ¿¹»óµÇ´Â Àû±ØÀûÀÎ ÀÇ»ç °áÁ¤À» ÇÒ Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® : AaaS(Analytics-as-a-Service) ½ÃÀå¿¡¼­ °æÀï ±¸µµ ÆÄ¾Ç

AaaS(Analytics-as-a-Service) ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍ, °í°´ ±â¹Ý, ¼ºÀå·ü µî ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀï Æ÷Áö¼Å´×À» ¹àÈú ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ½ÃÀå ÁýÁß, ´ÜÆíÈ­, ÅëÇÕ µ¿ÇâÀ» ¹àÇô³»°í º¥´õµéÀº °æÀïÀÌ Ä¡¿­ÇØÁö´Â °¡¿îµ¥ ÀÚ»çÀÇ ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç °áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ Áö½ÄÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º : AaaS(Analytics-as-a-Service) ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â AaaS(Analytics-as-a-Service) ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ ¸ÅÆ®¸¯½º¸¦ ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº °ø±Þ¾÷üÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±âÁØÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ¸Â´Â ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ³× °¡Áö »çºÐ¸éÀ» ÅëÇØ °ø±Þ¾÷ü¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ¼¼ºÐÈ­ÇÏ¿© Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× Ãßõ : AaaS(Analytics-as-a-Service) ½ÃÀå¿¡¼­ ¼º°ø¿¡ ´ëÇÑ ±æÀ» ±×¸®±â

AaaS(Analytics-as-a-Service) ½ÃÀåÀÇ Àü·« ºÐ¼®Àº ¼¼°è ½ÃÀå¿¡¼­ÀÇ ÇÁ·¹Á𽺠°­È­¸¦ ¸ñÇ¥·Î ÇÏ´Â ±â¾÷¿¡ ÇʼöÀûÀÎ ¿ä¼ÒÀÔ´Ï´Ù. ÁÖ¿ä ÀÚ¿ø, ¿ª·® ¹× ¼º°ú ÁöÇ¥¸¦ °ËÅäÇÔÀ¸·Î½á ±â¾÷Àº ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í °³¼±À» À§ÇØ ³ë·ÂÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ °æÀï ±¸µµ¿¡¼­ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö Àִ üÁ¦¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀåÀÇ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ : ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·ÂÀ» Æò°¡ÇÕ´Ï´Ù.

2. ½ÃÀå °³Ã´µµ : ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡ÇÏ¸ç ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, ¿¬±¸°³¹ß Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾ò°í ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡ ´ë´äÇϰí ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð ¹× ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹® ¹× Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ ¹× ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À² ¹× °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ ¹× ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • Ŭ¶ó¿ìµå¸¦ ÅëÇØ °íºÎÇÏ ¿öÅ©·Îµå¸¦ ½ÃÀÛÇϱâ À§ÇÑ °í±Þ ±â¼úÀÇ Çʿ伺
      • ºñ¿ë È¿À²ÀûÀÎ ºÐ¼® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¿ä±¸ Áõ°¡
      • »ç¹°ÀÎÅͳÝ(IoT) µµÀÔ°ú ½º¸¶Æ®Æù º¸±Þ
    • ¾ïÁ¦¿äÀÎ
      • µ¥ÀÌÅÍ º¸¾È ¹× °³ÀÎÁ¤º¸ º¸È£¿¡ ´ëÇÑ ¿ì·Á
    • ±âȸ
      • ¼Ò¼È ¹Ìµð¾î »çÀÌÆ®ÀÇ ¼ö°¡ ±ÞÁõÇϰí, »ç¿ëÀÚÀÇ »óÈ£ÀÛ¿ë ÃßÀû¿¡ ´ëÇÑ ¼ö¿ä ±ÞÁõ
      • ºÐ¼®¿ë ¸ð¹ÙÀÏ µð¹ÙÀ̽ºÀÇ Àα⠻ó½Â
    • °úÁ¦
      • ÇÑÁ¤µÈ ºÐ¼® Áö½ÄÀÇ Àü¹®°¡
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
    • ¼­ºñ½ºº° : Ŭ¶óÀ̾ðÆ®ÀÇ µ¥ÀÌÅÍ ÀÎÇÁ¶ó¸¦ Æò°¡Çϱâ À§ÇÑ ÄÁ¼³ÆÃ ¼­ºñ½ºÀÇ ÀÌ¿ë Áõ°¡
    • µµÀÔº° : À¯¿¬¼º°ú È®À强À» Á¦°øÇÏ´Â ÇÏÀ̺긮µå Ŭ¶ó¿ìµå µµÀÔ Áõ°¡
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡Àû
    • °æÁ¦
    • »ç±³
    • ±â¼úÀû
    • ¹ý·ü»ó
    • ȯ°æ

