시장보고서
상품코드
1806215

솔라 EPC(설계, 조달, 시공)시장 : 서비스 유형별, 솔라 기술별, 트래커타입별, 용량별, 설치 유형별, 최종 용도별 - 세계 예측(2025-2030년)

Solar Engineering, Procurement & Construction Market by Service Type, Solar Technology, Tracker Type, Capacity, Installation Type, End Use - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 180 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

솔라 EPC(설계, 조달, 시공)시장은 2024년에는 1,348억 3,000만 달러로 평가되었습니다. 2025년에는 1,479억 달러에 이르고, CAGR 10.27%로 성장하여 2030년에는 2,425억 1,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 1,348억 3,000만 달러
추정 연도 : 2025년 1,479억 달러
예측 연도 : 2030년 2,425억 1,000만 달러
CAGR(%) 10.27%

기술, 규제, 경제의 촉진요인과 기회 속에서 태양광 EPC 시장의 핵심 역학과 그 진화를 살펴봅니다.

세계 태양광 EPC(엔지니어링, 조달, 건설) 부문은 에너지 시스템의 탈탄소화와 비용 효율적인 재생에너지의 대규모 공급이 시급한 상황에서 매우 중요한 갈림길에 서 있습니다. 과거에는 패널 설치가 중심이었던 과제도 이제는 기술, 물류, 규제 등 다면적인 과제를 포함하고 있습니다. 이처럼 복잡해지는 프로젝트에는 엔지니어링의 정확성, 공급망의 견고성, 현장 시공의 우수성 등의 종합적인 이해가 필요합니다.

디지털화, 지속가능성 의무화, 분산형 에너지 아키텍처, 혁신적 자금 조달이 어떻게 융합되어 태양광 발전 프로젝트의 미래를 바꿨는가?

디지털화, 지속가능성 요구, 혁신적인 자금 조달 프레임워크의 융합으로 태양광 EPC의 상황이 크게 변화하고 있습니다. 최첨단 IoT 센서와 실시간 분석 플랫폼을 결합하여 유지보수 필요성에 미리 대응하고, 다운타임을 최소화하며, 모듈의 수명을 연장하는 예측적 자산 관리가 가능해졌습니다. 한편, 기업과 지자체의 지속가능성 의무화로 인해 개발업체들은 자원 조달부터 현지 노동자 참여에 이르기까지 프로젝트 제공의 모든 단계에 환경, 사회, 거버넌스 기준을 통합해야 할 필요성이 대두되고 있습니다.

2025년 태양광 모듈 공급망, 프로젝트 실행 가능성, 투자 심리에 대한 선진 관세 제도가 미치는 영향 평가

2025년 확대 관세의 시행으로 태양광 EPC 공급망 전체에 연쇄적인 도전과 재조정이 도입되었습니다. 태양전지 셀과 모듈에서 알루미늄 프레임과 중요한 반도체 투입물까지 광범위한 수입 부품에 부과된 이 조치는 재료비를 증가시키고, 공급업체 다변화를 서둘러 촉구하는 조치였습니다. 개발업체와 EPC 계약자 모두 조달 전략을 재평가하고, 이익률 감소를 완화하고 납기를 보장하기 위해 종종 신속한 계약 재협상에 나서고 있습니다.

태양광 EPC 분석에서 서비스, 기술, 추적기, 용량, 설치, 최종 용도의 세분화 관점을 통해 전략의 지평을 열 수 있습니다.

시장 세분화를 자세히 분석하면 태양광 EPC 영역에서 경쟁적 포지셔닝과 서비스 차별화를 정의하는 미묘한 윤곽이 드러납니다. 서비스 유형 축을 살펴보면, 토목공사, 시운전 프로토콜, 복잡한 전기 설비, 엔드 투 엔드 프로젝트 관리 등 건설 업무는 명확한 업무 분야가 요구되는 반면, 타당성 조사, 현장 조사 및 평가, 구조 및 전기 엔지니어링, 시스템 설계 및 모델링에 중점을 둔 엔지니어링 부서는 에 중점을 두는 엔지니어링 부문은 기술적 엄밀성과 자원 계획의 전략적 교차점에서 업무를 수행하고 있음을 알 수 있습니다. 반면, 조달 부문은 벤더의 포트폴리오 관리, 비용 협상 통찰력, 공급 안정성에 따라 좌우되기 때문에 프로젝트 라이프사이클 전반에 걸쳐 부서 간 조정이 중요하다는 점을 강조하고 있습니다.

