시장보고서
상품코드
1829107

감시 제어 및 데이터 수집 시스템 시장 : 통신 유형, 전개 방식, 구성요소, 최종사용자, 용도별 - 세계 예측(2025-2032년)

Supervisory Control & Data Acquisition Systems Market by Communication Type, Deployment Type, Component, End-User, Application - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 199 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

감시 제어 및 데이터 수집 시스템 시장은 2032년까지 CAGR 7.19%로 437억 3,000만 달러로 성장할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 250억 8,000만 달러
추정 연도 2025년 268억 7,000만 달러
예측 연도 2032 437억 3,000만 달러
CAGR(%) 7.19%

중요한 운영자의 운영 연속성, 보안 태세, 현대화 경로에 중점을 둔 감시 제어 및 데이터 수집 시스템의 권위 있는 방향성

감시 제어 및 데이터 수집 시스템은 중요한 인프라 및 제조 환경 전반의 모니터링, 제어, 의사결정 지원을 위한 신경계 역할을 하며 현대 산업 운영을 뒷받침하고 있습니다. 이 시스템은 센서, 프로그래머블 로직 컨트롤러, 원격 터미널 장치, 휴먼 머신 인터페이스, 소프트웨어 레이어를 통합하여 작업자에게 복잡한 프로세스에 대한 가시성과 명령을 제공합니다. 운영 기술과 정보기술의 융합은 SCADA를 고립된 제어 섬에서 신뢰성, 안전성, 생산성을 촉진하는 전략적 자산으로 끌어올렸습니다.

운영자가 효율성과 탄력성을 추구함에 따라 SCADA의 진화는 레거시 자산의 관리와 안전한 연결성, 데이터 중심 운영, 원격 관리와 같은 현대적 패러다임의 채택과 균형을 이루어야 합니다. 이해관계자들은 지속적인 가동 시간 유지, 엄격한 규제 및 컴플라이언스 의무 준수, 서비스 제공 중단 없는 현대화라는 상반된 요구사항에 직면해 있습니다. 이 소개서는 자산 소유자, 통합업체, 정책 입안자들이 직면한 운영상의 과제, 변화하는 기술 환경, 그리고 자산 소유자, 통합업체, 정책 입안자들이 직면한 전략적 선택을 강조함으로써 보다 광범위한 스토리를 구성하고 있습니다. 이러한 배경을 전면에 내세워, 다음 섹션에서는 경영진의 의사결정과 업무계획에 도움이 될 수 있도록 타겟을 정하여 분석하고자 합니다.

디지털화, 엣지 분석, 상호 운용 아키텍처, 사이버 보안에 대한 기대치가 높아지면서 감시 제어 및 데이터 수집 생태계를 재구성하는 방법

SCADA 환경은 디지털 통합의 가속화, 사이버 보안의 강화, 업계 전반의 운영 기대치의 변화로 인해 혁신적인 변화를 겪고 있습니다. 조직은 경계 중심의 아키텍처에서 네트워크 세분화, 아이덴티티 중심 제어, 이상 징후 탐지가 결합된 계층화된 철저한 방어 태세로 전환하고 있으며, 이제 탄력성을 위해서는 능동적인 위협 사냥과 신속한 사고 대응 능력이 필요하다는 것을 인식하고 있습니다. 필요하다는 것을 인식하고 있습니다. 동시에 엣지 컴퓨팅과 분산형 분석의 부상으로 중앙 집중식 프로세싱에 대한 의존도를 낮추면서 더 낮은 지연 시간 제어 루프와 더 풍부한 로컬 의사결정을 가능하게 하고, 계측기 및 컨트롤러 근처로 프로세싱을 재배치하고 있습니다.