Á¦6Àå AaaS(Analytics-as-a-Service) ½ÃÀå : ¼­ºñ½ºº°

  • ÄÁ¼³ÆÃ ¼­ºñ½º
  • ¸Å´ÏÁöµå ¼­ºñ½º
  • Áö¿ø ¹× À¯Áöº¸¼ö ¼­ºñ½º

Á¦7Àå AaaS(Analytics-as-a-Service) ½ÃÀå : À¯Çüº°

  • ±â¼úÀû ºÐ¼®
  • Áø´Ü ºÐ¼®
  • ¿¹Ãø ºÐ¼®
  • ó¹æÀû ºÐ¼®

Á¦8Àå AaaS(Analytics-as-a-Service) ½ÃÀå : ¼Ö·ç¼Çº°

  • °í°´ºÐ¼®
    • °í°´ Çൿ ºÐ¼®
    • °í°´ ¼¼ºÐÈ­ ¹× Ŭ·¯½ºÅ͸µ
    • Ãæ¼ºµµ¿Í °í°´ °æÇè °ü¸®
  • À繫 ºÐ¼®
    • ÀÚ»êºÎä°ü¸®
    • ¿¹»ê °ü¸®
    • ÃѰèÁ¤ ¿øÀå °ü¸®
    • ÀÓº£µðµå±Ý ¹× ¸Å»ó±Ý °ü¸®
    • ¼öÀͼº °ü¸®
  • ¸¶ÄÉÆÃ ºÐ¼®
    • ¸¶ÄÉÆÃ Ä·ÆäÀÎ ¸ð´ÏÅ͸µ
    • ¿¹Ãø ¸ðµ¨¸µ
    • Á¦Ç° ¶Ç´Â ¼­ºñ½º °³¹ß Àü·«
    • ¼öÀÍ °ü¸®
  • ³×Æ®¿öÅ© ºÐ¼®
    • Áö´ÉÇü ³×Æ®¿öÅ© ÃÖÀûÈ­
    • ±³Åë°ü¸®
  • ¸®½ºÅ© ºÐ¼®
    • ½Å¿ë ¸®½ºÅ©¿Í ½ÃÀå ¸®½ºÅ© °ü¸®
    • »çÀ̹ö ¸®½ºÅ© °ü¸®
    • ¿î¿µ ¸®½ºÅ© °ü¸®
  • ÆÇ¸Å ºÐ¼®
    • ÆÇ¸Å ¶óÀÌÇÁ »çÀÌŬ °ü¸®
    • ¿µ¾÷ ´ã´çÀÚÀÇ È¿À² ÃÖÀûÈ­
  • °ø±Þ¸Á ºÐ¼®
    • À¯Åë°ú ¹°·ù ÃÖÀûÈ­
    • Àç°í ÃÖÀûÈ­
    • Á¦Á¶ºÐ¼®
    • ÆÇ¸Å ¹× ¿î¿µ °èȹ
    • °ø±Þ¸Á °èȹ ¹× Á¶´Þ
  • À¥ ¹× ¼Ò¼È ¹Ìµð¾î ºÐ¼®
    • ÆÛÆ÷¸Õ½º °¨½Ã
    • °Ë»ö¿£Áø ÃÖÀûÈ­
    • ¼Ò¼È ¹Ìµð¾î °ü¸®

Á¦9Àå AaaS(Analytics-as-a-Service) ½ÃÀå : Àü°³º°

  • ÇÏÀ̺긮µå Ŭ¶ó¿ìµå
  • ÇÁ¶óÀ̺ø Ŭ¶ó¿ìµå
  • ÆÛºí¸¯ Ŭ¶ó¿ìµå

Á¦10Àå AaaS(Analytics-as-a-Service) ½ÃÀå ¾÷Á¾º°

  • ÀºÇà/±ÝÀ¶¼­ºñ½º/º¸Çè
  • ¿¡³ÊÁö ¹× À¯Æ¿¸®Æ¼
  • Á¤ºÎ
  • ÇコÄÉ¾î ¹× »ý¸í°úÇÐ
  • Á¦Á¶¾÷
  • ¹Ìµð¾î ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ®
  • ¼Ò¸Å ¹× µµ¸Å
  • Åë½Å ¹× IT
  • ¿î¼Û ¹× ¹°·ù
  • ¿©Çà ¹× È£½ºÇÇÅ»¸®Æ¼

