½ÃÀ庸°í¼­
»óǰÄÚµå
1806605

µ¥ÀÌÅÍ ¼öÁý ½Ã½ºÅÛ ½ÃÀå : Á¦Ç° À¯Çü, ÃÖÁ¾»ç¿ëÀÚ, Àü°³ ¸ðµå, ¿ëµµº° - ¼¼°è Àü¸Á(2025-2030³â)

Data Acquisition System Market by Product Type, End User, Deployment Mode, Application - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 197 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

µ¥ÀÌÅÍ ¼öÁý ½Ã½ºÅÛ ½ÃÀåÀº 2024³â¿¡ 30¾ï 2,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2025³â¿¡´Â 32¾ï ´Þ·¯¿¡ À̸£°í, CAGR 6.57%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 44¾ï 2,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ : 2024³â 30¾ï 2,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ : 2025³â 32¾ï ´Þ·¯
¿¹Ãø ¿¬µµ : 2030³â 44¾ï 2,000¸¸ ´Þ·¯
CAGR(%) 6.57%

µ¥ÀÌÅÍ ¼öÁý ½Ã½ºÅÛÀº ÃֽаèÃø±âÀÇ ±âÃÊ °èÃþÀ¸·Î¼­ Áß¿äÇÑ ¿î¿µ µ¥ÀÌÅÍÀÇ ¿øÈ°ÇÑ ¼öÁý, Àü¼Û, ºÐ¼®À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¾Æ³¯·Î±× ÀÔ·ÂÀ» µðÁöÅÐ ½ÅÈ£·Î º¯È¯ÇÏ°í ´Ù¾çÇÑ È¯°æ¿¡ ´ëÇÑ ½Ç½Ã°£ ¸ð´ÏÅ͸µÀ» ±¸¼ºÇÔÀ¸·Î½á, ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº Á¦Á¶¾÷¿¡¼­ ÇコÄɾ À̸£±â±îÁö ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ ÇʼöÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÇÙ½É ÀÎÇÁ¶ó´Â ÀϹÝÀûÀ¸·Î Çϵå¿þ¾î ¸ðµâ, Åë½Å ÀÎÅÍÆäÀ̽º, ¼ÒÇÁÆ®¿þ¾î Ç÷§ÆûÀ¸·Î ±¸¼ºµÇ¸ç, °íÁ¤¹Ð ÃøÁ¤°ú °ß°íÇÑ µ¥ÀÌÅÍ º¸Á¸À» À§ÇØ ¼³°èµÇ¾ú½À´Ï´Ù.

Áö³­ 10³â°£ µ¥ÀÌÅÍ ¼öÁýÀÇ ¹üÀ§´Â ´Ü¼øÇÑ ½ÅÈ£ ĸó¸¦ ³Ñ¾î¼± °ÍÀ¸·Î È®´ëµÇ¾ú½À´Ï´Ù. ¸ðµâÈ­µÈ Çϵå¿þ¾î, Ŭ¶ó¿ìµå¿¡ ÅëÇÕµÈ ¼ÒÇÁÆ®¿þ¾î Á¦Ç°±º, °íºÎ°¡°¡Ä¡ ÄÁ¼³ÆÃ ¹× À¯Áöº¸¼ö ¼­ºñ½ºÀÇ ¹ßÀüÀ¸·Î ÀÌ·¯ÇÑ ½Ã½ºÅÛÀÇ ¿ªÇÒÀº »ý»ê¼º°ú Çõ½ÅÀ» ½ÇÇöÇÏ´Â Àü·«Àû ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÇöÀç ¾÷°è ÀÌÇØ°ü°èÀÚµéÀº µ¥ÀÌÅÍ ¼öÁý»Ó¸¸ ¾Æ´Ï¶ó ¿¹ÃøÀû ÅëÂû·Â, ÀÚµ¿ Á¦¾î, ¸ôÀÔÇü ½Ã°¢È­¸¦ Á¦°øÇÏ´Â ¼Ö·ç¼ÇÀ» ¿øÇϰí ÀÖ½À´Ï´Ù. ±× °á°ú, °ø±ÞÀÚµéÀº °í±Þ ºÐ¼®, ¿§Áö ÄÄÇ»ÆÃ ±â´É, È®Àå °¡´ÉÇÑ ¹èÆ÷ ¸ðµ¨À» ÅëÇÕÇÏ¿© ÁøÈ­ÇÏ´Â ¼º´É ¹× ¾ÈÁ¤¼º ¿ä±¸ »çÇ×À» ÃæÁ·ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

µðÁöÅÐ ÀüȯÀÌ °¡¼ÓÈ­µÇ´Â °¡¿îµ¥, Àû½Ã¿¡ Á¤È®ÇÑ µ¥ÀÌÅ͸¦ Ȱ¿ëÇÒ ¼ö ÀÖ´Â ´É·ÂÀº °æÀï»ç¿ÍÀÇ Â÷º°È­¸¦ ÃËÁøÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀûÀÀ·ÂÀÌ ³ô°í ¹Ì·¡ ÁöÇâÀûÀÎ ¾ÆÅ°ÅØÃ³¿¡ ÅõÀÚÇÏ´Â Á¶Á÷Àº ±ÔÁ¦ º¯È­¿¡ ´ëÀÀÇϰí, ÀÚ»ê Ȱ¿ëÀ» ÃÖÀûÈ­Çϸç, »õ·Î¿î ºñÁî´Ï½º ¸ðµ¨À» Ãß±¸ÇÏ´Â µ¥ ÀÖ¾î À¯¸®ÇÑ À§Ä¡¿¡ ÀÖ½À´Ï´Ù. ÀÌ ¼Ò°³¿¡¼­´Â ÇâÈÄ ¸î ³â µ¿¾È µ¥ÀÌÅÍ ¼öÁý ½Ã½ºÅÛÀÇ ±Ëµµ¸¦ Çü¼ºÇÒ ½ÃÀåÀÇ °¡Àå Áß¿äÇÑ º¯È­, ±ÔÁ¦ÀÇ ¿µÇâ, ¼¼ºÐÈ­ÀÇ ¿ªÇÐ, Àü·«Àû ¿ä±¸»çÇ׿¡ ´ëÇØ ÀÚ¼¼È÷ »ìÆìº¾´Ï´Ù.