상호운용성과 표준화의 압력은 벤더 중립적인 통합과 라이프사이클의 유연성을 촉진하기 위해 개방형 프로토콜과 데이터 모델의 폭넓은 채택을 촉진하고 있습니다. 이와 함께 소프트웨어 정의 접근 방식은 이전에는 모놀리식이었던 SCADA 스택에 모듈성을 도입하여 조직이 데이터 관리, 시각화 및 보안에 가장 적합한 모듈을 선택할 수 있도록 하고 있습니다. 이러한 아키텍처의 변화는 노동력 이동과 같은 사회경제적 원동력과 공존하고 있으며, 원격 작업과 디지털 트윈은 부족한 전문 지식을 보강하고 교육 주기를 단축하기 위해 점점 더 많이 사용되고 있습니다. 이러한 변화를 종합하면, 조달 우선순위, 파트너십 모델, 업무 로드맵이 재구성되고, 기술, 프로세스, 인력을 통합한 일관된 전략이 요구되고 있습니다.

하드웨어 조달, 벤더 전략, 라이프사이클 계획에 미치는 영향, 관세별 혼란에 대응한 공급망 복원력과 조달 방향 전환

최근 무역 역학은 세계 SCADA 공급망에 새로운 복잡성을 가져왔고, 조달 전략과 리스크 관리 프레임워크에 영향을 미치고 있습니다. 관세 조정과 무역 마찰로 인해 이해관계자들은 국경 간 공급 중단에 민감한 프로그래머블 로직 컨트롤러, 원격 터미널 장치, 센서 제품군과 같은 하드웨어 요소에 특히 주의를 기울이면서 부품 조달을 재평가하고 있습니다. 조달팀은 단기적인 비용 압박과 장기적인 운영 탄력성의 균형을 맞추기 위해 공급 채널의 다양화를 모색하고 집중화 위험을 줄이기 위해 추가 제조업체를 인증하는 경향이 증가하고 있습니다.

직접적인 비용에 대한 영향뿐만 아니라 관세로 인한 변화는 제품 로드맵과 벤더의 투자 결정에도 영향을 미칩니다. 투입 비용 상승에 직면한 부품 제조업체는 내결함성 설계, 공급망 투명성, 독점 하드웨어에 대한 의존도를 낮추는 소프트웨어 중심 기능을 우선시할 수 있습니다. 이러한 환경은 시스템 통합업체와 최종사용자들에게 대규모 재검증 없이 대체가 가능한 모듈식 아키텍처와 표준화된 인터페이스에 대한 관심을 가속화합니다. 동시에 벤더 변경으로 인해 규정 준수 및 인증 일정에 차질이 생길 수 있어 엄격한 변경 관리 및 검증 프로토콜의 필요성이 높아집니다. 전반적으로 무역 정책 조정의 누적된 영향은 시스템의 가용성과 수명주기 지원을 유지하기 위해 공급망 인텔리전스, 계약상 보호, 시나리오 계획을 사전에 수립할 필요성을 강조하고 있습니다.

통신 모드, 배포 패러다임, 구성요소, 산업 및 애플리케이션에 걸친 부문 수준의 인텔리전스를 통해 운영 및 투자 우선순위가 다르다는 것을 알 수 있습니다.

부문 수준의 역학은 통신 방식, 전개 모델, 구성요소 카테고리, 최종사용자 수직 분야, 애플리케이션에서 차별화된 가치 창출 요인을 파악할 수 있도록 합니다. 통신 방식에 따라 유선 및 무선 구현으로 시장을 조사하고 유선 네트워크는 지연에 취약한 제어 루프의 신뢰성 백본 역할을 계속하는 반면, 무선 기술은 원격 모니터링 및 자산 이동성을 확대합니다. 도입 유형별로 보면 클라우드 기반과 온프레미스가 있으며, 클라우드 기능은 분석과 멀티사이트 오케스트레이션을 가속화할 수 있는 반면, 온프레미스는 결정론적 제어와 규제 준수를 위해 계속 중요하게 작용할 것입니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 감시 제어 및 데이터 수집 시스템 시장 : 통신 유형별

