시장보고서
상품코드
1806627

공급망용 인공지능(AI) 시장 : 컴포넌트, 기술 유형, 전개 모드, 조직 규모, 용도, 최종사용자별 - 세계 전망(2025-2030년)

Artificial Intelligence in Supply Chain Market by Component, Technology Type, Deployment Mode, Organization Size, Application, End-User - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 180 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

공급망용 인공지능(AI) 시장의 2024년 시장 규모는 66억 8,000만 달러로 평가되었습니다. 2025년에는 80억 1,000만 달러에 이르고, CAGR 20.46%로 성장하여 2030년에는 204억 2,000만 달러에 달할 전망입니다.

주요 시장 통계
기준 연도 : 2024년 66억 8,000만 달러
추정 연도 : 2025년 80억 1,000만 달러
예측 연도 : 2030년 204억 2,000만 달러
CAGR(%) 20.46%

인공지능이 기업의 효율성, 회복력, 전략적 의사결정을 촉진하여 공급망 운영에 어떤 혁명을 가져오는지 알아보십시오.

공급망 프로세스에 인공지능을 통합하는 것은 기업이 물류 네트워크를 계획, 실행, 최적화하는 방식을 재구성하고 있습니다. 머신러닝 알고리즘, 자연어 처리, 첨단 로봇공학을 활용하여 의사결정자는 현재 수요 패턴, 재고 수준, 운송 역학에 대한 전례 없는 가시성을 확보할 수 있습니다.

인공지능의 통합을 통해 세계 공급망의 청사진을 재구성하는 매우 중요한 기술적, 업무적 변화를 살펴봅니다.

지난 10년간 기업이 경쟁력을 유지하기 위해 디지털 기술을 채택함에 따라 공급망 환경은 급격하게 변화했습니다. 오늘날 인공지능은 이러한 변화의 최전선에 서서 데이터 기반 의사결정과 자율 운영의 새로운 시대를 열어가고 있습니다. 예측 분석에서 인지 자동화까지, 물류와 조달의 방식 자체가 더 빠르고, 더 효율적이며, 더 탄력적인 가치사슬을 실현하기 위해 재구성되고 있습니다.

2025년 미국 관세가 어떻게 국경 간 공급망 역학을 재구성하고, 운영 비용을 상승시키며, 조달 전략을 재정의하는지에 대한 통찰력있는 분석

2025년 미국이 새로운 관세를 도입함에 따라 국경 간 무역에 누적 영향을 미치고, 기업들은 조달 전략과 물류 네트워크를 재검토해야 하는 상황에 직면해 있습니다. 주요 원자재 및 중간재에 대한 관세 인상은 투입비용을 증폭시켰고, 기업들은 대체 공급업체와 니어쇼어링(near-shoring)을 모색할 수밖에 없었습니다. 그 결과, 공급망 흐름이 재설계되어 재무적 노출을 줄일 수 있는 방향으로 재설계되었습니다.

서비스, AI 기술, 도입, 기업 규모, 용도, 최종 사용자 산업이 공급망에서 AI 통합을 추진하는 방식을 파악하는 부문 분석

세분화 분석을 통해 시장 진출기업들이 AI를 활용한 공급망 솔루션에 어떻게 접근하고 있는지에 대한 명확한 패턴이 드러났습니다. 서비스 및 솔루션 구성 요소의 구분에 따라 제공 제품을 평가하면 컨설팅 서비스, 배포 및 통합, 지원 및 유지보수 각각이 프로젝트 라이프사이클 전반에 걸쳐 전문적인 가치를 제공한다는 것을 알 수 있습니다. 이와 함께, 솔루션 컴포넌트는 데이터 분석, 인지 자동화, 통합 오케스트레이션을 위한 턴키 플랫폼을 제공합니다.

미주, 중동 및 아프리카, 아시아태평양이 AI를 업무에 통합하는 데 있어 각기 다른 전망과 장애물을 제공하는 것에 초점을 맞춘 지역별 인사이트

미주 지역에서는 디지털 인프라에 대한 적극적인 투자와 리쇼어링 및 지역 유통망에 대한 강조가 공급망에 인공지능 도입을 촉진하고 있습니다. 북미 기업들은 AI를 활용하여 라스트마일 배송을 최적화하고, 창고 자동화를 강화하며, 실시간 수요 감지를 업무 프레임워크에 통합하고 있습니다. 라틴아메리카에서는 전자상거래의 확산과 물류 현대화, 특히 콜드체인 모니터링과 리스크 관리 분야에서 AI의 광범위한 실험이 장려되고 있습니다.