Àü ¼¼°è µ¥ÀÌÅÍ ¼öÁý ½Ã½ºÅÛÀÇ ¹Ì·¡¸¦ Á¿ìÇÒ °¡Àå Áß¿äÇÑ ±â¼úÀû, ½ÃÀåÀû ÆÄ±«Àû Çõ½Å¿¡ ´ëÇÑ ÀÌÇØ

µ¥ÀÌÅÍ ¼öÁý ȯ°æÀº ¿¬°á¼º, ºÐ¼®, ¸ðµâ½Ä ¼³°èÀÇ ºñ¾àÀûÀÎ ¹ßÀü¿¡ ÈûÀÔ¾î Å« º¯È­¸¦ °Þ°í ÀÖ½À´Ï´Ù. ÀΰøÁö´É°ú ¿§Áö ÄÄÇ»ÆÃÀÇ À¶ÇÕÀº ¼¾¼­ ¼öÁØ¿¡¼­ ½Ç½Ã°£ ÀÇ»ç°áÁ¤À» °¡´ÉÇÏ°Ô Çϰí, ´ë±â½Ã°£°ú ´ë¿ªÆøÀÇ Á¦¾àÀ» ÁÙ¿©ÁÖ°í ÀÖ½À´Ï´Ù. ÇÑÆí, »ê¾÷¿ë »ç¹°ÀÎÅͳÝ(IIoT)ÀÇ È®»êÀ¸·Î ¿ø°Ý ¸ð´ÏÅ͸µ ±â´É¿¡ ´ëÇÑ Á¢±ÙÀÌ ¹ÎÁÖÈ­µÇ¸é¼­ ±â¾÷µéÀº ÀÌÀü¿¡´Â Á¢±ÙÇϱ⠾î·Á¿ü´ø ¿ÀÇÁ¼î¾î Ç÷§Æû, ÀÚÀ²ÁÖÇàÂ÷ µî ´Ù¾çÇÑ Àå¼Ò¿¡¼­ ¿ø°Ý ÃøÁ¤À» ¼öÁýÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

2025³âÀ» ÇâÇÑ ¹Ì±¹ °ü¼¼ °³Á¤ÀÌ ¼¼°è µ¥ÀÌÅÍ ¼öÁý °ø±Þ¸Á¿¡ ¹ÌÄ¡´Â Á¾ÇÕÀûÀÎ ¿µÇ⠺м®

¹Ì±¹ÀÌ 2025³â¿¡ µµÀÔÇÑ °ü¼¼ °³Á¤Àº Àü ¼¼°è µ¥ÀÌÅÍ ¼öÁý °ø±Þ¸Á¿¡ Áß¿äÇÑ ÀüȯÁ¡ÀÌ µÉ °ÍÀÔ´Ï´Ù. µ¥ÀÌÅÍ ¼öÁý ÀåÄ¡, ÀÔ·Â ¸ðµâ, ³×Æ®¿öÅ© ÀÎÅÍÆäÀ̽º Ä«µå µî ÁÖ¿ä ºÎǰ¿¡ ´ëÇÑ °ü¼¼ Á¶Á¤À¸·Î Á¦Á¶¾÷ü¿Í ÃÖÁ¾ »ç¿ëÀÚ´Â Á¶´Þ ºñ¿ë Áõ°¡ Àü¸Á¿¡ Á÷¸éÇÏ°Ô µÉ °ÍÀÔ´Ï´Ù. ƯÈ÷, ±¹°æ °£ ¹°·ù¿¡ ÀÇÁ¸ÇÏ´Â Çϵå¿þ¾î ¹× ¾×¼¼¼­¸® Á¦Á¶¾÷ü´Â ÀáÀçÀûÀÎ ¸¶Áø °¨¼Ò¸¦ ¿ÏÈ­Çϱâ À§ÇØ Á¶´Þ Àü·«À» Àç°ËÅäÇØ¾ß ÇÒ ¼öµµ ÀÖ½À´Ï´Ù.

´Ù¾çÇÑ µ¥ÀÌÅÍ ¼öÁý ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÆÄ¾ÇÇϱâ À§ÇØ ÁÖ¿ä Á¦Ç°ÀÇ ÃÖÁ¾ »ç¿ëÀÚ ¹èÆ÷ ¸ðµå¿Í ¿ëµµ ºÎ¹®À» ½ÉÃþ ºÐ¼®ÇÕ´Ï´Ù.