  • 유선
  • 무선

제9장 감시 제어 및 데이터 수집 시스템 시장 : 전개 방식별

  • 클라우드 기반
  • 온프레미스

제10장 감시 제어 및 데이터 수집 시스템 시장 : 구성요소별

  • 하드웨어
    • 컴퓨터
    • PLC
    • Rtus
    • 센서와 액추에이터
  • 서비스
    • 컨설팅
    • 통합
    • 유지보수
    • 트레이닝
  • 소프트웨어
    • 데이터 관리
    • 히미
    • SCADA 소프트웨어
    • 보안 소프트웨어

제11장 감시 제어 및 데이터 수집 시스템 시장 : 최종사용자별

  • 화학제품
  • 에너지와 전력
  • 식품 및 음료
  • 제조업
  • 석유 및 가스
  • 의약품
  • 물과 폐수

제12장 감시 제어 및 데이터 수집 시스템 시장 : 용도별

  • 빌딩 자동화
  • 에너지 관리
  • 산업 자동화
  • 석유 및 가스 관리
  • 물과 폐수 관리

제13장 감시 제어 및 데이터 수집 시스템 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 감시 제어 및 데이터 수집 시스템 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 감시 제어 및 데이터 수집 시스템 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Siemens AG
    • Schneider Electric SE
    • ABB Ltd.
    • General Electric Company
    • Honeywell International Inc.
    • Rockwell Automation, Inc.
    • Emerson Electric Co.
    • Mitsubishi Electric Corporation
    • Yokogawa Electric Corporation
    • Fuji Electric Co., Ltd.
KSM

The Supervisory Control & Data Acquisition Systems Market is projected to grow by USD 43.73 billion at a CAGR of 7.19% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 25.08 billion
Estimated Year [2025] USD 26.87 billion
Forecast Year [2032] USD 43.73 billion
CAGR (%) 7.19%

An authoritative orientation to supervisory control and data acquisition systems emphasizing operational continuity, security posture, and modernization pathways for critical operators

Supervisory Control and Data Acquisition systems underpin modern industrial operations, acting as the nervous system for monitoring, control, and decision support across critical infrastructure and manufacturing environments. These systems integrate sensors, programmable logic controllers, remote terminal units, human-machine interfaces, and software layers to provide operators with visibility and command over complex processes. The convergence of operational technology and information technology has elevated SCADA from isolated control islands to strategic assets that drive reliability, safety, and productivity.

As operators pursue efficiency and resilience, SCADA evolution must balance legacy asset stewardship with adoption of contemporary paradigms such as secure connectivity, data-centric operations, and remote management. Stakeholders face competing demands: maintaining continuous uptime, meeting stringent regulatory and compliance obligations, and modernizing without disrupting service delivery. This introduction frames the broader narrative by highlighting the operational stakes, the shifting technology landscape, and the strategic choices confronting asset owners, integrators, and policy makers. By establishing this context up front, the following sections present targeted analysis designed to inform executive decision-making and operational planning.

How digitization, edge analytics, interoperable architectures, and heightened cybersecurity expectations are reshaping supervisory control and data acquisition ecosystems

The SCADA landscape is experiencing transformative shifts driven by accelerating digital integration, an intensified cybersecurity imperative, and changing operational expectations across industries. Organizations are moving from perimeter-focused architectures to layered, defense-in-depth postures that combine network segmentation, identity-centric controls, and anomaly detection, recognizing that resilience now requires active threat hunting and rapid incident response capabilities. Concurrently, the rise of edge computing and distributed analytics is reallocating processing closer to instruments and controllers, enabling lower-latency control loops and richer local decision making while reducing dependence on centralized processing.

Interoperability and standardization pressures are prompting wider adoption of open protocols and data models to facilitate vendor-neutral integration and lifecycle flexibility. In parallel, software-defined approaches are introducing modularity into previously monolithic SCADA stacks, allowing organizations to select best-of-breed modules for data management, visualization, and security. These architectural shifts coexist with socioeconomic drivers such as workforce transitions, where remote operations and digital twins are increasingly used to augment scarce subject-matter expertise and compress training cycles. Taken together, these changes are reconfiguring procurement priorities, partnership models, and operational roadmaps, demanding a coherent strategy that unites technology, process, and people.