Á¦11Àå ¾Æ¸Þ¸®Ä«ÀÇ AaaS(Analytics-as-a-Service) ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦12Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ AaaS(Analytics-as-a-Service) ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦13Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ AaaS(Analytics-as-a-Service) ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦14Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®(2023³â)
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º(2023³â)
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
    • SAS, ¼Ö·ç¼Ç Á¦°ø¾÷ü ä³Î °­È­¸¦ À§ÇØ TD SYNNEX¿ÍÀÇ ¼¼°è ÆÇ¸Å °è¾à ¹ßÇ¥
    • Genpact¿Í o9 SolutionsÀÇ ÆÄÆ®³Ê½ÊÀÇ Àü·«Àû È®´ë´Â AI ÁÖµµ °ø±Þ¸ÁÀÇ Åº·Â¼º °­È­
    • »çÀ̹ö º¸¾È °­È­ : Accenture¿Í Google Cloud°¡ ¼¼°è ÆÄÆ®³Ê½Ê °­È­
  • Àü·« ºÐ¼® ¹× Á¦¾È

±â¾÷ ¸ñ·Ï

  • Accenture PLC
  • Amazon Web Services, Inc.
  • Atos SE
  • Capgemini SE
  • Dell Technologies Inc.
  • GoodData Corporation
  • Google LLC
  • Hewlett Packard Enterprise Development LP
  • International Business Machines Corporation
  • Microsoft Corporation
  • Microstrategy Incorporated
  • NTT DATA Inc.
  • Oracle Corporation
  • Salesforce.com, Inc.
  • SAP SE
  • SAS Institute Inc.
  • Sisense Inc.
  • Teradata Corporation
  • TIBCO Software Inc.
  • VMware, Inc.
AJY 24.12.24

The Analytics-as-a-Service Market was valued at USD 16.54 billion in 2023, expected to reach USD 20.82 billion in 2024, and is projected to grow at a CAGR of 26.98%, to USD 88.08 billion by 2030.

Analytics-as-a-Service (AaaS) denotes cloud-based, subscription-based models that deliver data analytics processes to businesses. Its necessity stems from the growing demand for data-driven insights across all sectors to enhance decision-making, optimize operations, and personalize customer experiences. Applications range from predictive analytics for resource allocation to real-time data visualization for enhanced business intelligence. End-use sectors span healthcare, IT and telecom, BFSI, retail, and manufacturing, illustrating its versatile appeal. Key factors driving market growth include advancements in big data analytics, increasing adoption of cloud computing technologies, and the exponential rise in data collection across industries. The proliferation of Internet of Things (IoT) devices and the global shift towards digital transformation further contribute to the demand for AaaS. Potential opportunities exist in the growth of AI-integrated analytics, the emphasis on customer-centric solutions, and the expansion of analytics within smaller enterprises. To seize these opportunities, businesses should focus on offering scalable and customizable analytics solutions, which address specific industry needs. However, challenges like data privacy concerns, integration issues with existing systems, and a shortage of skilled professionals may hinder market growth. Limitations also arise from dependency on data quality and the need for continual tech advancements to stay competitive. Innovation in AaaS can be driven by research into edge analytics, development of intuitive user interfaces for non-tech savvy users, and leveraging machine learning to automate analytics processes. Businesses should also explore blockchain for secure data transactions. The market is characterized by rapid technological advancements and evolving customer requirements, necessitating continual adaptation and innovation to maintain a competitive edge. As the market matures, enhanced interoperability and emphasis on ethical data usage will likely become paramount considerations.

KEY MARKET STATISTICS
Base Year [2023] USD 16.54 billion
Estimated Year [2024] USD 20.82 billion
Forecast Year [2030] USD 88.08 billion
CAGR (%) 26.98%

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Analytics-as-a-Service Market

The Analytics-as-a-Service Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Need for advanced technologies to initiate high workloads through the cloud
    • Growing need for cost-effective analytics solutions
    • Increasing incorporation of the Internet of Things (IoT) and the proliferation of smartphone
  • Market Restraints
    • Concerns regarding data security and privacy
  • Market Opportunities
    • Rapid increase in the number of social media sites which has surged the demand to track user interaction
    • Growing popularity of mobile devices for analytics
  • Market Challenges
    • Limited expertise in the analytical knowledge

Porter's Five Forces: A Strategic Tool for Navigating the Analytics-as-a-Service Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Analytics-as-a-Service Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Analytics-as-a-Service Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Analytics-as-a-Service Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Analytics-as-a-Service Market