½ÃÀå ¼¼ºÐÈ­¿¡ ´ëÇÑ ¹Ì¹¦ÇÑ ÀÌÇØ´Â µ¥ÀÌÅÍ ¼öÁý ¼Ö·ç¼ÇÀÌ ÃæÁ·½ÃÄÑ¾ß ÇÒ ´Ù¾çÇÑ ¿ä±¸ »çÇ×À» ¸íÈ®È÷ ÇÕ´Ï´Ù. Á¦Ç° À¯Çüº°·Î º¸¸é, Çϵå¿þ¾î, ¼­ºñ½º, ¼ÒÇÁÆ®¿þ¾îÀÇ ¼¼ °¡Áö ÁÖ¿ä Ä«Å×°í¸®·Î ³ª´¹´Ï´Ù. Çϵå¿þ¾î¿¡´Â ¾×¼¼¼­¸®, µ¥ÀÌÅÍ ¼öÁý ÀåÄ¡, ÀÔ·Â ¸ðµâ, Á¤È®ÇÑ ½ÅÈ£ ÃøÁ¤ ¹× ¾ÈÁ¤ÀûÀÎ ¿¬°áÀ» º¸ÀåÇϵµ·Ï ¼³°èµÈ ³×Æ®¿öÅ© Àåºñ°¡ Æ÷ÇԵ˴ϴÙ. À̸¦ º¸¿ÏÇÏ´Â ¼­ºñ½º¿¡´Â ÄÁ¼³ÆÃ, ¼³Ä¡, ½Ã¿îÀü, Áö¼ÓÀûÀÎ À¯Áöº¸¼ö ¹× Áö¿øÀÌ Æ÷ÇԵǸç, À̸¦ ÅëÇØ ½Ã½ºÅÛ °¡µ¿ ½Ã°£À» °³¼±ÇÏ°í ¿øÈ°ÇÑ ÅëÇÕÀ» ÃËÁøÇÕ´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î Ãø¸é¿¡¼­´Â ºÐ¼® ¼ÒÇÁÆ®¿þ¾î, Á¦¾î ¼ÒÇÁÆ®¿þ¾î, µ¥ÀÌÅÍ ½Ã°¢È­ ¼ÒÇÁÆ®¿þ¾î µî º¹ÀâÇÑ µ¥ÀÌÅÍ ¼¼Æ®ÀÇ Ã³¸®, ÀÚµ¿È­, ÇØ¼®À» À§ÇÑ Àü¹®ÀûÀÎ ±â´ÉÀ» Á¦°øÇÏ´Â Á¦Ç°±ºÀ» °®Ãß°í ÀÖ½À´Ï´Ù.

µ¥ÀÌÅÍ ¼öÁý ½Ã½ºÅÛ Ã¤Åà ÆÐÅÏÀ» Çü¼ºÇÏ´Â ºÏ¹Ì, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾ç ¿ªÇÐÀÇ ÁÖ¿ä Æ¯Â¡

Áö¿ª ºÐ¼®Àº ä¿ë ±ËÀû°ú ÀÎÇÁ¶ó ¿ì¼±¼øÀ§¸¦ ÀÌÇØÇÏ´Â µ¥ Áß¿äÇÑ ¸Æ¶ôÀ» Á¦°øÇÕ´Ï´Ù. ºÏ¹Ì¿Í ³²¹Ì¿¡¼­´Â ÷´Ü Á¦Á¶¾÷, Ç×°ø¿ìÁÖ, ¼®À¯ ¹× °¡½º ºÎ¹®À» ±â¹ÝÀ¸·Î ÇÑ ¼º¼÷ÇÑ ½ÃÀåÀÌ Â÷¼¼´ë µ¥ÀÌÅÍ ¼öÁý ¾ÆÅ°ÅØÃ³¿¡ ´ëÇÑ ÅõÀÚ¸¦ Áö¼ÓÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ª¿¡¼­´Â ƯÈ÷ ¿ø°Ý Ž»ç ¿ëµµ¿¡¼­ Ŭ¶ó¿ìµåÀÇ È®À强°ú ÇöÀåÀÇ ¿§Áö ÇÁ·Î¼¼½ÌÀ» °áÇÕÇÑ ÇÏÀ̺긮µå ±¸ÃàÀÇ Ãß¼¼¸¦ º¼ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀåÀ» ¼±µµÇÏ´Â µ¥ÀÌÅÍ ¼öÁý ½Ã½ºÅÛ Á¦°ø¾÷üÀÇ Àü·«Àû ÀÌ´Ï¼ÅÆ¼ºê Çõ½Å ¹× Çù¾÷¿¡ ´ëÇÑ °ËÁõ

µ¥ÀÌÅÍ ¼öÁý ºÐ¾ßÀÇ ¾÷°è ¼±µÎÁÖÀÚµéÀº Ÿ°ÙÆÃµÈ ±â¼ú Çõ½Å, Àü·«Àû Á¦ÈÞ, ¼­ºñ½º È®ÀåÀ» ÅëÇØ Æ÷Æ®Æú¸®¿À¸¦ Â÷º°È­Çϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä Çϵå¿þ¾î Á¦Á¶¾÷üµéÀº ÷´Ü ¼¾¼­ ÀÎÅÍÆäÀ̽º¿Í °í¼Ó Åë½Å ÇÁ·ÎÅäÄÝÀ» Â÷¼¼´ë ¸ðµâ¿¡ ÅëÇÕÇϰí, »õ·Î¿î ÀÌ´õ³Ý-A ÇÁ·ÎÅäÄÝ ¹× Time-Sensitive Networking Ç¥ÁذúÀÇ ¿Ïº®ÇÑ È£È¯¼ºÀ» Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ, ÀϺΠ±âÁ¸ º¥´õµéÀº µ¥ÀÌÅÍ ÄÁµð¼Å´×, Ãʱ⠺м®, ¾ÈÀüÇÑ µ¥ÀÌÅÍ Àü¼ÛÀ» ÇϳªÀÇ °­·ÂÇÑ Ç÷§Æû¿¡ ÅëÇÕÇÑ ¿§Áö ÄÄÇ»ÆÃ ¾îÇöóÀ̾𽺿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù.