기업 프로파일에서는 업계 주요 기업들이 AI를 도입하여 공급망 효율성을 높이고 서비스 제공을 혁신하여 경쟁 우위를 확보하는 방법을 소개합니다.

주요 기술 벤더와 물류 제공업체들은 확장하는 공급망 AI 시장을 선점하기 위한 전략적 이니셔티브를 구축하고 있습니다. IBM, 마이크로소프트 등 세계 기업들은 재고 최적화 및 수요 감지에 특화된 AI 모듈로 클라우드 플랫폼을 지속적으로 강화하고 있습니다. 마찬가지로 아마존 웹 서비스와 구글 클라우드는 창고 및 운송 네트워크에서 실시간 의사결정을 지원하기 위해 엣지 컴퓨팅과 IoT 통합에 많은 투자를 하고 있습니다.

공급망 리더가 AI를 도입하고, 위험을 관리하고, 혁신을 촉진하고, 지속 가능한 효율성과 회복력을 향상시킬 수 있는 실용적 제안

공급망 리더는 핵심 비즈니스 목표에 부합하는 명확한 AI 전략을 수립하여 잠재적 영향력과 실현 가능성에 따라 이용 사례의 우선순위를 정하는 것부터 시작해야 합니다. 수요 예측, 재고 최적화, 예지보전 등의 노력은 종종 빠른 수익을 가져다주며, 더 높은 수준의 기능을 위한 기반을 제공합니다.

1차 및 이차 정보 데이터 소스, 전문가 검증 프로세스, 엄격성을 보장하기 위해 채택한 분석 프레임워크를 설명하는 종합적인 연구 방법론

이번 조사는 1차 조사와 2차 조사를 엄격하게 결합한 데이터 수집 방식을 통해 공급망 영역의 AI에 대한 종합적인 포괄성을 확보했습니다. 1차 조사에서는 업계 임원, 공급망 실무자, 기술 전문가를 대상으로 심층 인터뷰를 통해 도입 촉진요인, 이용 사례 성과, 도입 과제에 대한 생생한 정보를 수집했습니다.

AI가 민첩성을 높이고, 가시성을 개선하며, 경쟁 우위를 촉진하는 등 AI가 공급망 운영을 재구성하는 방법에 대한 주요 고찰

이번 조사에서 얻은 주요 인사이트은 공급망 관리의 모든 측면에서 인공지능이 가져올 변화의 가능성을 강조하고 있습니다. 예측 분석을 통해 기업은 수요 변동, 재고 상태, 물류 혼란에 대한 전례 없는 가시성을 확보하여 보다 정확하고 신속한 운영이 가능해졌습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 공급망용 인공지능(AI) 시장 : 컴포넌트별

  • 서비스
    • 컨설팅 서비스
    • 전개 및 통합
    • 지원 및 유지관리
  • 솔루션

제9장 공급망용 인공지능(AI) 시장 : 기술 유형별

  • 딥러닝
  • 자연언어처리
  • 로보틱 프로세스 자동화

제10장 공급망용 인공지능(AI) 시장 : 전개 모드별

  • 클라우드 기반
    • 하이브리드 클라우드
    • 프라이빗 클라우드
    • 퍼블릭 클라우드
  • On-Premise
    • 데이터센터
    • 로컬 서버

제11장 공급망용 인공지능(AI) 시장 : 조직 규모별

  • 대기업
  • 중소기업

제12장 공급망용 인공지능(AI) 시장 : 용도별

  • 플릿 관리
    • 예지보전
    • 루트 최적화
  • 화물 중개
  • 리스크 관리
    • 컴플라이언스 감시
    • 공급업체 리스크 평가
  • 공급망 계획
    • 수요 예측
    • 조달 최적화
  • 창고 관리
    • 재고 관리
    • 주문 이행

제13장 공급망용 인공지능(AI) 시장 : 최종사용자별

  • 항공우주 및 방위
  • 자동차
  • 화학제품
  • 식품 및 음료
  • 헬스케어 및 의약품
  • 제조업
  • 소매 및 E-Commerce
  • 운송 및 물류