Supply chain resilience and procurement reorientation in response to tariff-induced disruptions that influence hardware sourcing, vendor strategies, and lifecycle planning

Recent trade dynamics have introduced a new layer of complexity into global SCADA supply chains, influencing procurement strategies and risk management frameworks. Tariff adjustments and trade frictions have prompted stakeholders to re-evaluate component sourcing, with particular attention to hardware elements such as programmable logic controllers, remote terminal units, and sensor families that are sensitive to cross-border supply interruptions. Procurement teams are increasingly balancing near-term cost pressures against long-term operational resilience, seeking diversified supply channels and qualifying additional manufacturers to mitigate concentration risk.

Beyond direct cost implications, tariff-induced shifts affect product roadmaps and vendor investment decisions. Component manufacturers facing higher input costs may prioritize design-for-resilience, supply-chain transparency, and software-driven functionality that reduces reliance on proprietary hardware. For system integrators and end users, this environment accelerates interest in modular architectures and standardized interfaces that allow substitution without extensive revalidation. At the same time, regulatory compliance and certification timelines can be disrupted by vendor changes, which increases the need for rigorous change management and validation protocols. Overall, the cumulative impact of trade policy adjustments underscores the necessity of proactive supply-chain intelligence, contractual protections, and scenario planning to preserve system availability and lifecycle support.

Segment-level intelligence across communication modes, deployment paradigms, components, verticals, and applications revealing differentiated operational and investment priorities

Segment-level dynamics reveal differentiated value drivers across communication modalities, deployment models, component categories, end-user verticals, and applications. Based on Communication Type, the market is studied across wired and wireless implementations, where wired networks continue to serve as a reliability backbone in latency-sensitive control loops while wireless technologies expand remote monitoring and asset mobility. Based on Deployment Type, the market is studied across cloud-based and on-premise deployments, with cloud capabilities accelerating analytics and multi-site orchestration while on-premise installations remain critical for deterministic control and regulatory compliance.

Based on Component, the market is studied across hardware, services, and software. Hardware breaks down into computers, PLCs, RTUs, and sensors and actuators, each demanding distinct procurement and maintenance strategies; services encompass consulting, integration, maintenance, and training, providing the human capital and systems expertise required for safe operation; and software covers data management, HMI, SCADA software, and security software, forming the intelligence layer that interprets telemetry and enforces policy. Based on End-User, the market is studied across chemicals, energy and power, food and beverage, manufacturing, oil and gas, pharmaceuticals, and water and wastewater, each vertical exhibiting specific regulatory regimes, reliability requirements, and tolerance for system change. Based on Application, the market is studied across building automation, energy management, industrial automation, oil and gas management, and water and wastewater management, reflecting diverse use cases from facility-level controls to geographically distributed infrastructure operations.

These segmentation lenses help illuminate where investment, innovation, and operational friction concentrate. For example, sectors with high safety-criticality and regulatory scrutiny place outsized emphasis on hardware redundancy and certified maintenance services, while applications centered on distributed assets elevate the role of wireless communications, edge processing, and security software. Transitioning between deployment models requires careful orchestration of integration services and comprehensive training to preserve situational awareness and operator competency.

How regional regulatory frameworks, industrial maturity, and geopolitical realities influence supervisory control adoption and operational strategies across the globe

Regional dynamics shape adoption pathways, regulatory expectations, and supplier ecosystems, creating distinct operational priorities across major geographies. In the Americas, infrastructure modernization and energy transition initiatives drive strong demand for resilient control systems, paired with a growing focus on cybersecurity mandates and public-private coordination on critical infrastructure protection. The supplier base in this region emphasizes integrated service offerings and partnerships with systems integrators to support multi-site deployments and lifecycle services.