µ¥ÀÌÅÍ ¼öÁý ½Ã½ºÅÛÀÇ ¼º´ÉÀ» ÃÖÀûÈ­ÇÏ°í »õ·Î¿î ±â¼ú ¹× ½ÃÀå ±âȸ¸¦ Ȱ¿ëÇϱâ À§ÇÑ ¾÷°è ¸®´õÀÇ ½ÇÇà °¡´ÉÇÑ Àü·«

½ÃÀå¿¡¼­ÀÇ ÀÔÁö¸¦ °­È­ÇϰíÀÚ ÇÏ´Â ¾÷°è ¸®´õ´Â ±â¼ú Çõ½Å°ú °í°´ Á᫐ ¼­ºñ½º ¸ðµ¨ÀÇ ±ÕÇüÀ» ¸ÂÃß´Â ÀÌÁßÀû Á¢±Ù ¹æ½ÄÀ» ¿ì¼±½ÃÇØ¾ß ÇÕ´Ï´Ù. ù°, Ç÷¯±× ¾Ø Ç÷¹ÀÌ ÅëÇÕÀ» Áö¿øÇÏ´Â ¸ðµâ½Ä Çϵå¿þ¾î ¼³°è¿¡ ÅõÀÚÇÏ¿© ´Ù¾çÇÑ ¿î¿µ ȯ°æ¿¡¼­ ½Å¼ÓÇÏ°Ô ¹èÆ÷ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ À¯¿¬¼ºÀº µµÀÔ À§ÇèÀ» ÁÙÀ̰í, °¡Ä¡ ½ÇÇö ½Ã°£À» ´ÜÃàÇϸç, °í°´ÀÇ µðÁöÅÐÈ­ ¿©Á¤¿¡¼­ ¹ÎøÇÑ ÆÄÆ®³Ê·Î ÀÚ¸®¸Å±èÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù.

µ¥ÀÌÅÍ ¼öÁý ½Ã½ºÅÛ µ¿Çâ¿¡ ´ëÇÑ ±íÀº ÅëÂû·ÂÀ» Á¦°øÇÏ´Â 1Â÷ Á¶»ç¿Í 2Â÷ Á¶»ç¸¦ °áÇÕÇÑ °­·ÂÇÑ ´Ù¿øÀû Á¶»ç ÇÁ·¹ÀÓ¿öÅ©¿¡ ´ëÇØ ÀÚ¼¼È÷ ¾Ë¾Æº¸¼¼¿ä.

º» ºÐ¼®À» µÞ¹ÞħÇÏ´Â Á¶»ç¹æ¹ýÀº 1Â÷ ÀÎÅͺä, 2Â÷ µ¥ÀÌÅÍ Áý°è, Á¤¼ºÀû ÅëÇÕÀ» ±¸Á¶ÀûÀ¸·Î °áÇÕÇÑ °ÍÀÔ´Ï´Ù. ¸ÕÀú, ±ÔÁ¦ ´ç±¹ ½Å°í, ±â¼ú ¹é¼­, ¾÷°è °£Ç๰ µî ±¤¹üÀ§ÇÑ 2Â÷ Á¶»ç¸¦ ÅëÇØ ÇöÀç ±â¼ú ¹× ½ÃÀå °³Ã´¿¡ ´ëÇÑ ±âº»ÀûÀÎ ÀÌÇØ¸¦ ½ÉÈ­½ÃÄ×½À´Ï´Ù. ÀÌ ±âÃÊ ´Ü°è´Â ÀÎÅÍºä °¡À̵å¿Í Á¶»ç ¹æ¹ýÀÇ ¼³°è¿¡ ¹Ý¿µµÇ¾ú½À´Ï´Ù.

ÁøÈ­ÇÏ´Â µ¥ÀÌÅÍ ¼öÁý ½Ã½ºÅÛÀÇ Àü¸ÁÀ» È®½ÇÇÏ°Ô Å½»öÇϱâ À§ÇØ Áß¿äÇÑ ¹ß°ß°ú ¹Ì·¡ Àü¸ÁÀ» ÅëÇÕÇÕ´Ï´Ù.

ÁÖ¿ä Á¶»ç °á°ú¸¦ Á¾ÇÕÇϸé, µ¥ÀÌÅÍ ¼öÁý »ýŰè´Â ±Þ¼ÓÇÑ ±â¼ú ¹ßÀü°ú ÁøÈ­ÇÏ´Â °í°´ ±â´ëÄ¡¸¦ Ư¡À¸·Î ÇÏ´Â º¯°îÁ¡¿¡ µµ´ÞÇÑ °ÍÀÌ ºÐ¸íÇÕ´Ï´Ù. ¿§Áö ÄÄÇ»ÆÃ, AI ±â¹Ý ºÐ¼®, ¸ðµâÇü Çϵå¿þ¾î ¾ÆÅ°ÅØÃ³ÀÇ Çõ½ÅÀº ±× ¾î´À ¶§º¸´Ù Áö´ÉÀûÀ̰í ź·ÂÀûÀ̸ç È®Àå °¡´ÉÇÑ ½Ã½ºÅÛÀ» ±¸ÃàÇϱâ À§ÇØ À¶Çյǰí ÀÖ½À´Ï´Ù. µ¿½Ã¿¡, ±ÔÁ¦ º¯È­, ƯÈ÷ °ü¼¼ Á¦µµÀÇ º¯È­·Î ÀÎÇØ ÀÌÇØ°ü°èÀÚµéÀº º¸´Ù ¹ÎøÇÑ Á¶´Þ Àü·«À» äÅÃÇÏ°í °ø±Þ¸Á ÀÇÁ¸µµ¸¦ ÀçÆò°¡ÇÒ Çʿ䰡 ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå µ¥ÀÌÅÍ ¼öÁý ½Ã½ºÅÛ ½ÃÀå : Á¦Ç° À¯Çüº°

