½ÃÀ庸°í¼­
»óǰÄÚµå
1804442

¹«¹èÅ͸® RFID ¼¾¼­ ½ÃÀå : ÅÂ±× À¯Çü, Á֯ļö ¹üÀ§, ¿¬°á¼º, ÆÇµ¶ °Å¸® À¯Çü, ¿ëµµ, »ê¾÷ ºÐ¾ßº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Battery-Free RFID Sensor Market by Tag Type, Frequency Range, Connectivity, Read Distance Type, Application, Industry Vertical - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 193 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¹«¹èÅ͸® RFID ¼¾¼­ ½ÃÀåÀÇ 2024³â ½ÃÀå ±Ô¸ð´Â 2¾ï 500¸¸ ´Þ·¯·Î Æò°¡µÇ¾úÀ¸¸ç, 2025³â¿¡´Â 2¾ï 1,621¸¸ ´Þ·¯·Î ¼ºÀåÇÏ¿© CAGRÀº 5.58%, 2030³â¿¡´Â 2¾ï 8,411¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ 2024³â 2¾ï 500¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ 2025³â 2¾ï 1,621¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ 2030³â 2¾ï 8,411¸¸ ´Þ·¯
CAGR(%) 5.58%

´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ ½Ç½Ã°£ ¸ð´ÏÅ͸µ ¹× ¾÷¹« È¿À²¼º Çâ»ó¿¡ ÀÖ¾î ¹«¹èÅ͸® RFID ¼¾¼­ ±â¼úÀÇ Áß¿äÇÑ ¿ªÇÒ¿¡ ´ëÇØ ¾Ë¾Æº¸¼¼¿ä.

¹«¹èÅ͸® RFID ¼¾¼­ ±â¼úÀº Á¶Á÷ÀÌ ÀÚ»ê°ú ÇÁ·Î¼¼½º¸¦ ÃßÀû, ¸ð´ÏÅ͸µ ¹× ÃÖÀûÈ­ÇÏ´Â ¹æ½ÄÀÇ ÆÐ·¯´ÙÀÓ ÀüȯÀ» »ó¡ÇÕ´Ï´Ù. ¿¡³ÊÁö ¼öÈ® ±â´ÉÀ» Ȱ¿ëÇÏ°í ¿Âº¸µå Àü¿ø °ø±Þ ÀåÄ¡°¡ ÇÊ¿ä ¾ø´Â ÀÌ ¼¾¼­´Â ±âÁ¸ ¹èÅ͸® ±¸µ¿ ÀåÄ¡¿Í °ü·ÃµÈ À¯Áöº¸¼ö ¿À¹öÇìµå³ª ȯ°æ ¹®Á¦ ¾øÀÌ Áö¼ÓÀûÀÎ µ¥ÀÌÅÍ ½ºÆ®¸²À» Á¦°øÇÕ´Ï´Ù. ±× °á°ú, Á¦Á¶ ÇöÀå, ¹°·ù ³×Æ®¿öÅ©, Áß¿ä ÀÎÇÁ¶ó¸¦ ¾Æ¿ì¸£´Â ±â¾÷µéÀº ½Ç½Ã°£ °¡½Ã¼º, ¿¹ÃøÀû ÀλçÀÌÆ®, Áö¼Ó°¡´ÉÇÑ ¿î¿µÀ» À§ÇØ ÀÌ·¯ÇÑ µ¶¸³Çü ű׸¦ µðÁöÅÐ ¿¡ÄڽýºÅÛ¿¡ ÅëÇÕÇϱ⠽ÃÀÛÇß½À´Ï´Ù.

¼¼°è ºñÁî´Ï½º¿¡¼­ ¹«¹èÅ͸® RFID ¼¾¼­ÀÇ Ã¤Åðú ÁøÈ­¸¦ ÃËÁøÇÏ´Â ÁÖ¿ä ±â¼ú ¹× ½ÃÀå º¯È­¸¦ »ìÆìº¾´Ï´Ù.