A detailed market share analysis in the Analytics-as-a-Service Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Analytics-as-a-Service Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Analytics-as-a-Service Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Analytics-as-a-Service Market

A strategic analysis of the Analytics-as-a-Service Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Analytics-as-a-Service Market, highlighting leading vendors and their innovative profiles. These include Accenture PLC, Amazon Web Services, Inc., Atos SE, Capgemini SE, Dell Technologies Inc., GoodData Corporation, Google LLC, Hewlett Packard Enterprise Development LP, International Business Machines Corporation, Microsoft Corporation, Microstrategy Incorporated, NTT DATA Inc., Oracle Corporation, Salesforce.com, Inc., SAP SE, SAS Institute Inc., Sisense Inc., Teradata Corporation, TIBCO Software Inc., and VMware, Inc..

Market Segmentation & Coverage

This research report categorizes the Analytics-as-a-Service Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Services, market is studied across Consulting Services, Managed Services, and Support & Maintenance Services.
  • Based on Type, market is studied across Descriptive Analytics, Diagnostic Analytics, Predictive Analytics, and Prescriptive Analytics.
  • Based on Solution, market is studied across Customer Analytics, Financial Analytics, Marketing Analytics, Network Analytics, Risk Analytics, Sales Analytics, Supply Chain Analytics, and Web & Social Media Analytics. The Customer Analytics is further studied across Customer Behavior Analysis, Customer Segmentation and Clustering, and Loyalty and Customer Experience Management. The Financial Analytics is further studied across Asset and Liability Management, Budgetary Control Management, General Ledger Management, Payables & Receivables Management, and Profitability Management. The Marketing Analytics is further studied across Marketing Campaign Monitoring, Predictive Modeling, Product Or Service Development Strategies, and Yield Management. The Network Analytics is further studied across Intelligent Network Optimization and Traffic Management. The Risk Analytics is further studied across Credit & Market Risk Management, Cyber Risk Management, and Operational Risk Management. The Sales Analytics is further studied across Sales Lifecycle Management and Sales Reps Efficiency Optimization. The Supply Chain Analytics is further studied across Distribution & Logistics Optimization, Inventory Optimization, Manufacturing Analysis, Sales and Operations Planning, and Supply Chain Planning & Procurement. The Web & Social Media Analytics is further studied across Performance Monitoring, Search Engine Optimization, and Social Media Management.
  • Based on Deployment, market is studied across Hybrid Cloud, Private Cloud, and Public Cloud.
  • Based on Verticals, market is studied across Banking, Financial Services, & Insurance, Energy & Utility, Government, Healthcare & Life Sciences, Manufacturing, Media & Entertainment, Retail & Wholesale, Telecommunication & IT, Transportation & Logistics, and Travel & Hospitality.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Need for advanced technologies to initiate high workloads through the cloud
      • 5.1.1.2. Growing need for cost-effective analytics solutions
      • 5.1.1.3. Increasing incorporation of the Internet of Things (IoT) and the proliferation of smartphone
    • 5.1.2. Restraints
      • 5.1.2.1. Concerns regarding data security and privacy
    • 5.1.3. Opportunities
      • 5.1.3.1. Rapid increase in the number of social media sites which has surged the demand to track user interaction
      • 5.1.3.2. Growing popularity of mobile devices for analytics
    • 5.1.4. Challenges
      • 5.1.4.1. Limited expertise in the analytical knowledge
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Services: Growing usage of consulting services for assessing the client's data infrastructure
    • 5.2.2. Deployment: Rising hybrid cloud deployment hybrid cloud as it offers flexibility and scalability
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Analytics-as-a-Service Market, by Services

  • 6.1. Introduction
  • 6.2. Consulting Services
  • 6.3. Managed Services
  • 6.4. Support & Maintenance Services

7. Analytics-as-a-Service Market, by Type

  • 7.1. Introduction
  • 7.2. Descriptive Analytics
  • 7.3. Diagnostic Analytics
  • 7.4. Predictive Analytics
  • 7.5. Prescriptive Analytics