미국, 유럽, 중동/아프리카, 아시아태평양의 태양광 EPC 성장요인, 정책 프레임워크, 인프라 동향 비교

북미와 남미 지역은 잘 정립된 세제 혜택, 간소화된 인허가 경로, 활발한 기업 재생에너지 조달 프로그램을 통해 탄탄한 프로젝트 파이프라인을 촉진하고 태양광 EPC 혁신의 주요 인큐베이터 역할을 계속하고 있습니다. 주요 시장에서는 민관 파트너십을 통해 패널 및 인버터 생산 능력을 확대하는 한편, 주정부 차원의 재생에너지 포트폴리오 기준은 대규모 태양광 발전 사업과 분산형 태양광 발전 사업 모두에 새로운 모멘텀을 창출하고 있습니다. 장기적인 수익 안정성과 규제 당국의 지원에 대한 자신감을 반영하여 기관 투자자들의 태양광 발전 프로젝트에 대한 투자 흐름이 활발해지고 있습니다.

시장 혁신을 형성하는 태양광발전 EPC 기업의 경쟁 리더십 전략, 공동사업, 기술 차별화 요인을 파악합니다.

주요 태양광 EPC 기업들은 수직 통합에 집중하고, 모듈 제조 능력을 확보하고, 자산 관리 서비스를 확대하여 반복적인 수익원을 확보하기 위해 노력하고 있습니다. 기술 혁신 기업과의 전략적 제휴를 통해 차세대 인버터, 양면 모듈, 첨단 파워 일렉트로닉스에 대한 조기 접근이 가능해졌습니다. 동시에, 세계 대기업과 지역 전문 계약업체와의 협력 벤처는 지역 시장 지식을 끌어내고 다양한 규제 환경에서 실행 효율을 최적화하는 효과적인 메커니즘으로 부상하고 있습니다.

탄력성 강화,디지털 전환 추진,태양광 EPC 공급망 최적화를 위한 업계 리더를 위한 실행 가능한 전략 구현

지속 가능한 경쟁 우위를 확보하고자 하는 업계 리더들은 설계, 조달, 건설 워크플로우를 통합하는 첨단 디지털 플랫폼에 투자해야 합니다. 클라우드 기반 프로젝트 관리 도구와 실시간 분석을 통해 실행 정확도가 향상될 뿐만 아니라, 이해관계자의 투명성을 높이고, 분쟁을 줄이고, 클로징 아웃 활동을 가속화할 수 있습니다. 공급업체와의 파트너십을 다양화하고, 핵심 부품의 생산을 국산화하고, 유연한 물류 프레임워크를 구축하여 관세 변동과 운송 중단을 완화할 수 있습니다.

태양광 EPC 조사를 뒷받침하는 데이터 삼각측량 및 전문가 검증을 포함한 엄격한 1차 조사 및 2차 조사 방법론에 대한 심층 분석

본 조사에서는 1차 조사와 2차 조사 방식을 체계적으로 융합하여 종합적인 조사 범위와 분석의 엄밀성을 확보하였습니다. 1차 조사에서는 주요 EPC 기업의 경영진, 장비 제조업체, 프로젝트 자금 제공업체, 정책 전문가와의 심층 인터뷰를 통해 운영상의 과제, 기술 우선순위, 전략적 로드맵에 대한 생생한 관점을 제공했습니다. 프로젝트 개발자와 자산 소유자를 대상으로 한 구조적 설문조사는 이러한 질적 통찰력을 보완하고, 새로운 트렌드와 조달 관행에 대한 정량적 검증을 위해 실시됐습니다.