¹«¹èÅ͸® RFID ¼¾¼­ÀÇ »óȲÀº Àç·á °úÇÐ, ¼ÒÇüÈ­, ¿§Áö ÄÄÇ»ÆÃ ÅëÇÕÀÇ ±Þ¼ÓÇÑ ¹ßÀü¿¡ ÈûÀÔ¾î ÀÏ·ÃÀÇ º¯È­ÀÇ ½Ã±â¸¦ ¸ÂÀÌÇϰí ÀÖ½À´Ï´Ù. ¿¡³ÊÁö ¼öÈ® ±â¼úÀÌ ¼º¼÷ÇØÁö¸é¼­ ÁÖº¯ ¹«¼± Á֯ļö ¿¡³ÊÁö¸¦ º¸´Ù È¿À²ÀûÀ¸·Î Æ÷ÂøÇÒ ¼ö ÀÖ°Ô µÊ¿¡ µû¶ó, ÀÌÀü¿¡´Â ¹®Á¦°¡ ¸¹´Ù°í ¿©°ÜÁ³´ø ȯ°æ¿¡¼­µµ ¾ÈÁ¤ÀûÀ¸·Î ¼¾¼­¸¦ ÀÛµ¿½Ãų ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. µ¿½Ã¿¡ »óÈ£ ¿î¿ë °¡´ÉÇÑ IoT Ç÷§ÆûÀÇ µîÀåÀ¸·Î ű×, °ÔÀÌÆ®¿þÀÌ, ºÐ¼® ¿£Áø °£ÀÇ ¿øÈ°ÇÑ µ¥ÀÌÅÍ ±³È¯ÀÌ ÃËÁøµÇ¾î º¹ÀâÇÑ °ø±Þ¸Á°ú ºÐ»êµÈ ÀÎÇÁ¶ó Àü¹Ý¿¡ °ÉÃÄ »õ·Î¿î Â÷¿øÀÇ ¿î¿µ ÀÎÅÚ¸®Àü½º°¡ °¡´ÉÇØÁ³½À´Ï´Ù.

2025³â ¹Ì±¹ °ü¼¼ Á¶Á¤¿¡ µû¸¥ °ø±Þ¸Á ¿ªÇÐ ¹× ¹«¹èÅ͸® RFID ¼¾¼­ ¹èÆ÷°¡ ºñ¿ë ±¸Á¶¿¡ ¹ÌÄ¡´Â ±¤¹üÀ§ÇÑ ¿µÇ⠺м®

2025³â, ¹Ì±¹ÀÇ ÀüÀÚºÎǰ¿¡ ´ëÇÑ °ü¼¼ Á¶Ä¡ °³Á¤ÀÌ ½ÃÇàµÇ¸é¼­ ¼¼°è ¹«¹èÅ͸® RFID ¼¾¼­ Á¦Á¶¾÷ü¿Í ÅëÇÕ¾÷ü¿¡ »õ·Î¿î º¹À⼺À» °¡Á®¿Ô½À´Ï´Ù. Àμâ ȸ·Î Á¶¸³ ¹× ¹ÝµµÃ¼ ±âÆÇÀÇ °ü¼¼ ÀλóÀº ƯÈ÷ ¼öÀÔ °ü¼¼°¡ ³ôÀº Áö¿ª¿¡¼­ Á¶¸³µÇ´Â ¼¾¼­ÀÇ »ó·ú ºñ¿ë »ó½ÂÀ¸·Î À̾îÁö°í ÀÖ½À´Ï´Ù. ±× °á°ú, ¸¹Àº ±â¾÷µéÀÌ °ø±Þ¸ÁÀ» ÀçÆò°¡Çϰí, ºñ¿ë ¾Ð¹ÚÀ» ¿ÏÈ­Çϰí, ÇÁ·ÎÁ§Æ®ÀÇ °æÁ¦¼ºÀ» À¯ÁöÇÒ ¼ö ÀÖ´Â ´ëü Á¶´Þ Àü·«À» ¸ð»öÇϰí ÀÖ½À´Ï´Ù.

ÅÂ±× À¯Çü, Á֯ļö, ¿¬°á¼º, ÆÇµ¶ °Å¸®, ¿ëµµ, »ê¾÷º° ºÎ¹® ºÐ¼®¿¡ µû¸¥ Á¾ÇÕÀûÀÎ ÀλçÀÌÆ® °ø°³

¼¼ºÐÈ­¿¡ ´ëÇÑ ÀλçÀÌÆ®¸¦ ÅëÇØ ¼º´É, ºñ¿ë, ¹èÆ÷ÀÇ ¿ªÇÐÀ» ÆÄ¾ÇÇÏ¿© Àü·«Àû ÀÇ»ç°áÁ¤¿¡ µµ¿òÀ» ÁÙ ¼ö ÀÖ½À´Ï´Ù. ÅÂ±× À¯Çü ¼¼ºÐÈ­¿¡¼­ Çϵå ű״ ¿­¾ÇÇÑ È¯°æ¿¡ ÀûÇÕÇϰí, Àη¹ÀÌ Å±״ ¼º´É°ú À¯¿¬¼ºÀÇ ±ÕÇüÀ» Á¦°øÇϸç, ¶óº§Àº ´ë·® ¹× ÀÏȸ¿ë »ç¿ë »ç·Ê¿¡ °¡Àå ºñ¿ë È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇÑ´Ù´Â °ÍÀÌ ¹àÇôÁ³½À´Ï´Ù. Á֯ļö ¹üÀ§ÀÇ ¼¼ºÐÈ­¸¦ Æò°¡ÇÏ¸é °íÁÖÆÄ´Â Á¤¹Ð ÀÛ¾÷¿¡ Ź¿ùÇϰí, ÀúÁÖÆÄ´Â ¾î·Á¿î Àç·á¿¡ ´ëÇÑ °ß°íÇÑ Ä§Åõ¸¦ Áö¿øÇϸç, ÃʰíÁÖÆÄ´Â Àç°í°¡ ¹ÐÁýµÈ ÀÛ¾÷¿¡¼­ Àå°Å¸®, °í¼Ó µ¥ÀÌÅÍ Ä¸Ã³¸¦ ÃËÁøÇÑ´Ù´Â °ÍÀ» ¾Ë ¼ö ÀÖ½À´Ï´Ù.