  • Çϵå¿þ¾î
    • ¾×¼¼¼­¸®
    • µ¥ÀÌÅÍ ¼öÁý À¯´Ö
    • ÀÔ·Â ¸ðµâ
    • ³×Æ®¿öÅ© Àåºñ
  • ¼­ºñ½º
    • ÄÁ¼³ÆÃ ¼­ºñ½º
    • ¼³Ä¡ ¹× ½Ã¿îÀü
    • À¯Áö°ü¸® ¹× Áö¿ø
  • ¼ÒÇÁÆ®¿þ¾î
    • ºÐ¼® ¼ÒÇÁÆ®¿þ¾î
    • Á¦¾î ¼ÒÇÁÆ®¿þ¾î
    • µ¥ÀÌÅÍ ½Ã°¢È­ ¼ÒÇÁÆ®¿þ¾î

Á¦9Àå µ¥ÀÌÅÍ ¼öÁý ½Ã½ºÅÛ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • Ç×°ø¿ìÁÖ ¹× ¹æÀ§
  • ÀºÇà/±ÝÀ¶¼­ºñ½º/º¸Çè(BFSI)
  • ÇコÄɾî
  • Á¦Á¶¾÷
    • ÀÚµ¿Â÷
    • È­ÇÐÁ¦Ç°
    • ÀÏ·ºÆ®·Î´Ð½º
  • ¼®À¯ ¹× °¡½º
  • ¼Ò¸Å

Á¦10Àå µ¥ÀÌÅÍ ¼öÁý ½Ã½ºÅÛ ½ÃÀå : Àü°³ ¸ðµåº°

  • Ŭ¶ó¿ìµå
  • On-Premise

Á¦11Àå µ¥ÀÌÅÍ ¼öÁý ½Ã½ºÅÛ ½ÃÀå : ¿ëµµº°

  • ÀÚµ¿È­
  • µ¥ÀÌÅÍ ºÐ¼®
  • ÇÁ·Î¼¼½º ¸ð´ÏÅ͸µ
  • º¸°í

Á¦12Àå ¾Æ¸Þ¸®Ä«ÀÇ µ¥ÀÌÅÍ ¼öÁý ½Ã½ºÅÛ ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦13Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ µ¥ÀÌÅÍ ¼öÁý ½Ã½ºÅÛ ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦14Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ µ¥ÀÌÅÍ ¼öÁý ½Ã½ºÅÛ ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦15Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024
  • °æÀï ºÐ¼®
    • Amazon.com, Inc.
    • Microsoft Corporation
    • International Business Machines Corporation
    • Oracle Corporation
    • ABB Ltd
    • ADLINK Technology, Inc.
    • Advantech Co. Ltd
    • AMETEK Inc.
    • Beckhoff Automation GmbH & Co. KG
    • Campbell Scientific Inc.
    • Curtiss-Wright Corporation
    • Dataforth Corp.
    • Dataq Instruments Inc.
    • Dewesoft d.o.o.
    • Emerson Electric Co.
    • Fluke Corporation
    • General Electric Company
    • HIOKI E.E. Corp.
    • Hottinger Bruel & Kjaer A/S
    • Keysight Technologies, Inc.
    • Kistler Group
    • LabJack Corp.
    • Rockwell Automation Inc.
    • Schneider Electric SE
    • Siemens AG
    • Tektronix, Inc.
    • Teledyne Technologies Inc.
    • Yokogawa Electric Co.

Á¦16Àå ¸®¼­Ä¡ AI

Á¦17Àå ¸®¼­Ä¡ Åë°è

Á¦18Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦19Àå ¸®¼­Ä¡ ±â»ç

Á¦20Àå ºÎ·Ï

LSH

The Data Acquisition System Market was valued at USD 3.02 billion in 2024 and is projected to grow to USD 3.20 billion in 2025, with a CAGR of 6.57%, reaching USD 4.42 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 3.02 billion
Estimated Year [2025] USD 3.20 billion
Forecast Year [2030] USD 4.42 billion
CAGR (%) 6.57%

Data acquisition systems serve as the foundational layer of modern instrumentation, enabling the seamless collection, transmission, and analysis of critical operational data. By converting analog inputs into digital signals and orchestrating real-time monitoring across diverse environments, these systems have become indispensable in sectors ranging from manufacturing to healthcare. The core infrastructure typically comprises hardware modules, communication interfaces, and software platforms designed to deliver high-precision measurements and robust data integrity.

Over the past decade, the scope of data acquisition has expanded beyond simple signal capture. Advances in modular hardware, cloud-integrated software suites, and value-added consulting and maintenance services have elevated the role of these systems to strategic enablers of productivity and innovation. Industry stakeholders now demand solutions that not only gather data but also provide predictive insights, automated control, and immersive visualization. Consequently, providers are integrating advanced analytics, edge computing capabilities, and scalable deployment models to meet evolving performance and reliability requirements.

As digital transformation initiatives accelerate, the ability to harness timely, accurate data continues to drive competitive differentiation. Organizations that invest in adaptable, future-proof architectures are better positioned to respond to regulatory changes, optimize asset utilization, and pursue new business models. This introduction sets the stage for a deep dive into the market's most significant shifts, regulatory impacts, segmentation dynamics, and strategic imperatives that will shape the trajectory of data acquisition systems in the coming years.