태양광 발전 EPC의 현황에서 중요한 요점과 전략적 과제를 종합적으로 분석하여 의사결정자를 미래의 회복력과 성장으로 이끌기 위한 전략 과제 분석

태양광 EPC 부문은 기술 혁신, 정책 재조정, 이해관계자 요구의 진화에 의해 형성된 변혁적 성장의 문턱에 서 있습니다. 관세 제도의 복잡한 얽힘부터 서비스 유형과 최종 용도의 전략적 세분화까지, 시장의 움직임은 그 어느 때보다 다면적입니다. 이러한 통찰력을 내면화하고 이를 바탕으로 업무를 조정하는 의사결정자는 새로운 기회를 포착하고 프로젝트를 성공적으로 이끌 수 있는 최고의 위치에 서게 됩니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 솔라 EPC(설계, 조달, 시공)시장 : 서비스 유형별

  • 건설
    • 토목공사
    • 시운전
    • 전기 설비
    • 프로젝트 관리
  • 엔지니어링
    • 실현 가능성 조사
    • 현지조사 및 평가
    • 구조 및 전기 공학
    • 시스템 설계 및 모델링
  • 조달

제9장 솔라 EPC(설계, 조달, 시공)시장 : 솔라 기술

  • 집광형 태양열발전(CSP)
  • 태양광발전(PV)
    • 단결정 실리콘
    • 다결정 실리콘
    • 박막

제10장 솔라 EPC(설계, 조달, 시공)시장 : 트래커 타입별

  • Dual Axis
  • Fixed Tilt
  • Single Axis

제11장 솔라 EPC(설계, 조달, 시공)시장 : 용량별

  • Large-Scale Solar EPC (over 10 MW)
  • Medium-Scale Solar EPC (1-10 MW)
  • Small-Scale Solar EPC (Less than 1 MW)

제12장 솔라 EPC(설계, 조달, 시공)시장 : 설치 유형별

  • 플로팅 솔라
  • 그라운드 마운트
  • 루프 마운트

제13장 솔라 EPC(설계, 조달, 시공)시장 : 최종 용도별

  • 상업
    • 호텔 및 리조트
    • 오피스 파크
    • 소매점 및 쇼핑 복합 시설
  • 산업
  • 주택
  • 유틸리티

제14장 아메리카의 솔라 EPC(설계, 조달, 시공)시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제15장 유럽, 중동 및 아프리카의 솔라 EPC(설계, 조달, 시공)시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트(UAE)
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제16장 아시아태평양의 솔라 EPC(설계, 조달, 시공)시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제17장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Eiffage S.A.
    • Acciona, S.A.
    • Adani Group
    • Akuo Energy SAS
    • Canadian Solar Inc.
    • Alsa Solar System LLC
    • Bechtel Corporation
    • Qcells by Hanwha Group
    • Koch, Inc.
    • MVV Energie AG
    • SOLV Energy LLC
    • Tata Power Company Limited
    • TBEA Co., Ltd.
    • TotalEnergies SE

제18장 리서치 AI

제19장 리서치 통계

제20장 리서치 컨택트

제21장 리서치 기사

제22장 부록

LSH 25.09.17

The Solar Engineering, Procurement & Construction Market was valued at USD 134.83 billion in 2024 and is projected to grow to USD 147.90 billion in 2025, with a CAGR of 10.27%, reaching USD 242.51 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 134.83 billion
Estimated Year [2025] USD 147.90 billion
Forecast Year [2030] USD 242.51 billion
CAGR (%) 10.27%

Exploring the Core Dynamics of the Solar EPC Market and Its Evolution Amid Technological, Regulatory, and Economic Drivers and Opportunities

The global solar engineering, procurement, and construction sector sits at a pivotal crossroads, driven by the urgent imperative to decarbonize energy systems and deliver cost-effective renewable power at scale. Projects that once focused primarily on panel installation now encompass a multifaceted array of technical, logistical, and regulatory challenges. This evolving complexity demands a holistic understanding of engineering precision, supply chain resilience, and on-site construction excellence to ensure project viability from inception to energization.