¾Æ¸Þ¸®Ä«, EMEA, ¾Æ½Ã¾ÆÅÂÆò¾ç ½ÃÀå¿¡¼­ÀÇ ¹«¹èÅ͸® RFID ¼¾¼­ÀÇ Áö¿ªº° Â÷º°È­ ¿ä¼Ò ¹× äÅà µ¿Çâ Á¶»ç

Áö¿ªº° ºÐ¼®¿¡¼­´Â ½ÃÀå ÃËÁø¿äÀΰú äÅà °æ·Î°¡ Áö¿ªº°·Î Å©°Ô ´Ù¸£´Ù´Â Á¡ÀÌ ºÎ°¢µÇ°í ÀÖ½À´Ï´Ù. ¾Æ¸Þ¸®Ä«¿¡¼­´Â Á¦Á¶ ¹× ¹°·ù ºÐ¾ßÀÇ Ãʱ⠵µÀÔ ±â¾÷µéÀÌ À¯¸®ÇÑ ±ÔÁ¦ ȯ°æ°ú ¼¼Á¦ ÇýÅÃÀ» Ȱ¿ëÇÏ¿© ¹«¹èÅ͸® RFID ¼¾¼­¸¦ ÅëÇÕÇÑ ´ë±Ô¸ð IoT ÀÌ´Ï¼ÅÆ¼ºê¸¦ Àü°³Çϰí ÀÖ½À´Ï´Ù. ºÏ¹Ì ¿¬±¸¼Ò´Â ¿¡³ÊÁö ¼öÈ® ±â¼úÀ» Áö¼ÓÀûÀ¸·Î °³¼±Çϰí ÀÖÀ¸¸ç, ¶óƾ¾Æ¸Þ¸®Ä« ±â¾÷µéÀº ½ÅÈï ½ÃÀå¿¡ ¸Â´Â Àúºñ¿ë Àη¹ÀÌ ¼Ö·ç¼ÇÀ» ¸ð»öÇϰí ÀÖ½À´Ï´Ù.

Àü ¼¼°è ¹«¹èÅ͸® RFID ¼¾¼­ ±â¼ú °æÀï ±¸µµ¸¦ Çü¼ºÇÏ´Â ÁÖ¿ä Çõ½Å ±â¾÷ ¹× Àü·«Àû ÆÄÆ®³Ê½Ê ÇÁ·ÎÆÄÀϸµ

°æÀï »óȲ ºÐ¼®¿¡ µû¸£¸é, ÁÖ¿ä ±â¼ú Á¦°ø¾÷ü¿Í ½Å»ý ½ºÅ¸Æ®¾÷ÀÌ Àü·«Àû Á¦ÈÞ¸¦ ¸Î°í ¿£µå Åõ ¿£µå ¼¾¼­ ¼Ö·ç¼ÇÀ» Á¦°øÇϰí ÀÖ½À´Ï´Ù. ±âÁ¸ ¹ÝµµÃ¼ ±â¾÷µéÀº ÀçȰ¿ë °¡´ÉÇÑ ÅÂ±× ±âÆÇ°ú ÷´Ü ¿¡³ÊÁö ¼öÈ®±â¸¦ °øµ¿ °³¹ßÇϱâ À§ÇØ Àç·á Çõ½Å°¡µé°ú Çù·ÂÇϰí ÀÖ½À´Ï´Ù. ¼¾¼­ ÅëÇÕ¾÷ü´Â Ŭ¶ó¿ìµå ¹× ¿§Áö Ç÷§Æû º¥´õ¿Í Çù·ÂÇÏ¿© °ÔÀÌÆ®¿þÀÌ ·¹º§¿¡ Á÷Á¢ ºÐ¼® ¿£ÁøÀ» ³»ÀåÇÏ¿© ½Ç½Ã°£ ÀÌ»ó °¨Áö ¹× ÀÚÀ²ÀûÀÎ ÀÇ»ç°áÁ¤ ·çÇÁ¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

¹«¹èÅ͸® RFID ¼¾¼­ ½ÃÀåÀÇ ±âȸ¸¦ Ȱ¿ëÇÏ°í °úÁ¦¸¦ ±Øº¹Çϱâ À§ÇÑ ¾÷°è ¸®´õÀÇ Çൿ ÁöÇâÀû Àü·« Á¦½Ã