제14장 아메리카의 공급망용 인공지능(AI) 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제15장 유럽, 중동 및 아프리카의 공급망용 인공지능(AI) 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제16장 아시아태평양의 공급망용 인공지능(AI) 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제17장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Accenture PLC
    • Alibaba Group
    • Amazon Web Services, Inc.
    • Berkshire Grey, Inc.
    • Blue Yonder Group, Inc.
    • Capgemini SE
    • Cisco Systems, Inc.
    • Coupa Software Inc.
    • Deutsche Post AG
    • e2open, LLC
    • Genpact Limited
    • Google LLC by Alphabet Inc.
    • Infosys Limited
    • Intel Corporation
    • International Business Machines Corporation
    • Kinaxis Inc.
    • Logility Supply Chain Solutions, Inc.
    • Manhattan Associates, Inc.
    • Micron Technology, Inc.
    • Microsoft Corporation
    • NVIDIA Corporation
    • Oracle Corporation
    • RELEX Oy
    • Robert Bosch GmbH
    • Salesforce, Inc.
    • SAP SE
    • Siemens AG
    • Tata Consultancy Services Limited
    • UiPath, Inc.
    • Workday, Inc.

제18장 리서치 AI

제19장 리서치 통계

제20장 리서치 컨택트

제21장 리서치 기사

제22장 부록

LSH 25.09.12

The Artificial Intelligence in Supply Chain Market was valued at USD 6.68 billion in 2024 and is projected to grow to USD 8.01 billion in 2025, with a CAGR of 20.46%, reaching USD 20.42 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 6.68 billion
Estimated Year [2025] USD 8.01 billion
Forecast Year [2030] USD 20.42 billion
CAGR (%) 20.46%

Discover how artificial intelligence is revolutionizing supply chain operations by driving efficiency, resilience, and strategic decision-making for enterprises

The integration of artificial intelligence into supply chain processes is reshaping how organizations plan, execute, and optimize their logistics networks. By leveraging machine learning algorithms, natural language processing, and advanced robotics, decision makers now have unprecedented visibility into demand patterns, inventory levels, and transportation dynamics.

Moreover, the convergence of IoT sensors and AI-powered analytics enables real-time tracking of assets from production lines to end customers, illuminating potential disruptions before they cascade into costly delays. Transitioning from reactive to proactive management, companies can now anticipate demand fluctuations, reroute shipments, and allocate resources with precision that was previously unattainable.

Furthermore, AI-driven automation is streamlining labor-intensive tasks such as warehouse sorting, order picking, and freight scheduling. Cognitive computing tools accelerate contract analysis and supplier selection by rapidly evaluating vast datasets, while predictive models guide preventive maintenance and avoid costly equipment failures.

Consequently, organizations embracing these technologies experience significant improvements in operational efficiency, risk mitigation, and strategic agility. As global supply chains grow more complex, the foundational role of artificial intelligence will continue to expand, unlocking new avenues for competitive differentiation and sustainable growth.

In this context, executive teams are increasingly prioritizing AI initiatives as core components of their digital transformation roadmaps. Investments in intelligent planning systems, autonomous vehicles, and AI-enabled collaboration platforms are now critical to sustaining end-to-end supply chain performance and meeting evolving customer expectations.

Examining the pivotal technological and operational shifts rewriting the blueprint of global supply chains through artificial intelligence integration

Over the past decade, the supply chain landscape has undergone seismic shifts as companies adopt digital technologies to remain competitive. Today, artificial intelligence stands at the forefront of these changes, ushering in a new era of data-driven decision making and autonomous operations. From predictive analytics to cognitive automation, the very fabric of logistics and procurement is being rewoven to deliver faster, leaner, and more resilient value chains.

Consequently, predictive and prescriptive analytics have emerged as powerful tools for demand forecasting and inventory optimization. By analyzing historical sales data alongside external factors like weather patterns and economic indicators, AI systems can recommend precise stocking levels and replenishment schedules. This data-centric approach reduces safety stock requirements and minimizes capital tied up in inventory.

Meanwhile, robotics and automation are redefining warehouse and distribution center workflows. Collaborative robots now perform order picking alongside human workers, accelerating throughput while reducing errors. Autonomous guided vehicles transport pallets across complex facilities, eliminating the need for manual towing and supporting continuous operations around the clock.

In parallel, digital twin models are providing virtual replicas of entire supply networks, allowing planners to simulate disruptions and test mitigation strategies before they unfold in the real world. Blockchain integration is enhancing traceability and trust, ensuring that provenance data is immutable and transparent across multi-party ecosystems.