In recent years, stakeholders ranging from utility investors to independent power producers have confronted accelerating shifts in technology standards, financing structures, and environmental mandates. The need to integrate advanced performance monitoring, digital twin simulations, and adaptive asset management has become as critical as securing high-quality photovoltaic modules or negotiating land leases. As a result, the strategic scope of solar EPC providers has expanded well beyond turnkey installation to include long-term operations optimization and stakeholder risk mitigation.

This executive summary synthesizes the most salient developments reshaping the solar EPC marketplace. By examining transformative trends, policy headwinds, detailed segmentation, and regional dynamics, this report equips decision makers with actionable insights. In the following sections, you will discover how tariff adjustments, technology adoption, and strategic partnerships are redefining project economics and unlocking new pathways to sustainable growth.

How Digitalization, Sustainability Mandates, Decentralized Energy Architectures and Innovative Financing Have Converged to Redirect the Future of Solar Projects

The solar EPC landscape has undergone a profound metamorphosis, propelled by the convergence of digitalization, sustainability imperatives, and innovative funding frameworks. Cutting-edge IoT sensors, combined with real-time analytics platforms, now enable predictive asset management that preemptively addresses maintenance needs, minimizes downtime, and extends module lifespans. Meanwhile, corporate and municipal sustainability mandates are compelling developers to embed environmental, social, and governance criteria into every phase of project delivery, from resource sourcing to local workforce engagement.

Concurrently, emerging financing models-ranging from green bonds to yield-co investments-have altered the risk calculus for project sponsors. The decoupling of engineering contracts and procurement packages has given rise to modular supply agreements, while performance-linked payment structures incentivize on-time completion and quality assurance. These shifts are not isolated; rather, they intertwine with broader decarbonization targets and grid modernization initiatives, creating a new paradigm in which solar EPC firms must function as integrated solution providers rather than mere contractors.

As a result of these dynamics, traditional project timelines and cost structures are being reimagined. EPC providers that adapt by establishing cross-disciplinary teams, forging strategic alliances with financiers and technology vendors, and embracing agile project management methodologies will be best positioned to capture long-term value. This section delves into the forces driving this transformation, illustrating how market participants are capitalizing on digital innovation and sustainability commitments to reshape the future of solar project delivery.

Assessing the Far-Reaching Consequences of Advanced Tariff Regimes on Solar Module Supply Chains, Project Viability, and Investment Sentiment in 2025

The implementation of expanded tariffs in 2025 has introduced a cascading set of challenges and recalibrations across the solar EPC supply chain. Imposed on a broad spectrum of imported components-from photovoltaic cells and modules to aluminum frames and critical semiconductor inputs-these measures have compounded material expense and prompted immediate supplier diversification efforts. Developers and EPC contractors alike have been forced to reevaluate sourcing strategies, often engaging in expedited contract renegotiations to mitigate margin erosion and secure delivery timelines.

Amid rising raw material costs, many stakeholders have redirected procurement toward emerging manufacturing hubs, exploring regional production clusters that offer tariff exemptions or reduced duty regimes. This realignment has not been seamless, however; logistical complexities associated with cross-border transport, quality assurance, and compliance documentation have generated new layers of operational risk. Concurrently, pass-through pricing mechanisms have placed pressure on power purchase agreement negotiations, requiring legal teams to incorporate flexible cost adjustment clauses and safeguard developers from undue revenue fluctuations.

Investment sentiment has also been reshaped by tariff uncertainty. While some financiers have tightened project underwritings, demanding larger equity cushions and more conservative performance projections, others have seized the opportunity to incentivize domestic manufacturing partnerships and local content strategies. The net result is a more dynamic, albeit more complex, environment in which tariff policy functions as a strategic lever-one that savvy solar EPC participants can use to bolster supply stability, accelerate nearshore production agreements, and ultimately redefine the parameters of competitive advantage.