8. Analytics-as-a-Service Market, by Solution

  • 8.1. Introduction
  • 8.2. Customer Analytics
    • 8.2.1. Customer Behavior Analysis
    • 8.2.2. Customer Segmentation and Clustering
    • 8.2.3. Loyalty and Customer Experience Management
  • 8.3. Financial Analytics
    • 8.3.1. Asset and Liability Management
    • 8.3.2. Budgetary Control Management
    • 8.3.3. General Ledger Management
    • 8.3.4. Payables & Receivables Management
    • 8.3.5. Profitability Management
  • 8.4. Marketing Analytics
    • 8.4.1. Marketing Campaign Monitoring
    • 8.4.2. Predictive Modeling
    • 8.4.3. Product Or Service Development Strategies
    • 8.4.4. Yield Management
  • 8.5. Network Analytics
    • 8.5.1. Intelligent Network Optimization
    • 8.5.2. Traffic Management
  • 8.6. Risk Analytics
    • 8.6.1. Credit & Market Risk Management
    • 8.6.2. Cyber Risk Management
    • 8.6.3. Operational Risk Management
  • 8.7. Sales Analytics
    • 8.7.1. Sales Lifecycle Management
    • 8.7.2. Sales Reps Efficiency Optimization
  • 8.8. Supply Chain Analytics
    • 8.8.1. Distribution & Logistics Optimization
    • 8.8.2. Inventory Optimization
    • 8.8.3. Manufacturing Analysis
    • 8.8.4. Sales and Operations Planning
    • 8.8.5. Supply Chain Planning & Procurement
  • 8.9. Web & Social Media Analytics
    • 8.9.1. Performance Monitoring
    • 8.9.2. Search Engine Optimization
    • 8.9.3. Social Media Management

9. Analytics-as-a-Service Market, by Deployment

  • 9.1. Introduction
  • 9.2. Hybrid Cloud
  • 9.3. Private Cloud
  • 9.4. Public Cloud

10. Analytics-as-a-Service Market, by Verticals

  • 10.1. Introduction
  • 10.2. Banking, Financial Services, & Insurance
  • 10.3. Energy & Utility
  • 10.4. Government
  • 10.5. Healthcare & Life Sciences
  • 10.6. Manufacturing
  • 10.7. Media & Entertainment
  • 10.8. Retail & Wholesale
  • 10.9. Telecommunication & IT
  • 10.10. Transportation & Logistics
  • 10.11. Travel & Hospitality

11. Americas Analytics-as-a-Service Market

  • 11.1. Introduction
  • 11.2. Argentina
  • 11.3. Brazil
  • 11.4. Canada
  • 11.5. Mexico
  • 11.6. United States

12. Asia-Pacific Analytics-as-a-Service Market

  • 12.1. Introduction
  • 12.2. Australia
  • 12.3. China
  • 12.4. India
  • 12.5. Indonesia
  • 12.6. Japan
  • 12.7. Malaysia
  • 12.8. Philippines
  • 12.9. Singapore
  • 12.10. South Korea
  • 12.11. Taiwan
  • 12.12. Thailand
  • 12.13. Vietnam

13. Europe, Middle East & Africa Analytics-as-a-Service Market

  • 13.1. Introduction
  • 13.2. Denmark
  • 13.3. Egypt
  • 13.4. Finland
  • 13.5. France
  • 13.6. Germany
  • 13.7. Israel
  • 13.8. Italy
  • 13.9. Netherlands
  • 13.10. Nigeria
  • 13.11. Norway
  • 13.12. Poland
  • 13.13. Qatar
  • 13.14. Russia
  • 13.15. Saudi Arabia
  • 13.16. South Africa
  • 13.17. Spain
  • 13.18. Sweden
  • 13.19. Switzerland
  • 13.20. Turkey
  • 13.21. United Arab Emirates
  • 13.22. United Kingdom

14. Competitive Landscape

  • 14.1. Market Share Analysis, 2023
  • 14.2. FPNV Positioning Matrix, 2023
  • 14.3. Competitive Scenario Analysis
    • 14.3.1. SAS Announces Global Distribution Agreement with TD SYNNEX to Enhance Solution Provider Channels
    • 14.3.2. Strategic Expansion of Genpact and o9 Solutions Partnership Enhances AI-driven Supply Chain Resilience
    • 14.3.3. Strengthening Cybersecurity: Accenture and Google Cloud Amplify their Global Partnership
  • 14.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Accenture PLC
  • 2. Amazon Web Services, Inc.
  • 3. Atos SE
  • 4. Capgemini SE
  • 5. Dell Technologies Inc.
  • 6. GoodData Corporation
  • 7. Google LLC
  • 8. Hewlett Packard Enterprise Development LP
  • 9. International Business Machines Corporation
  • 10. Microsoft Corporation
  • 11. Microstrategy Incorporated
  • 12. NTT DATA Inc.
  • 13. Oracle Corporation
  • 14. Salesforce.com, Inc.
  • 15. SAP SE
  • 16. SAS Institute Inc.
  • 17. Sisense Inc.
  • 18. Teradata Corporation
  • 19. TIBCO Software Inc.
  • 20. VMware, Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