Moreover, these technological advances are driving a profound workforce transformation. As repetitive tasks become automated, supply chain professionals are shifting toward strategic roles that require analytical expertise and cross-functional collaboration. Training programs and talent acquisition strategies are now evolving to bridge emerging skill gaps.

An insightful analysis of how the 2025 United States tariffs are reshaping cross-border supply chain dynamics, escalating operational costs, and redefining sourcing strategies

The introduction of new United States tariffs in 2025 has created a cumulative effect on cross-border trade, prompting organizations to reassess sourcing strategies and logistics networks. Tariff increases on key raw materials and intermediate goods have amplified input costs, compelling companies to explore alternative suppliers and nearshoring options. As a result, supply chain flows have been redirected and redesigned to mitigate financial exposure.

In response, many manufacturers and retailers are deploying AI-driven procurement platforms to rapidly analyze supplier performance, cost structures, and geopolitical risks. These systems can evaluate thousands of supplier profiles against updated tariff schedules, generating optimized sourcing recommendations in real time. Consequently, procurement cycles are shorter and more agile, enabling companies to pivot swiftly when trade policies shift.

Furthermore, transportation algorithms are recalibrating routing decisions to avoid high-tariff corridors. By integrating dynamic tariff data with shipment tracking systems, logistics managers can identify low-cost pathways and adjust carrier selections accordingly. This strategic rerouting not only reduces landed costs but also maintains service levels across global markets.

As tariff pressures persist, organizations are reconfiguring supply bases to localize production and distribution hubs. AI-enabled site selection models assess labor availability, infrastructure quality, and regulatory landscapes to determine optimal facility locations. This analytical rigor ensures that new plants or distribution centers align with long-term cost optimization and risk management objectives.

Ultimately, the combined impact of rising duties and AI adoption is fostering more resilient and flexible supply chains. Companies that harness intelligent analytics and automation are better positioned to absorb policy-induced disruptions and secure competitive advantage in an increasingly volatile trade environment.

Segmentation insights reveal how services, AI technologies, deployment, enterprise size, applications, and end-user industries drive AI integration in supply chains

Segmentation analysis reveals distinct patterns in how market participants engage with AI-enabled supply chain solutions. When evaluating offerings based on component distinctions between services and solutions, it becomes clear that consulting services, deployment and integration, and support and maintenance each deliver specialized value across project lifecycles. In parallel, solutions components provide turnkey platforms for data analytics, cognitive automation, and integration orchestration.

Turning to technology type segmentation, deep learning models are gaining traction for advanced demand forecasting and anomaly detection, while natural language processing tools are streamlining document processing and supplier communication. Robotics process automation is similarly establishing itself as a foundational technology for executing high-volume, rule-based tasks within warehouses and order management systems.

Deployment mode also shapes adoption patterns. Cloud-based environments-spanning hybrid cloud, private cloud, and public cloud-offer scalability and rapid deployment, making them attractive to organizations seeking flexible infrastructure. Conversely, on-premise implementations hosted in data centers or on local servers appeal to companies with stringent security requirements or legacy system dependencies.

Enterprise size further influences solution selection, with large enterprises prioritizing comprehensive enterprise resource planning integration and global visibility, while small and medium enterprises focus on modular, cost-effective platforms that can scale with growth.

Application segmentation underscores how fleet management use cases such as predictive maintenance and route optimization differ from freight brokerage requirements, which emphasize dynamic pricing and capacity matching. Risk management capabilities including compliance monitoring and supplier risk assessment stand apart from supply chain planning functions like demand forecasting and procurement optimization, while warehouse management demands robust inventory management and order fulfillment solutions. In all cases, end-user industries-from aerospace and defense through automotive, chemicals, food and beverages, healthcare and pharmaceuticals, manufacturing, retail and e-commerce, to transportation and logistics-dictate specific functional and performance criteria that drive solution configuration and implementation approaches.

Regional insights spotlighting how the Americas, Europe Middle East and Africa, and Asia-Pacific regions each offer distinct prospects and hurdles in integrating AI across operations

Across the Americas, artificial intelligence adoption in supply chains is being propelled by robust investment in digital infrastructure and a strong emphasis on reshoring and regional distribution networks. Companies in North America are leveraging AI to optimize last-mile delivery, enhance warehouse automation, and integrate real-time demand sensing into their operational frameworks. In Latin America, growing e-commerce penetration and logistics modernization initiatives are encouraging broader AI experimentation, particularly in cold chain monitoring and risk management.