Unveiling Strategic Horizons Through Detailed Service, Technology, Tracker, Capacity, Installation, and End Use Segmentation Perspectives in Solar EPC Analysis

An in-depth analysis of market segmentation illuminates the nuanced contours that define competitive positioning and service differentiation within the solar EPC domain. Examining the Service Type axis reveals that construction activities-spanning civil work, commissioning protocols, electrical installation intricacies, and end-to-end project management-demand a distinct operational discipline, while engineering divisions focused on feasibility studies, site survey and assessment, structural and electrical engineering, and system design and modeling operate at the strategic intersection of technical rigor and resource planning. Procurement functions, by contrast, hinge on vendor portfolio management, cost negotiation acumen, and supply reliability, underscoring the importance of cross-functional coordination throughout the project lifecycle.

Technology segmentation further refines market perspectives, contrasting the concentrated solar power route with the more prevalent photovoltaic approach. Within photovoltaics, a trifecta of monocrystalline silicon, polycrystalline silicon, and thin film alternatives offers discrete benefits in efficiency, cost, and geographical suitability. Tracker systems add another layer of differentiation: dual axis units maximize energy yield through dynamic solar positioning, fixed tilt configurations simplify maintenance, and single axis frameworks deliver an optimal balance of performance and cost. Capacity segmentation classifies projects into large-scale installations exceeding ten megawatts, medium-scale developments in the one to ten megawatt range, and small-scale ventures under one megawatt, each tier informing financial modeling and risk allocation. Installation modalities, whether floating arrays, ground mounted fields, or rooftop deployments, dictate site selection and structural engineering considerations. Finally, end use profiles span commercial venues-hotels and resorts, office parks, retail complexes-institutional industrial campuses, residential communities, and utility-scale generators, each category presenting unique regulatory, interconnection, and offtake dynamics.

Comparing Growth Drivers, Policy Frameworks, and Infrastructure Trends Across the Americas, Europe Middle East and Africa, and Asia-Pacific in Solar EPC Dynamics

The Americas region continues to serve as a leading incubator for innovation in solar EPC, with established tax incentives, streamlined permitting pathways, and flourishing corporate renewable procurement programs driving robust project pipelines. In key markets, public-private partnerships are scaling up manufacturing capacity for panels and inverters, while state-level renewable portfolio standards have injected fresh momentum into both utility-scale and distributed solar endeavors. Investment flows from institutional entities into solar projects have intensified, reflecting confidence in long-term revenue stability and regulatory support.

Across Europe, the Middle East, and Africa, regulatory heterogeneity and infrastructural constraints present both challenges and opportunities. European Union member states are harmonizing grid codes to integrate higher shares of solar generation, while Gulf nations leverage abundant solar resources to diversify energy matrices and fortify energy security. In parts of Africa, nascent EPC markets are emerging as off-grid and mini-grid solutions attract development financing, although supply chain fragmentation and financing gaps continue to impede scale. Innovative concessional funding models and risk-mitigation instruments are proving pivotal in accelerating project execution across this broad and diverse territory.

The Asia-Pacific region remains the fastest growing arena for solar deployment, driven by aggressive national targets, competitive manufacturing ecosystems, and expansive utility programs. Large-scale auction frameworks in India, China, Australia, and Southeast Asian economies have triggered fierce bidding competitions, fostering cost efficiencies and rapid build-out. Concurrently, policy support for floating solar installations in water-scarce areas, as well as emerging rooftop market programs in densely populated urban centers, underscores the region's multi-faceted approach to solar development.

Illuminating Competitive Leadership Strategies, Collaborative Ventures, and Technological Differentiators Among Solar EPC Organizations Shaping Market Innovation

Leading solar EPC firms have intensified their focus on vertical integration, acquiring module manufacturing capabilities and expanding asset management services to secure recurring revenue streams. Strategic alliances with technology innovators have enabled early access to next-generation inverters, bifacial modules, and advanced power electronics. At the same time, collaborative ventures between global conglomerates and specialized regional contractors have emerged as effective mechanisms for unlocking local market knowledge and optimizing execution efficiency across diverse regulatory environments.

Smaller, agile players are carving niche positions by leveraging digital twin platforms, drone-enabled site inspections, and additive manufacturing for custom racking solutions. This infusion of technological differentiation has compelled incumbents to accelerate their own digital transformation roadmaps, incorporating machine learning algorithms for performance forecasting and blockchain applications to enhance supply chain transparency. Amid this competitive flux, joint ventures between established EPC providers and fintech startups are facilitating novel financing structures, enabling subscription-based O&M offerings and innovative equipment leasing models that align cash flows with project performance milestones.