Unveiling the Most Significant Technological and Market Disruptions Reshaping the Future of Data Acquisition Systems Globally

The data acquisition landscape is undergoing a profound metamorphosis fueled by breakthroughs in connectivity, analytics, and modular design. The convergence of artificial intelligence with edge computing is enabling real-time decision making at the sensor level, reducing latency and bandwidth constraints. Meanwhile, the proliferation of the Industrial Internet of Things (IIoT) has democratized access to remote monitoring capabilities, allowing organizations to gather telemetry from previously inaccessible locations such as off-shore platforms and autonomous vehicles.

Concurrently, software platforms have evolved from basic data capture tools into comprehensive ecosystems offering control software, data visualization suites, and integrated analytics. This transformation is underpinned by the rise of low-code development environments, which empower end users to design custom dashboards and workflows without extensive programming expertise. As a result, deployment cycles have shortened, driving faster time-to-insight and improved return on investment.

Furthermore, the competitive landscape has expanded with the entry of specialized service providers offering consulting, installation, and ongoing support packages. These services complement traditional offerings, enabling enterprises to accelerate project implementation and maintain system resilience. In this context, strategic partnerships between hardware manufacturers, software vendors, and system integrators are becoming increasingly vital, fostering end-to-end solutions tailored to niche industry requirements.

Collectively, these technological and market disruptions are reshaping expectations around performance, scalability, and integration. Decision makers must now navigate a complex ecosystem of interoperable components and services, balancing innovation with risk management to unlock the full potential of data acquisition systems.

Analyzing the Comprehensive Effects of the United States Tariff Adjustments Announced for 2025 on Global Data Acquisition Supply Chains

The tariff revisions introduced by the United States for 2025 represent a critical inflection point for global data acquisition supply chains. By adjusting duties on key components such as data acquisition units, input modules, and network interface cards, manufacturers and end users face the prospect of increased procurement costs. In particular, hardware accessory producers that rely on cross-border logistics may need to reassess sourcing strategies to mitigate potential margin erosion.

Transitioning from raw materials to finished assemblies, system integrators are recalibrating their vendor portfolios to balance cost pressures with performance specifications. Some have turned to domestic component fabricators to reduce exposure to import duties, while others are exploring tariff classification disputes to seek relief. Simultaneously, original equipment manufacturers (OEMs) are engaging in advanced demand planning to build buffer inventories ahead of duty hikes, albeit at the expense of increased working capital requirements.

On the software and services front, the impact has been less direct but nonetheless significant. Elevated hardware prices can extend payback periods for software-driven analytics investments, prompting organizations to adopt phased deployments. Maintenance contracts and consulting engagements are being renegotiated to accommodate higher capital outlays. In certain cases, end users are shifting toward subscription-based licensing models, enabling predictable operating expenses that absorb tariff fluctuations over time.

Ultimately, the cumulative effect of these tariff adjustments is compelling stakeholders to reexamine both their short-term sourcing decisions and long-term supply chain architectures. By proactively addressing duty implications, companies can safeguard operational continuity and maintain competitive agility despite a more complex regulatory environment.

Delving into Key Product End User Deployment Mode and Application Segments to Illuminate Diverse Data Acquisition System Demands

A nuanced understanding of market segmentation reveals the diverse requirements that data acquisition solutions must satisfy. Based on product type, the landscape spans three principal categories: hardware, services, and software. Hardware offerings encompass accessories, data acquisition units, input modules, and networking equipment designed to ensure precise signal measurement and reliable connectivity. Complementing this, services include consulting, installation and commissioning, and ongoing maintenance and support, which collectively enhance system uptime and facilitate seamless integration. On the software front, the portfolio extends across analysis software, control software, and data visualization software, each delivering specialized capabilities for processing, automating, and interpreting complex datasets.

An exploration of end users further highlights industry-specific demands. Aerospace and defense sectors prioritize ruggedized hardware and secure data channels for mission-critical applications, while banking, financial services, and insurance organizations emphasize real-time transaction monitoring and compliance reporting. Healthcare providers require high-fidelity data capture for diagnostic equipment, and manufacturing verticals-spanning automotive, chemicals, and electronics production-seek scalable solutions that support both high-volume batch processes and precision assembly applications. Oil and gas enterprises depend on remote monitoring frameworks for upstream and downstream operations, and retail operations leverage data acquisition for inventory automation and customer behavior analytics.

Deployment mode segmentation underscores the tension between flexibility and control. Cloud architectures offer elastic compute resources and simplified software updates, whereas on-premise deployments appeal to organizations that demand strict data sovereignty and custom network configurations. Lastly, application segmentation delineates four core use cases: automation workflows that manage equipment operations, data analysis routines that derive actionable insights, process monitoring protocols that ensure operational safety and compliance, and reporting mechanisms that consolidate performance metrics into executive dashboards. Taken together, these segmentation dimensions illustrate the tailored nature of data acquisition strategies across a spectrum of operational environments.

Highlighting Regional Dynamics Across the Americas Europe Middle East & Africa and Asia-Pacific That Shape Data Acquisition System Adoption Patterns

Regional analysis provides critical context for understanding adoption trajectories and infrastructure priorities. In the Americas, a mature market underpinned by advanced manufacturing, aerospace, and oil and gas sectors continues to invest in next-generation data acquisition architectures. The region has witnessed a trend toward hybrid deployments that combine cloud scalability with on-site edge processing, particularly in remote exploration applications.

Moving to Europe, Middle East & Africa, the landscape is inherently heterogeneous. Western European nations emphasize compliance with stringent data protection regulations and green energy initiatives, driving demand for systems capable of capturing environmental metrics and supporting renewable installations. In the Middle East, large-scale industrial programs in petrochemicals and utilities are leading the adoption of ruggedized equipment with high-throughput capabilities. Meanwhile, sub-Saharan Africa represents an emergent frontier, where microgrid and infrastructure development projects are creating new requirements for modular, easy-to-deploy data acquisition units.