In Europe, Middle East and Africa, regulatory pressures around sustainability and supply chain transparency are accelerating AI-driven traceability solutions. Firms are combining sensor networks with machine learning to monitor emissions, enforce ethical sourcing, and comply with evolving environmental, social and governance mandates. Meanwhile, logistics hubs in the Gulf region are adopting autonomous port operations and AI-enabled customs clearance to streamline complex cross-border flows.

Asia-Pacific markets are experiencing rapid growth in AI-powered supply chain applications, driven by advanced manufacturing centers in China, robotics integration in Japan, and digital logistics platforms in Southeast Asia. Public and private partnerships are funding smart corridor projects that connect production clusters with major ports, underpinned by AI algorithms for capacity planning and predictive maintenance of critical infrastructure.

Transitioning between these regions, global enterprises are developing hybrid network strategies that blend regional strengths with centralized oversight. By leveraging AI analytics platforms, organizations can harmonize data streams across the Americas, EMEA, and Asia-Pacific, creating a unified view of inventory, demand forecasts, and transportation status. This regional balancing act ultimately drives resilience, reduces lead times, and supports strategic growth in diverse market contexts.

Company profiles revealing how top industry players deploy AI to enhance supply chain efficiency and innovate service offerings for competitive advantage

Leading technology vendors and logistics providers are forging strategic initiatives to capture the expanding AI in supply chain market. Global enterprises such as IBM and Microsoft continue to enhance their cloud platforms with specialized AI modules for inventory optimization and demand sensing. Similarly, Amazon Web Services and Google Cloud are investing heavily in edge computing and IoT integrations to support real-time decision making in warehouses and transportation networks.

Enterprise resource planning leaders like SAP and Oracle are embedding AI-driven predictive analytics into core business suites, enabling tighter alignment between procurement, production planning, and distribution. Meanwhile, logistics giants including DHL and Maersk are launching innovation labs to pilot autonomous last-mile solutions, digital twin simulations, and blockchain-enabled freight tracking to elevate service reliability and reduce operational bottlenecks.

In parallel, a wave of specialized startups is emerging to address niche demands such as real-time carbon footprint tracking, AI-assisted supplier qualification, and dynamic pricing optimization for freight brokerage. These agile entrants often partner with established firms to accelerate development cycles and integrate seamlessly into broader supply chain ecosystems.

Collectively, these activities illustrate a vibrant competitive landscape in which established players leverage scale and integration expertise while emerging companies drive focused innovation. Collaboration between technology providers, logistics operators, and end users is critical to developing interoperable solutions that can adapt to evolving market and regulatory requirements.

Practical recommendations to help supply chain leaders implement AI, manage risk, foster innovation, and drive sustainable efficiency and resilience

Supply chain leaders should begin by developing a clear AI strategy aligned with core business objectives, ensuring that use cases are prioritized based on potential impact and feasibility. Initiatives such as demand forecasting, inventory optimization, and predictive maintenance often deliver rapid returns and provide a foundation for more advanced capabilities.

Organizations must also invest in data governance and infrastructure modernization to support AI adoption. Implementing standardized data models and ensuring data quality across procurement, logistics, and manufacturing systems lays the groundwork for reliable analytics and automation. As part of this effort, companies should evaluate deployment options-cloud, on-premise, or hybrid-to balance scalability, security, and compliance requirements.

Furthermore, cultivating cross-functional teams that blend domain expertise with data science skills is crucial. Embedding AI talent within supply chain, IT, and operations units fosters collaboration and enables rapid prototyping of proof of concept pilots. These agile experiments can validate assumptions, refine algorithms, and build stakeholder confidence before scaling solutions enterprise-wide.

Risk management should not be overlooked: integrating AI risk frameworks and continuous monitoring processes helps mitigate biases, cybersecurity vulnerabilities, and model drift. Establishing ethical AI guidelines and governance committees ensures that automation initiatives align with organizational values and regulatory standards.

Finally, companies should adopt a cycle of continuous improvement, leveraging performance metrics to iterate on algorithms and workflows. By measuring outcomes such as cost savings, service level improvements, and lead time reductions, supply chain leaders can create a learning organization that evolves with changing market conditions and technological advances.