Implementing Actionable Strategies for Industry Leaders to Enhance Resilience, Drive Digital Transformation, and Optimize Solar EPC Supply Chains

Industry leaders seeking to secure a sustainable competitive advantage must invest in advanced digital platforms that integrate design, procurement, and construction workflows. Adopting cloud-based project management tools and real-time analytics not only improves execution accuracy but also enhances stakeholder transparency, reducing disputes and accelerating close-out activities. Equally important is the cultivation of resilient supply chains: diversifying vendor partnerships, onshoring critical component production, and embedding flexible logistics frameworks can mitigate tariff volatility and transportation disruptions.

Furthermore, forging strategic relationships with financing partners-such as green banks, institutional investors, and impact funds-can streamline capital allocation and facilitate performance-linked investment structures. By collaborating with local stakeholders on workforce development and community engagement, EPC providers can secure long-term social license to operate and reduce permitting delays. Finally, standardizing modular design components and adopting plug-and-play electrical interfaces can yield economies of scale, lower engineering costs, and compress project timelines, delivering tangible value in increasingly competitive bid environments.

Delving into Rigorous Primary and Secondary Research Techniques Including Data Triangulation and Expert Validation That Underpin the Solar EPC Study

This study integrates a systematic blend of primary and secondary research methodologies to ensure comprehensive coverage and analytical rigor. Primary research involved in-depth interviews with senior executives from leading EPC firms, equipment manufacturers, project financiers, and policy experts, providing firsthand perspectives on operational challenges, technology priorities, and strategic roadmaps. Structured surveys of project developers and asset owners supplemented these qualitative insights, offering quantitative validation of emerging trends and procurement practices.

Secondary research comprised extensive analysis of corporate filings, regulatory frameworks, technical journals, and industry whitepapers. Publicly available databases and trade association reports were triangulated with proprietary data sources to build a robust factual foundation. Data validation protocols, including cross-verification against multiple independent sources and iterative expert review cycles, ensured the highest standards of accuracy. Editorial oversight and quality control measures were applied at every stage, guaranteeing that the final deliverables reflect both the depth and integrity expected by senior decision makers.

Synthesizing Critical Takeaways and Strategic Imperatives from the Solar EPC Landscape to Guide Decision Makers Toward Future Resilience and Growth

The solar EPC sector stands at the threshold of transformative growth, shaped by technological innovation, policy recalibration, and evolving stakeholder imperatives. From the intricate interplay of tariff regimes to the strategic segmentation of service types and end-use applications, the market dynamic is more multifaceted than ever. Decision makers who internalize these insights and align their operations accordingly will be best positioned to capture emerging opportunities and steer projects toward successful execution.

As the industry continues to mature, the capacity to orchestrate integrated solutions-encompassing engineering excellence, procurement agility, and construction precision-will define market leadership. By embracing digitalization, fostering resilient partnerships, and adhering to rigorous risk management practices, EPC organizations can transcend traditional project delivery models and contribute meaningfully to the global transition to clean energy.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Growing trend of vertical integration among solar EPC firms to improve efficiency and control
  • 5.2. Increasing adoption of bifacial solar modules to enhance energy yield and optimize land use
  • 5.3. Integration of digital twin technology for real-time optimization across solar project lifecycles
  • 5.4. Adoption of advanced AI driven predictive maintenance for solar asset management
  • 5.5. Deployment of floating solar photovoltaic systems to utilize water reservoirs
  • 5.6. Use of module level power electronics to enhance performance and monitoring
  • 5.7. Growth of community solar projects to improve access for low income consumers
  • 5.8. Expansion of solar plus storage microgrid solutions for remote electrification
  • 5.9. Development of agrivoltaic installations combining solar generation with crop cultivation
  • 5.10. Standardization of DC safety protocols and rapid shutdown systems for PV arrays

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Solar Engineering, Procurement & Construction Market, by Service Type