Asia-Pacific dynamics reflect divergent growth patterns. East Asian markets such as Japan and South Korea focus on precision electronics, robotics integration, and highly automated production lines. Southeast Asian economies are rapidly embracing digital transformation in manufacturing and smart city trials, often prioritizing cloud-native architectures that can be deployed with minimal local IT investment. Together, these regional insights underscore the importance of aligning solution roadmaps with localized regulatory frameworks, technology ecosystems, and capital allocation strategies to maximize penetration and profitability.

Examining the Strategic Initiatives Innovations and Collaborations of Leading Data Acquisition System Providers Driving Market Advancement

Industry leaders in the data acquisition domain are differentiating their portfolios through targeted innovation, strategic alliances, and service expansions. Major hardware manufacturers are integrating advanced sensor interfaces and high-speed communication protocols into next-generation modules, offering seamless compatibility with emerging Ethernet-A protocols and Time-Sensitive Networking standards. Additionally, several established vendors have invested in edge computing appliances that combine data conditioning, initial analytics, and secure data transmission into a single ruggedized platform.

On the software side, leading providers are embedding machine learning algorithms to automate anomaly detection and predictive maintenance workflows. These enhancements enable rapid identification of performance deviations and deliver prescriptive recommendations that minimize unplanned downtime. To support visualization requirements, some organizations have launched interactive dashboard engines with augmented reality overlays, facilitating hands-free data interrogation for field technicians.

The service ecosystem has expanded through collaborative constructs such as system integrator partnerships and value-added reseller networks. By aligning with specialized software houses and engineering consultancies, key players offer turnkey solutions that encompass proof-of-concept, rollout, and post-deployment optimization. This end-to-end engagement model not only accelerates project timelines but also fosters long-term customer retention through recurring maintenance and support contracts.

Moreover, a wave of mergers and acquisitions has consolidated technological expertise, enabling mid-tier firms to access new geographic markets and broaden their product suites. As competitive pressures intensify, these companies continue to refine their go-to-market strategies, focusing on vertical-specific bundles and outcome-oriented service level agreements to capture high-value accounts and drive sustainable growth.

Implementable Strategies for Industry Leaders to Optimize Data Acquisition System Performance and Capitalize on Emerging Technological and Market Opportunities

Industry leaders aiming to strengthen their market position should prioritize a dual approach that balances technological innovation with customer-centric service models. First, investing in modular hardware designs that support plug-and-play integration will enable rapid deployment across varied operational environments. This flexibility reduces implementation risk and accelerates time to value, positioning providers as agile partners in client digitalization journeys.

Second, expanding software capabilities to include embedded analytics and machine learning engines will deliver deeper insights into equipment performance and process efficiency. By offering prescriptive maintenance schedules and anomaly detection as part of standard software suites, companies can shift from transactional hardware sales to recurring revenue streams driven by software licenses and cloud subscriptions.

Third, forging strategic alliances with system integrators, cloud service providers, and industry consortiums will enhance solution interoperability and foster ecosystem synergies. These collaborations can streamline certification processes for regulated sectors and facilitate joint go-to-market campaigns that amplify brand visibility.

Finally, adopting outcome-oriented service level agreements co-created with end users will align provider incentives with customer success. Embedding key performance indicators into contract structures ensures that vendors remain accountable for uptime, latency, and data accuracy metrics. This approach not only strengthens client relationships but also drives continuous improvement through real-world performance feedback loops.

Detailing a Robust Multimethod Research Framework Combining Primary and Secondary Analyses to Deliver Deep Insights into Data Acquisition System Trends

The research methodology underpinning this analysis integrates a structured combination of primary interviews, secondary data aggregation, and qualitative synthesis. Initially, extensive secondary research was conducted across regulatory filings, technical white papers, and industry publications to establish a baseline understanding of current technologies and market developments. This foundational phase informed the design of interview guides and survey instruments.

Subsequently, in-depth discussions were held with senior executives, product managers, and system architects at leading hardware, software, and service providers. These conversations explored strategic roadmaps, technology adoption drivers, and deployment challenges. Parallel dialogues with end users in aerospace, manufacturing, healthcare, and financial services provided firsthand accounts of operational requirements, performance expectations, and regulatory compliance hurdles.

Quantitative inputs were cross-verified through supplier catalogs, certification records, and open-source procurement data to ensure accuracy in component classification and feature sets. Key trends were then distilled through thematic analysis, identifying recurrent patterns in innovation cycles, partnership models, and regional adoption frameworks.

Finally, all findings underwent rigorous peer review by subject matter experts to validate insights and refine strategic recommendations. This multimethod approach ensures that the report delivers both breadth and depth, combining high-level market perspectives with actionable technical and commercial guidance.

Synthesis of Critical Findings and Forward-Looking Perspectives to Navigate the Evolving Data Acquisition System Landscape with Confidence

In synthesizing the critical findings, it is clear that the data acquisition ecosystem is at an inflection point characterized by rapid technological advancement and evolving customer expectations. Innovations in edge computing, AI-driven analytics, and modular hardware architectures are converging to create systems that are more intelligent, resilient, and scalable than ever before. At the same time, regulatory shifts, particularly in tariff regimes, are compelling stakeholders to adopt more agile sourcing strategies and reevaluate supply chain dependencies.