Comprehensive research methodology outlining primary and secondary data sources, expert validation processes, and analytical frameworks employed to ensure rigor

This research relies on a rigorous combination of primary and secondary data collection methods to ensure comprehensive coverage of the AI in supply chain domain. Primary research involved in-depth interviews with industry executives, supply chain practitioners, and technology experts to gather firsthand insights on adoption drivers, use case performance, and implementation challenges.

Secondary research encompassed the review of trade journals, white papers, regulatory documents, and corporate disclosures to validate market trends and identify emerging solution providers. Key data sources included publicly available financial filings, patent databases, and industry associations focused on logistics and digital transformation.

Analytical frameworks such as SWOT analysis, Porter's Five Forces, and value chain mapping were employed to assess competitive dynamics and solution positioning. Data triangulation techniques cross-checked multiple information streams to bolster the reliability and accuracy of the findings.

Expert validation sessions were conducted with seasoned supply chain consultants and academic scholars to refine assumptions and interpret complex datasets. This iterative process of feedback and revision ensures that the report's conclusions reflect both practitioner experience and empirical evidence.

In addition, proprietary models were utilized to analyze adoption maturity, technology penetration, and risk factors, providing a structured approach to quantifying readiness levels across different industry segments and geographies.

Key insights on how AI reshapes supply chain operations by boosting agility, improving visibility, and driving competitive advantage

Key insights from this research underscore the transformative potential of artificial intelligence across all facets of supply chain management. By harnessing predictive analytics, organizations are attaining unprecedented visibility into demand fluctuations, inventory health, and logistical disruptions, enabling them to operate with greater precision and speed.

Automation through robotics and autonomous systems is freeing teams from repetitive tasks and allowing them to focus on strategic initiatives. Digital twin and blockchain technologies enhance resilience by simulating disruption scenarios and ensuring data integrity across multi-party networks.

The cumulative impact of new trade policies, particularly the 2025 U.S. tariffs, highlights the imperative for agile and intelligent supply chains. Artificial intelligence platforms equipped with real-time tariff data and advanced optimization algorithms are proving vital in navigating cost pressures and reshaping sourcing networks.

Segmented insights reveal that deployment mode, enterprise size, technology type, and end-user industry each influence adoption trajectories and solution requirements. Meanwhile, regional variations in regulatory landscapes, infrastructure maturity, and investment climates shape market entry strategies and partnership models.

Moving forward, companies that integrate AI into their core operations, build robust data foundations, and foster cross-functional collaboration will secure a competitive advantage. These leaders will set new benchmarks for supply chain agility, sustainability, and customer satisfaction in an increasingly complex global environment.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Advancement in machine learning algorithms enhacing supplier selection and performance evaluation processes
  • 5.2. Increasing impact of AI on optimizing last-mile delivery and logistics in supply chain operations
  • 5.3. Advancements in natural language processing enabling smarter supplier communication and management
  • 5.4. Development of AI-enabled digital twins to simulate and optimize complex supply chain networks
  • 5.5. Advanced predictive analytics powered by AI optimizing demand forecasting and inventory management
  • 5.6. Implementing AI-enabled blockchain for transparent and secure supply chain transactions
  • 5.7. Developing AI-supported sustainability initiatives for greener and more ethical supply chains
  • 5.8. Utilizing AI for improved quality control and defect detection in manufacturing supply chains
  • 5.9. AI integration in real-time supply chain monitoring for enhanced risk management and disruption response
  • 5.10. Adoption of AI-driven automation in warehouse management and asset tracking

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Artificial Intelligence in Supply Chain Market, by Component

  • 8.1. Introduction
  • 8.2. Services
    • 8.2.1. Consulting Services
    • 8.2.2. Deployment & Integration
    • 8.2.3. Support & Maintenance
  • 8.3. Solutions

9. Artificial Intelligence in Supply Chain Market, by Technology Type

  • 9.1. Introduction
  • 9.2. Deep Learning
  • 9.3. Natural Language Processing
  • 9.4. Robotics Process Automation

10. Artificial Intelligence in Supply Chain Market, by Deployment Mode

  • 10.1. Introduction
  • 10.2. Cloud-Based
    • 10.2.1. Hybrid Cloud
    • 10.2.2. Private Cloud
    • 10.2.3. Public Cloud
  • 10.3. On-Premise
    • 10.3.1. Data Centers
    • 10.3.2. Local Servers