Europe, Middle East & Africa exhibits a heterogeneous set of drivers where regulatory rigor, decarbonization goals, and legacy industrial bases intersect. Operators in this region often prioritize compliance, interoperability, and energy efficiency, while geopolitical factors influence sourcing decisions and regional manufacturing investment. In contrast, Asia-Pacific presents rapid digital adoption and a diverse set of maturity profiles, with some markets prioritizing large-scale industrial automation projects and others investing in distributed water and wastewater modernization. Across all regions, local regulatory requirements, skills availability, and logistical considerations inform deployment choices, vendor selection, and the structure of support agreements. Consequently, regional strategies must align technology roadmaps with local operational realities and governance frameworks to ensure sustainable implementation.

Competitive and partnership dynamics among platform providers, specialized vendors, and integrators that determine integration risk, lifecycle support, and vertical relevance

Competitive dynamics reflect a mix of global platform providers, specialized niche vendors, and systems integrators that bridge technology and operations. Leading players are differentiating through end-to-end service portfolios that combine software capabilities, cybersecurity offerings, and field engineering to minimize integration risk and accelerate time-to-value. At the same time, specialized vendors are focusing on vertical-specific features, low-latency edge processing, and hardened controllers tailored for extreme environments, carving out defensible positions by aligning product roadmaps with regulatory and operational needs.

Partnerships and alliances are central to scaling complex implementations. Software vendors are collaborating with cloud providers and analytics specialists to add contextual intelligence and predictive maintenance capability, while integrators are building competency centers to support multi-vendor ecosystems and compliance-driven validation. Investment in intellectual property and certification programs remains a priority as stakeholders seek to reduce total cost of ownership through standardized integration practices and repeatable delivery models. For procurement leaders, this landscape requires careful vendor evaluation against criteria such as lifecycle support, security posture, interoperability, and demonstrated experience within the relevant end-use verticals.

Practical modernization playbook and risk-reduction measures that combine supply-chain resilience, cybersecurity maturity, and workforce enablement to preserve operational continuity

Industry leaders should adopt a pragmatic modernization roadmap that aligns risk tolerance with operational imperatives. Begin by establishing a prioritized asset inventory and risk profile that distinguishes safety-critical control loops from monitoring-focused telemetry, enabling targeted investments in redundancy, segmentation, and hardened controllers. Parallel efforts should accelerate cybersecurity maturity through measurable controls such as network segmentation, secure boot, multifactor authentication for operator access, and dedicated incident response playbooks tailored to industrial environments.

Procurement and engineering teams must embed supply-chain resilience into sourcing strategies by qualifying multiple component suppliers, negotiating contingency clauses, and maintaining strategic spares to reduce downtime exposure. Additionally, leaders should pursue modular architectures that facilitate component substitution and allow incremental adoption of cloud-enabled analytics while preserving deterministic local control. Investing in workforce capability is equally critical: combine role-based training, augmented reality-enabled maintenance aids, and simulation-based exercises to close skill gaps and enable remote support. Finally, executives should institutionalize governance that aligns IT and OT priorities, fosters vendor accountability through clear service-level expectations, and measures modernization outcomes against reliability, safety, and business-continuity metrics.

A transparent mixed-methods research design integrating primary expert engagement and secondary technical synthesis to validate operational and technological findings

The research approach combined structured primary engagement with domain experts, systems engineers, and operations leaders together with rigorous secondary-source synthesis and technical validation. Primary inputs included in-depth interviews with control-room managers, integrator leads, and cybersecurity specialists to capture real-world operational constraints, vendor performance observations, and procurement considerations. These qualitative insights were cross-validated through follow-up queries and documentary evidence to ensure reproducibility and clarity.

Secondary analysis encompassed technical literature, standards guidance, and publicly available regulatory frameworks to contextualize best practices and normative expectations. Data were triangulated across sources to identify consistent themes and divergent perspectives, with attention to technology adoption patterns, integration challenges, and regional regulatory variations. The methodology emphasized transparency in assumptions, reproducible workflows for thematic coding, and explicit documentation of interview scope and respondent roles. This mixed-methods approach supports robust conclusions about technology trends, operational risks, and strategic responses without relying on singular data points or unverified claims.