¾÷°è´Â °¢ »ê¾÷º° »ç¿ë »ç·Ê¿¡ µû¶ó ½Å¼ÓÇÑ Ä¿½ºÅ͸¶ÀÌ¡À» Áö¿øÇÏ´Â ¸ðµâ½Ä ¿¡³ÊÁö ¼öÁý ¾ÆÅ°ÅØÃ³¿¡ ÅõÀÚÇÔÀ¸·Î½á »õ·Î¿î ±âȸ¸¦ Æ÷ÂøÇÒ ¼ö ÀÖ½À´Ï´Ù. Ç¥ÁØÈ­ ´Üü ¹× »óÈ£¿î¿ë¼º ¾ó¶óÀ̾𽺿ÍÀÇ Çù·ÂÀ» ÅëÇØ ¸®´õ´Â Á֯ļö ´ë¿ª ¹× Åë½Å ÇÁ·ÎÅäÄÝÀÇ Á¶È­¸¦ ÃËÁøÇϰí ÅëÇÕ À§ÇèÀ» ÁÙ¿© ½ÃÀå Ãâ½Ã ½Ã°£À» ´ÜÃàÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÄݵåüÀÎ ¹°·ù³ª °øÁ¤ÀÌ Áß¿äÇÑ Á¦Á¶¾÷°ú °°ÀÌ ¿µÇâ·ÂÀÌ Å« ȯ°æÀÇ ÆÄÀÏ·µ ÇÁ·Î±×·¥À» ¿ì¼±¼øÀ§¿¡ µÎ¸é Á¤·®È­ °¡´ÉÇÑ ROI »ç·Ê¸¦ ÅëÇØ °æ¿µÁøÀÇ µ¿ÀǸ¦ ºü¸£°Ô È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

¹«¹èÅ͸® RFID ¼¾¼­ ±â¼ú¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ Á¶»ç¸¦ µÞ¹ÞħÇÏ´Â ¾ö°ÝÇÑ Á¶»ç ¹æ¹ý ¹× ºÐ¼® ÇÁ·¹ÀÓ¿öÅ© °³¿ä

º» Á¶»ç´Â Á¾ÇÕÀûÀÎ Á¶»ç ´ë»ó°ú »ç½ÇÀÇ Á¤È®¼ºÀ» º¸ÀåÇϱâ À§ÇØ Á¤¼ºÀû ºÐ¼®°ú Á¤·®Àû ºÐ¼®À» °áÇÕÇÑ °­·ÂÇÑ ´Ù´Ü°è Á¶»ç ¹æ½ÄÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù. 2Â÷ Á¶»ç´Â ¿¡³ÊÁö ¼öÈ® ¹× ÅÂ±× µðÀÚÀÎ Çõ½ÅÀÇ ÁøÈ­¸¦ ¸ÅÇÎÇϱâ À§ÇØ ±â¼ú Àú³Î, ±ÔÁ¦ ´ç±¹ ½Å°í ¹× ƯÇã µ¥ÀÌÅͺ£À̽º¸¦ öÀúÇÏ°Ô °ËÅäÇÏ´Â °ÍÀ¸·Î ½ÃÀ۵Ǿú½À´Ï´Ù. À̸¦ º¸¿ÏÇϱâ À§ÇØ ¾÷°è °£Ç๰ ¹× ¹ý·ü ¹®¼­¸¦ Á¶»çÇÏ¿© äÅà µ¿ÇâÀ» Çü¼ºÇÏ´Â Á¤Ã¥ ÃËÁø¿äÀΰú ÄÄÇöóÀ̾𽺠¿ä°ÇÀ» ÆÄ¾ÇÇß½À´Ï´Ù.

»ê¾÷ ºÐ¾ß Àü¹Ý¿¡ °ÉÃÄ ¹«¹èÅ͸® RFID ¼¾¼­ ¼Ö·ç¼ÇÀÇ Çõ½Å °¡´É¼º°ú ¹Ì·¡ ±ËÀû¿¡ ´ëÇÑ °á·ÐÀû ÀλçÀÌÆ®

¹«¹èÅ͸® RFID ¼¾¼­ ±â¼úÀÇ ÁøÈ­´Â Áö¼Ó°¡´ÉÇϰí Áö´ÉÀûÀ̸ç À¯Áöº¸¼ö°¡ ÇÊ¿ä ¾ø´Â IoT »ýŰè·ÎÀÇ ±¤¹üÀ§ÇÑ º¯È­¸¦ ¹Ý¿µÇϰí ÀÖ½À´Ï´Ù. ÁÖº¯ ¿¡³ÊÁö¸¦ Ȱ¿ëÇϰí ÷´Ü Ä¿³ØÆ¼µå Ç÷§Æû°ú ÅëÇÕÇÔÀ¸·Î½á ÀÌ ¼¾¼­µéÀº ÀÚ»ê »óÅÂ, ȯ°æ ¸Å°³º¯¼ö, °øÁ¤ ¼º´É¿¡ ´ëÇÑ Àü·Ê ¾ø´Â °¡½Ã¼ºÀ» È®º¸ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. Àü·«Àû ¼¼ºÐÈ­ ºÐ¼®À» ÅëÇØ ÅÂ±× À¯Çü, Á֯ļö, ¿¬°á ¸ðµå, ¾ÖÇø®ÄÉÀÌ¼Ç ½Ã³ª¸®¿À¿¡ µû¶ó Â÷º°È­µÈ °¡Ä¡ Á¦¾ÈÀ» µµÃâÇϰí, ÀÇ»ç°áÁ¤ÀÚ´Â Á¤È®ÇÑ ¿î¿µ ¿ä±¸»çÇ׿¡ ¸Â°Ô ¹èÄ¡¸¦ Á¶Á¤ÇÒ ¼ö ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå ¹«¹èÅ͸® RFID ¼¾¼­ ½ÃÀå : ÅÂ±× À¯Çüº°