11. Artificial Intelligence in Supply Chain Market, by Organization Size

  • 11.1. Introduction
  • 11.2. Large Enterprises
  • 11.3. Small & Medium Enterprises

12. Artificial Intelligence in Supply Chain Market, by Application

  • 12.1. Introduction
  • 12.2. Fleet Management
    • 12.2.1. Predictive Maintenance
    • 12.2.2. Route Optimization
  • 12.3. Freight Brokerage
  • 12.4. Risk Management
    • 12.4.1. Compliance Monitoring
    • 12.4.2. Supplier Risk Assessment
  • 12.5. Supply Chain Planning
    • 12.5.1. Demand Forecasting
    • 12.5.2. Procurement Optimization
  • 12.6. Warehouse Management
    • 12.6.1. Inventory Management
    • 12.6.2. Order Fulfillment

13. Artificial Intelligence in Supply Chain Market, by End-User

  • 13.1. Introduction
  • 13.2. Aerospace & Defense
  • 13.3. Automotive
  • 13.4. Chemicals
  • 13.5. Food & Beverages
  • 13.6. Healthcare and Pharmaceuticals
  • 13.7. Manufacturing
  • 13.8. Retail & E-Commerce
  • 13.9. Transportation & Logistics

14. Americas Artificial Intelligence in Supply Chain Market

  • 14.1. Introduction
  • 14.2. United States
  • 14.3. Canada
  • 14.4. Mexico
  • 14.5. Brazil
  • 14.6. Argentina

15. Europe, Middle East & Africa Artificial Intelligence in Supply Chain Market

  • 15.1. Introduction
  • 15.2. United Kingdom
  • 15.3. Germany
  • 15.4. France
  • 15.5. Russia
  • 15.6. Italy
  • 15.7. Spain
  • 15.8. United Arab Emirates
  • 15.9. Saudi Arabia
  • 15.10. South Africa
  • 15.11. Denmark
  • 15.12. Netherlands
  • 15.13. Qatar
  • 15.14. Finland
  • 15.15. Sweden
  • 15.16. Nigeria
  • 15.17. Egypt
  • 15.18. Turkey
  • 15.19. Israel
  • 15.20. Norway
  • 15.21. Poland
  • 15.22. Switzerland

16. Asia-Pacific Artificial Intelligence in Supply Chain Market

  • 16.1. Introduction
  • 16.2. China
  • 16.3. India
  • 16.4. Japan
  • 16.5. Australia
  • 16.6. South Korea
  • 16.7. Indonesia
  • 16.8. Thailand
  • 16.9. Philippines
  • 16.10. Malaysia
  • 16.11. Singapore
  • 16.12. Vietnam
  • 16.13. Taiwan

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. Accenture PLC
    • 17.3.2. Alibaba Group
    • 17.3.3. Amazon Web Services, Inc.
    • 17.3.4. Berkshire Grey, Inc.
    • 17.3.5. Blue Yonder Group, Inc.
    • 17.3.6. Capgemini SE
    • 17.3.7. Cisco Systems, Inc.
    • 17.3.8. Coupa Software Inc.
    • 17.3.9. Deutsche Post AG
    • 17.3.10. e2open, LLC
    • 17.3.11. Genpact Limited
    • 17.3.12. Google LLC by Alphabet Inc.
    • 17.3.13. Infosys Limited
    • 17.3.14. Intel Corporation
    • 17.3.15. International Business Machines Corporation
    • 17.3.16. Kinaxis Inc.
    • 17.3.17. Logility Supply Chain Solutions, Inc.
    • 17.3.18. Manhattan Associates, Inc.
    • 17.3.19. Micron Technology, Inc.
    • 17.3.20. Microsoft Corporation
    • 17.3.21. NVIDIA Corporation
    • 17.3.22. Oracle Corporation
    • 17.3.23. RELEX Oy
    • 17.3.24. Robert Bosch GmbH
    • 17.3.25. Salesforce, Inc.
    • 17.3.26. SAP SE
    • 17.3.27. Siemens AG
    • 17.3.28. Tata Consultancy Services Limited
    • 17.3.29. UiPath, Inc.
    • 17.3.30. Workday, Inc.

18. ResearchAI

19. ResearchStatistics

20. ResearchContacts

21. ResearchArticles

22. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제