Consolidated strategic imperatives for sustaining control system reliability and security through disciplined modernization, governance, and capability development

Effective SCADA transformation balances technological modernization with disciplined change management and resilience planning. The preceding analysis underscores that no single technology alone assures operational excellence; rather, success emerges from coherent architectures, secure connectivity, resilient procurement, and a skilled workforce. Organizations that adopt modular designs, enforce rigorous cybersecurity controls, and cultivate supply-chain visibility will be better positioned to navigate evolving trade dynamics and regulatory expectations.

Moving forward, operators should prioritize initiatives that deliver measurable reliability and safety improvements while maintaining flexibility for incremental upgrades. By aligning procurement, engineering, and cybersecurity functions under a shared governance framework and investing in continuous training, organizations can reduce operational risk and accelerate the realization of digital capabilities. The conclusion reinforces the imperative for pragmatic, phased modernization supported by targeted investments in people, process, and technology to sustain critical operations in a complex and shifting environment.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Adoption of edge computing architectures for low-latency SCADA data processing across remote sites
  • 5.2. Implementation of AI-driven anomaly detection algorithms in SCADA systems for proactive threat mitigation
  • 5.3. Cloud-based SCADA deployment models leveraging hybrid multicloud frameworks for scalable operations
  • 5.4. Convergence of IoT sensor networks and SCADA platforms for real-time asset management in utilities
  • 5.5. Development of zero-trust security frameworks to protect SCADA infrastructure against emerging cyberattacks
  • 5.6. Integration of 5G connectivity solutions in SCADA systems for ultra-reliable low-latency communication in smart grids

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Supervisory Control & Data Acquisition Systems Market, by Communication Type

  • 8.1. Wired
  • 8.2. Wireless

9. Supervisory Control & Data Acquisition Systems Market, by Deployment Type

  • 9.1. Cloud-Based
  • 9.2. On-Premise

10. Supervisory Control & Data Acquisition Systems Market, by Component

  • 10.1. Hardware
    • 10.1.1. Computers
    • 10.1.2. Plcs
    • 10.1.3. Rtus
    • 10.1.4. Sensors & Actuators
  • 10.2. Services
    • 10.2.1. Consulting
    • 10.2.2. Integration
    • 10.2.3. Maintenance
    • 10.2.4. Training
  • 10.3. Software
    • 10.3.1. Data Management
    • 10.3.2. Hmi
    • 10.3.3. Scada Software
    • 10.3.4. Security Software

11. Supervisory Control & Data Acquisition Systems Market, by End-User

  • 11.1. Chemicals
  • 11.2. Energy & Power
  • 11.3. Food & Beverage
  • 11.4. Manufacturing
  • 11.5. Oil & Gas
  • 11.6. Pharmaceuticals
  • 11.7. Water & Wastewater

12. Supervisory Control & Data Acquisition Systems Market, by Application

  • 12.1. Building Automation
  • 12.2. Energy Management
  • 12.3. Industrial Automation
  • 12.4. Oil & Gas Management
  • 12.5. Water & Wastewater Management

13. Supervisory Control & Data Acquisition Systems Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Supervisory Control & Data Acquisition Systems Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Supervisory Control & Data Acquisition Systems Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Siemens AG
    • 16.3.2. Schneider Electric SE
    • 16.3.3. ABB Ltd.
    • 16.3.4. General Electric Company
    • 16.3.5. Honeywell International Inc.
    • 16.3.6. Rockwell Automation, Inc.
    • 16.3.7. Emerson Electric Co.
    • 16.3.8. Mitsubishi Electric Corporation
    • 16.3.9. Yokogawa Electric Corporation
    • 16.3.10. Fuji Electric Co., Ltd.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제