  • Çϵå ű×
  • Àη¹ÀÌ
  • ¶óº§

Á¦9Àå ¹«¹èÅ͸® RFID ¼¾¼­ ½ÃÀå : Á֯ļö ¹üÀ§º°

  • °íÁÖÆÄ
  • ÀúÁÖÆÄ
  • ÃʰíÁÖÆÄ

Á¦10Àå ¹«¹èÅ͸® RFID ¼¾¼­ ½ÃÀå : ¿¬°á¼ºº°

  • Bluetooth
  • NFC
  • Wi-Fi

Á¦11Àå ¹«¹èÅ͸® RFID ¼¾¼­ ½ÃÀå : ÆÇµ¶ °Å¸® À¯Çüº°

  • Àå°Å¸® RFID
  • ´Ü°Å¸® RFID

Á¦12Àå ¹«¹èÅ͸® RFID ¼¾¼­ ½ÃÀå : ¿ëµµº°

  • ÀÚ»ê ÃßÀû
  • ȯ°æ ¸ð´ÏÅ͸µ
  • Àç°í °ü¸®
  • ÀÇ·á±â±â ¸ð´ÏÅ͸µ
  • ¿¹Áöº¸Àü
  • ÇÁ·Î¼¼½º ÃÖÀûÈ­

Á¦13Àå ¹«¹èÅ͸® RFID ¼¾¼­ ½ÃÀå : ¾÷°èº°

  • Ç×°ø¿ìÁÖ ¹× ¹æÀ§
  • ÀÚµ¿Â÷
  • ÇコÄɾî
  • ¼Ò¸Å¡¤¹°·ù
  • ±³Åë±â°ü

Á¦14Àå ¾Æ¸Þ¸®Ä«ÀÇ ¹«¹èÅ͸® RFID ¼¾¼­ ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦15Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ¹«¹èÅ͸® RFID ¼¾¼­ ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦16Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¹«¹èÅ͸® RFID ¼¾¼­ ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦17Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024
  • °æÀï ºÐ¼®
    • Avery Dennison Corporation
    • Axzon
    • Brady Corporation
    • DONGGUAN OSRFID TECHNOLOGY CO., LTD
    • Energous Corporation
    • Murata Manufacturing Co., Ltd.
    • Pepperl+Fuchs SE
    • Powercast Corporation
    • RAMXEED LIMITED
    • Tageos SAS
    • Technology Solutions(UK) Ltd
    • Xerafy Singapore Pte Ltd
    • Impinj, Inc.
    • Invengo Information Technology Co., Ltd.
    • Zebra Technologies Corporation
    • ASYGN by Cisper Electronics B.V.
    • ASSA ABLOY AB
    • Trimble Inc.
    • Identiv, Inc.
    • STMicroelectronics N.V.
    • Farsens S.L.
    • General Electric Company

Á¦18Àå ¸®¼­Ä¡ AI

Á¦19Àå ¸®¼­Ä¡ Åë°è

Á¦20Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦21Àå ¸®¼­Ä¡ ±â»ç

Á¦22Àå ºÎ·Ï

KSM 25.09.10

The Battery-Free RFID Sensor Market was valued at USD 205.00 million in 2024 and is projected to grow to USD 216.21 million in 2025, with a CAGR of 5.58%, reaching USD 284.11 million by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 205.00 million
Estimated Year [2025] USD 216.21 million
Forecast Year [2030] USD 284.11 million
CAGR (%) 5.58%

Discover the Critical Role of Battery-Free RFID Sensor Technology in Advancing Real-Time Monitoring and Operational Efficiency Across Diverse Industries

Battery-free RFID sensor technology represents a paradigm shift in how organizations track, monitor, and optimize assets and processes. By harnessing energy harvesting capabilities and eliminating the need for on-board power sources, these sensors deliver continuous data streams without the maintenance overhead or environmental concerns associated with traditional battery-powered devices. As a result, enterprises across manufacturing floors, logistics networks, and critical infrastructure have begun integrating these self-sustaining tags into their digital ecosystems to drive real-time visibility, predictive insights, and sustainable operations.