Looking ahead, market participants must navigate a landscape defined by heightened demand for turnkey solutions, seamless interoperability, and outcome-based service agreements. Those who can integrate hardware, software, and services into cohesive value propositions will secure a competitive edge, while organizations that lack flexibility risk obsolescence amid industry consolidation and rapid standardization.

Ultimately, strategic success will hinge on the ability to anticipate emerging requirements and iterate solutions in close collaboration with end users. By maintaining a balanced focus on innovation, partnership, and operational excellence, companies can position themselves to capitalize on growth opportunities across diverse end markets. This forward-looking perspective underscores the importance of continuous adaptation and customer-centricity in driving long-term value creation.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Integration of generative AI chatbots for proactive customer support across channels
  • 5.2. Surging investment in blockchain supply chain solutions for enhanced transparency and traceability
  • 5.3. Growing consumer demand for subscription-based wellness and mental health digital services
  • 5.4. Expansion of carbon offset marketplaces leveraging IoT sensors for real-time emissions tracking
  • 5.5. Adoption of edge computing architecture to support low-latency processing in autonomous vehicles
  • 5.6. Rise of direct-to-avatar virtual goods sales in metaverse platforms for gamer monetization
  • 5.7. Implementation of voice commerce integrations with smart home devices to streamline shopping
  • 5.8. Emergence of AI-powered dynamic pricing algorithms integrated into real-time e-commerce inventory management systems

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Data Acquisition System Market, by Product Type

  • 8.1. Introduction
  • 8.2. Hardware
    • 8.2.1. Accessories
    • 8.2.2. Data Acquisition Units
    • 8.2.3. Input Modules
    • 8.2.4. Networking Equipment
  • 8.3. Services
    • 8.3.1. Consulting Services
    • 8.3.2. Installation And Commissioning
    • 8.3.3. Maintenance And Support
  • 8.4. Software
    • 8.4.1. Analysis Software
    • 8.4.2. Control Software
    • 8.4.3. Data Visualization Software

9. Data Acquisition System Market, by End User

  • 9.1. Introduction
  • 9.2. Aerospace & Defense
  • 9.3. Banking, Financial Services & Insurance
  • 9.4. Healthcare
  • 9.5. Manufacturing
    • 9.5.1. Automotive
    • 9.5.2. Chemicals
    • 9.5.3. Electronics
  • 9.6. Oil & Gas
  • 9.7. Retail

10. Data Acquisition System Market, by Deployment Mode

  • 10.1. Introduction
  • 10.2. Cloud
  • 10.3. On Premise

11. Data Acquisition System Market, by Application

  • 11.1. Introduction
  • 11.2. Automation
  • 11.3. Data Analysis
  • 11.4. Process Monitoring
  • 11.5. Reporting

12. Americas Data Acquisition System Market

  • 12.1. Introduction
  • 12.2. United States
  • 12.3. Canada
  • 12.4. Mexico
  • 12.5. Brazil
  • 12.6. Argentina

13. Europe, Middle East & Africa Data Acquisition System Market

  • 13.1. Introduction
  • 13.2. United Kingdom
  • 13.3. Germany
  • 13.4. France
  • 13.5. Russia
  • 13.6. Italy
  • 13.7. Spain
  • 13.8. United Arab Emirates
  • 13.9. Saudi Arabia
  • 13.10. South Africa
  • 13.11. Denmark
  • 13.12. Netherlands
  • 13.13. Qatar
  • 13.14. Finland
  • 13.15. Sweden
  • 13.16. Nigeria
  • 13.17. Egypt
  • 13.18. Turkey
  • 13.19. Israel
  • 13.20. Norway
  • 13.21. Poland
  • 13.22. Switzerland

14. Asia-Pacific Data Acquisition System Market

  • 14.1. Introduction
  • 14.2. China
  • 14.3. India
  • 14.4. Japan
  • 14.5. Australia
  • 14.6. South Korea
  • 14.7. Indonesia
  • 14.8. Thailand
  • 14.9. Philippines
  • 14.10. Malaysia
  • 14.11. Singapore
  • 14.12. Vietnam
  • 14.13. Taiwan

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2024
  • 15.2. FPNV Positioning Matrix, 2024
  • 15.3. Competitive Analysis
    • 15.3.1. Amazon.com, Inc.
    • 15.3.2. Microsoft Corporation
    • 15.3.3. International Business Machines Corporation
    • 15.3.4. Oracle Corporation
    • 15.3.5. ABB Ltd
    • 15.3.6. ADLINK Technology, Inc.
    • 15.3.7. Advantech Co. Ltd
    • 15.3.8. AMETEK Inc.
    • 15.3.9. Beckhoff Automation GmbH & Co. KG
    • 15.3.10. Campbell Scientific Inc.
    • 15.3.11. Curtiss-Wright Corporation
    • 15.3.12. Dataforth Corp.
    • 15.3.13. Dataq Instruments Inc.
    • 15.3.14. Dewesoft d.o.o.
    • 15.3.15. Emerson Electric Co.
    • 15.3.16. Fluke Corporation
    • 15.3.17. General Electric Company
    • 15.3.18. HIOKI E.E. Corp.
    • 15.3.19. Hottinger Bruel & Kjaer A/S
    • 15.3.20. Keysight Technologies, Inc.
    • 15.3.21. Kistler Group
    • 15.3.22. LabJack Corp.
    • 15.3.23. Rockwell Automation Inc.
    • 15.3.24. Schneider Electric SE
    • 15.3.25. Siemens AG
    • 15.3.26. Tektronix, Inc.
    • 15.3.27. Teledyne Technologies Inc.
    • 15.3.28. Yokogawa Electric Co.

16. ResearchAI

17. ResearchStatistics

18. ResearchContacts

19. ResearchArticles

20. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