  • 8.1. Introduction
  • 8.2. Construction
    • 8.2.1. Civil Work
    • 8.2.2. Commissioning
    • 8.2.3. Electrical Installation
    • 8.2.4. Project Management
  • 8.3. Engineering
    • 8.3.1. Feasibility Studies
    • 8.3.2. Site Survey & Assessment
    • 8.3.3. Structural & Electrical Engineering
    • 8.3.4. System Design & Modeling
  • 8.4. Procurement

9. Solar Engineering, Procurement & Construction Market, by Solar Technology

  • 9.1. Introduction
  • 9.2. Concentrated Solar Power (CSP)
  • 9.3. Photovoltaic (PV)
    • 9.3.1. Monocrystalline Silicon
    • 9.3.2. Polycrystalline Silicon
    • 9.3.3. Thin Film

10. Solar Engineering, Procurement & Construction Market, by Tracker Type

  • 10.1. Introduction
  • 10.2. Dual Axis
  • 10.3. Fixed Tilt
  • 10.4. Single Axis

11. Solar Engineering, Procurement & Construction Market, by Capacity

  • 11.1. Introduction
  • 11.2. Large-Scale Solar EPC (over 10 MW)
  • 11.3. Medium-Scale Solar EPC (1-10 MW)
  • 11.4. Small-Scale Solar EPC (Less than 1 MW)

12. Solar Engineering, Procurement & Construction Market, by Installation Type

  • 12.1. Introduction
  • 12.2. Floating Solar
  • 12.3. Ground Mounted
  • 12.4. Roof Mounted

13. Solar Engineering, Procurement & Construction Market, by End Use

  • 13.1. Introduction
  • 13.2. Commercial
    • 13.2.1. Hotels & Resorts
    • 13.2.2. Office Parks
    • 13.2.3. Retail & Shopping Complexes
  • 13.3. Industrial
  • 13.4. Residential
  • 13.5. Utility

14. Americas Solar Engineering, Procurement & Construction Market

  • 14.1. Introduction
  • 14.2. United States
  • 14.3. Canada
  • 14.4. Mexico
  • 14.5. Brazil
  • 14.6. Argentina

15. Europe, Middle East & Africa Solar Engineering, Procurement & Construction Market

  • 15.1. Introduction
  • 15.2. United Kingdom
  • 15.3. Germany
  • 15.4. France
  • 15.5. Russia
  • 15.6. Italy
  • 15.7. Spain
  • 15.8. United Arab Emirates
  • 15.9. Saudi Arabia
  • 15.10. South Africa
  • 15.11. Denmark
  • 15.12. Netherlands
  • 15.13. Qatar
  • 15.14. Finland
  • 15.15. Sweden
  • 15.16. Nigeria
  • 15.17. Egypt
  • 15.18. Turkey
  • 15.19. Israel
  • 15.20. Norway
  • 15.21. Poland
  • 15.22. Switzerland

16. Asia-Pacific Solar Engineering, Procurement & Construction Market

  • 16.1. Introduction
  • 16.2. China
  • 16.3. India
  • 16.4. Japan
  • 16.5. Australia
  • 16.6. South Korea
  • 16.7. Indonesia
  • 16.8. Thailand
  • 16.9. Philippines
  • 16.10. Malaysia
  • 16.11. Singapore
  • 16.12. Vietnam
  • 16.13. Taiwan

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. Eiffage S.A.
    • 17.3.2. Acciona, S.A.
    • 17.3.3. Adani Group
    • 17.3.4. Akuo Energy SAS
    • 17.3.5. Canadian Solar Inc.
    • 17.3.6. Alsa Solar System LLC
    • 17.3.7. Bechtel Corporation
    • 17.3.8. Qcells by Hanwha Group
    • 17.3.9. Koch, Inc.
    • 17.3.10. MVV Energie AG
    • 17.3.11. SOLV Energy LLC
    • 17.3.12. Tata Power Company Limited
    • 17.3.13. TBEA Co., Ltd.
    • 17.3.14. TotalEnergies SE

18. ResearchAI

19. ResearchStatistics

20. ResearchContacts

21. ResearchArticles

22. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제