Building on this foundation, the executive summary ahead outlines the key drivers, obstacles, and strategic considerations shaping the adoption of battery-free RFID sensors. It also highlights the transformative technological advances, regulatory shifts, and global trade dynamics influencing market trajectories. By examining segmentation trends, regional differentiators, competitive activity, and actionable recommendations, this overview furnishes decision-makers with a holistic understanding of opportunities and challenges. The sections that follow will guide you through an in-depth exploration of the landscape, equipping you with the knowledge to chart a successful path forward.

Examination of Key Technological and Market Shifts Driving the Adoption and Evolution of Battery-Free RFID Sensors in Global Operations

The battery-free RFID sensor landscape is undergoing a series of transformative shifts driven by rapid advances in material science, miniaturization, and edge computing integration. Energy harvesting techniques have matured to capture ambient radio frequency energy more efficiently, enabling sensors to operate reliably in environments previously deemed too challenging. Concurrently, the rise of interoperable IoT platforms has fostered seamless data exchange between tags, gateways, and analytics engines, unlocking new levels of operational intelligence across complex supply chains and distributed infrastructure.

Moreover, strategic emphasis on sustainability and circular economy principles has accelerated demand for maintenance-free sensor deployments. Organizations are prioritizing solutions that reduce electronic waste and lower total cost of ownership, prompting manufacturers to innovate with recyclable substrates and eco-friendly chip designs. In parallel, software-driven enhancements in signal processing and network optimization have expanded the viable range and resolution of battery-free sensors, further broadening their applicability in sectors from healthcare to transportation. Taken together, these developments are redefining stakeholder expectations and establishing a new benchmark for efficient, resilient, and environmentally responsible sensing solutions.

Analyzing the Broad Effects of 2025 United States Tariff Adjustments on Supply Chain Dynamics and Cost Structures for Battery-Free RFID Sensor Deployments

In 2025, the imposition of revised United States tariff measures on electronic components has introduced new complexities for global manufacturers and integrators of battery-free RFID sensors. Tariff increases on printed circuit assemblies and semiconductor substrates have led to higher landed costs, particularly for sensors assembled in regions subject to steep import duties. As a consequence, many organizations are reevaluating their supply chains to identify alternative sourcing strategies that mitigate cost pressures and preserve project economics.

Consequently, several stakeholders have begun diversifying production footprints by forging partnerships with suppliers in tariff-exempt zones or by repatriating critical manufacturing steps to domestic facilities. This reconfiguration often entails close collaboration with logistics providers to optimize shipping lanes and inventory buffers, as well as recalibration of pricing models to share incremental duty expenses across channel partners. Looking ahead, the tariff environment underscores the importance of supply chain agility, strategic localization, and proactive risk management to sustain the momentum of battery-free RFID sensor adoption.

Unveiling Comprehensive Insights from Segmentation Analysis on Tag Types, Frequencies, Connectivity, Read Distances, Applications, and Industry Verticals

Segmentation insights reveal nuanced performance, cost, and deployment dynamics that inform strategic decision making. Tag Type segmentation uncovers that hard tags excel in rugged environments while inlays offer a balance of performance and flexibility, and labels provide the most cost-effective solution for high-volume, disposable use cases. Evaluating Frequency Range segmentation clarifies that high frequency excels in precision work, low frequency supports robust penetration in challenging materials, and ultra-high frequency drives long-distance, high-speed data capture for inventory-dense operations.

Connectivity segmentation emphasizes that Bluetooth interfaces facilitate simple peer-to-peer integrations, NFC supports seamless consumer interactions and mobile wallet scenarios, and WiFi enables direct IP-based connectivity for continuous data streaming. Read Distance Type segmentation demonstrates that long-range RFID sensors empower cross-facility tracking and yard management, whereas short-range variants deliver localized environmental monitoring or access control with minimal infrastructure requirements. Application segmentation illustrates that asset tracking maximizes equipment utilization, environmental monitoring ensures compliance and safety, inventory control optimizes stock accuracy, medical equipment monitoring secures patient care, predictive maintenance reduces downtime, and process optimization elevates throughput. Finally, Industry Vertical segmentation shows that aerospace and defense demand the highest reliability and certification, automotive stresses just-in-time integration, healthcare requires stringent hygiene and validation protocols, retail and logistics prize rapid deployment and scale, and transportation relies on harsh-environment durability and global roaming capabilities.

Investigating Regional Differentiators and Adoption Trends for Battery-Free RFID Sensors Within the Americas, EMEA, and Asia-Pacific Markets

Regional analysis highlights that market drivers and adoption pathways vary significantly by geography. In the Americas, early adopters in manufacturing and logistics have leveraged favorable regulatory environments and tax incentives to deploy large-scale IoT initiatives that incorporate battery-free RFID sensors. North American research hubs continue refining energy harvesting techniques, while Latin American players explore low-cost inlay solutions tailored to emerging markets.

Shifting focus to the Europe, Middle East & Africa region, stringent sustainability regulations and ambitious smart city programs have spurred investments in maintenance-free sensing networks for public infrastructure and environmental compliance. Collaborative consortia and cross-border standardization efforts are fostering interoperability and accelerating commercial rollouts. Meanwhile, in Asia-Pacific, a robust electronics manufacturing ecosystem and aggressive Industry 4.0 mandates are driving high-volume production of labels and inlays, with regional OEMs integrating NFC-enabled sensors into consumer devices and industrial machinery alike.

Profiling Leading Innovators and Strategic Partnerships Shaping the Competitive Landscape of Battery-Free RFID Sensor Technology Worldwide

Competitive landscape analysis indicates that leading technology providers and emerging startups are forging strategic alliances to deliver end-to-end sensor solutions. Established semiconductor firms are partnering with materials innovators to co-develop recyclable tag substrates and advanced energy harvesters. Sensor integrators are collaborating with cloud and edge platform vendors to embed analytics engines directly at the gateway level, enabling real-time anomaly detection and autonomous decision loops.

At the same time, system integrators and channel specialists are teaming up to streamline procurement and installation services, offering ready-to-deploy kits that include tags, readers, middleware, and managed services. Joint research initiatives between academic institutions and industry consortia are also accelerating proof-of-concept demonstrations in critical verticals such as medical equipment monitoring and predictive maintenance. These partnerships not only expand solution portfolios but also position participants to capture value from rising demand for integrated, low-maintenance sensing ecosystems.

Action-Oriented Strategies for Industry Leaders to Capitalize on Opportunities and Navigate Challenges in Battery-Free RFID Sensor Markets

Industry players can seize emerging opportunities by investing in modular, energy-harvesting architectures that support rapid customization for vertical-specific use cases. By collaborating with standards bodies and interoperability alliances, leaders can drive harmonization across frequency bands and communication protocols, reducing integration risk and accelerating time to market. Additionally, prioritizing pilot programs in high-impact environments-such as cold-chain logistics and process-critical manufacturing-will yield quantifiable ROI cases that fast-track executive buy-in.

Moreover, organizations should evaluate strategic partnerships with regional manufacturing hubs to circumvent tariff constraints and localize supply chains. Investing in workforce training for IoT deployment and data science skills will ensure smooth rollouts and sustained operational performance. Finally, embedding security frameworks and data governance policies at the outset will mitigate compliance challenges and safeguard proprietary insights, establishing trust across the ecosystem and reinforcing long-term value creation.

Outlining Rigorous Research Methodology and Analytical Frameworks Underpinning the Comprehensive Study of Battery-Free RFID Sensor Technologies

This study employs a robust, multi-phase research methodology combining qualitative and quantitative analysis to ensure comprehensive coverage and factual accuracy. Secondary research began with a thorough review of technical journals, regulatory filings, and patent databases to map the evolution of energy harvesting and tag design innovations. Complementing this, industry publications and legislative documents were examined to identify policy drivers and compliance requirements shaping adoption trends.

Primary research involved in-depth interviews with sensor manufacturers, system integrators, end-users, and channel partners across key regions. Insights from these stakeholders were triangulated with observational data from pilot deployments in manufacturing, logistics, healthcare, and transportation environments. Comparative benchmarking was conducted to assess performance metrics across tag types, frequency bands, and connectivity options. Data validation steps included cross-referencing interview findings with published case studies and open-source project repositories. The resulting framework delivers a nuanced understanding of market dynamics, competitive positioning, and technological trajectories, providing a solid foundation for strategic decision making.

Concluding Reflections on the Transformative Potential and Future Trajectory of Battery-Free RFID Sensor Solutions Across Industrial Sectors

The evolution of battery-free RFID sensor technology reflects a broader shift toward sustainable, intelligent, and maintenance-free IoT ecosystems. By harnessing ambient energy and integrating with advanced connectivity platforms, these sensors are unlocking unprecedented visibility into asset condition, environmental parameters, and process performance. Strategic segmentation analysis has revealed differentiated value propositions across tag types, frequencies, connectivity modes, and application scenarios, empowering decision-makers to tailor deployments to precise operational requirements.

Regional insights underscore the need for adaptive strategies that account for regulatory landscapes, supply chain realities, and technology maturity levels. Meanwhile, competitive intelligence highlights the central role of partnerships and ecosystem engagements in scaling solutions. Actionable recommendations emphasize modular design, interoperability, localized production, and robust security frameworks as critical enablers of success. Taken together, these findings illuminate a path forward for organizations seeking to harness the transformative potential of battery-free RFID sensors to drive efficiency, sustainability, and innovation across industrial domains.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Miniaturization of silicon and packaging innovations for embedding battery-free RFID sensors into wearable devices
  • 5.2. Implementation of AI-driven analytics on passive RFID sensor data for predictive maintenance in manufacturing
  • 5.3. Growing applications of battery-free RFID sensors in smart agriculture livestock tracking and crop monitoring
  • 5.4. Use of NFC-enabled smartphones as universal readers for on-demand battery-free RFID sensor data collection
  • 5.5. Standardization efforts to improve interoperability and security in battery-free RFID sensor ecosystems
  • 5.6. Increasing adoption of energy harvesting techniques to power passive RFID sensors in remote environments
  • 5.7. Development of multi-sensing battery-free RFID sensors for temperature humidity and pressure monitoring
  • 5.8. Emergence of printed and flexible antenna technologies for conformal battery-free RFID tags
  • 5.9. Integration of battery-free RFID sensors with cloud-based IoT platforms for real-time analytics
  • 5.10. Advancement of ultra-low-power IC design enabling extended read range and multi-parameter sensing

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Battery-Free RFID Sensor Market, by Tag Type

  • 8.1. Introduction
  • 8.2. Hard Tag
  • 8.3. Inlay
  • 8.4. Label

9. Battery-Free RFID Sensor Market, by Frequency Range

  • 9.1. Introduction
  • 9.2. High Frequency
  • 9.3. Low Frequency
  • 9.4. Ultra-High Frequency

10. Battery-Free RFID Sensor Market, by Connectivity

  • 10.1. Introduction
  • 10.2. Bluetooth
  • 10.3. NFC
  • 10.4. WiFi

11. Battery-Free RFID Sensor Market, by Read Distance Type

  • 11.1. Introduction
  • 11.2. Long Range RFID
  • 11.3. Short Range RFID

12. Battery-Free RFID Sensor Market, by Application

  • 12.1. Introduction
  • 12.2. Asset Tracking
  • 12.3. Environmental Monitoring
  • 12.4. Inventory Control
  • 12.5. Medical Equipment Monitoring
  • 12.6. Predictive Maintenance
  • 12.7. Process Optimization

13. Battery-Free RFID Sensor Market, by Industry Vertical

  • 13.1. Introduction
  • 13.2. Aerospace & Defense
  • 13.3. Automotive
  • 13.4. Healthcare
  • 13.5. Retail & Logistics
  • 13.6. Transportation

14. Americas Battery-Free RFID Sensor Market

  • 14.1. Introduction
  • 14.2. United States
  • 14.3. Canada
  • 14.4. Mexico
  • 14.5. Brazil
  • 14.6. Argentina

15. Europe, Middle East & Africa Battery-Free RFID Sensor Market

  • 15.1. Introduction
  • 15.2. United Kingdom
  • 15.3. Germany
  • 15.4. France
  • 15.5. Russia
  • 15.6. Italy
  • 15.7. Spain
  • 15.8. United Arab Emirates
  • 15.9. Saudi Arabia
  • 15.10. South Africa
  • 15.11. Denmark
  • 15.12. Netherlands
  • 15.13. Qatar
  • 15.14. Finland
  • 15.15. Sweden
  • 15.16. Nigeria
  • 15.17. Egypt
  • 15.18. Turkey
  • 15.19. Israel
  • 15.20. Norway
  • 15.21. Poland
  • 15.22. Switzerland

16. Asia-Pacific Battery-Free RFID Sensor Market

  • 16.1. Introduction
  • 16.2. China
  • 16.3. India
  • 16.4. Japan
  • 16.5. Australia
  • 16.6. South Korea
  • 16.7. Indonesia
  • 16.8. Thailand
  • 16.9. Philippines
  • 16.10. Malaysia
  • 16.11. Singapore
  • 16.12. Vietnam
  • 16.13. Taiwan

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. Avery Dennison Corporation
    • 17.3.2. Axzon
    • 17.3.3. Brady Corporation
    • 17.3.4. DONGGUAN OSRFID TECHNOLOGY CO., LTD
    • 17.3.5. Energous Corporation
    • 17.3.6. Murata Manufacturing Co., Ltd.
    • 17.3.7. Pepperl+Fuchs SE
    • 17.3.8. Powercast Corporation
    • 17.3.9. RAMXEED LIMITED
    • 17.3.10. Tageos SAS
    • 17.3.11. Technology Solutions (UK) Ltd
    • 17.3.12. Xerafy Singapore Pte Ltd
    • 17.3.13. Impinj, Inc.
    • 17.3.14. Invengo Information Technology Co., Ltd.
    • 17.3.15. Zebra Technologies Corporation
    • 17.3.16. ASYGN by Cisper Electronics B.V.
    • 17.3.17. ASSA ABLOY AB
    • 17.3.18. Trimble Inc.
    • 17.3.19. Identiv, Inc.
    • 17.3.20. STMicroelectronics N.V.
    • 17.3.21. Farsens S.L.
    • 17.3.22. General Electric Company

18. ResearchAI

19. ResearchStatistics

20. ResearchContacts

21. ResearchArticles

22. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