½ÃÀ庸°í¼­
»óǰÄÚµå
1776776

°ø±Þ¸Á ÃÖÀûÈ­¿ë AI ½ÃÀå ¿¹Ãø(-2032³â) : Á¦°øº°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®

AI in Supply Chain Optimization Market Forecasts to 2032 - Global Analysis By Offering (Hardware, Software and Services), Technology, Application, End User, and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ °ø±Þ¸Á ÃÖÀûÈ­¿ë AI ½ÃÀåÀº 2025³â¿¡ 99¾ï ´Þ·¯¸¦ Â÷ÁöÇÏ¸ç ¿¹Ãø ±â°£ Áß CAGR 40.1%·Î ¼ºÀåÇϸç, 2032³â¿¡´Â 1,050¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

°ø±Þ¸Á ÃÖÀûÈ­¿¡ ÀÖÀ¸¸ç, AI´Â ¹°·ù¿Í ¿î¿µÀ» °­È­Çϱâ À§ÇØ ÀΰøÁö´ÉÀ» »ç¿ëÇÏ´Â °ÍÀ» Æ÷ÇÔÇÕ´Ï´Ù. AI ¾Ë°í¸®ÁòÀº µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© Àç°í °ü¸®, ¼ö¿ä ¿¹Ãø, ¿î¼Û ¶ó¿ìÆÃ µîÀÇ ÇÁ·Î¼¼½º¸¦ °£¼ÒÈ­ÇÕ´Ï´Ù. È¥¶õÀ» ¿¹ÃøÇÏ°í °ø±Þ¸Á Àü¹ÝÀÇ ÀÚ¿ø ¹èºÐÀ» ÃÖÀûÈ­ÇÏ¿© È¿À²¼ºÀ» °³¼±Çϰí, ºñ¿ëÀ» Àý°¨Çϸç, ÀÇ»ç°áÁ¤À» °­È­ÇÒ ¼ö ÀÖ½À´Ï´Ù.

¸ÆÅ²Áö¿¡ µû¸£¸é °ø±Þ¸Á¿¡ AI¸¦ Ȱ¿ëÇÏ´Â ±â¾÷Àº ÀÌ¹Ì ¹°·ù ºñ¿ëÀ» 12.7%, Àç°í ¼öÁØÀ» 20.3% °¨¼Ò½ÃÄÑ ¼ö½Ê¾ï ´Þ·¯ÀÇ ºñ¿ëÀ» Àý°¨Çϰí ÀÖ½À´Ï´Ù.

E-Commerce¿Í ¼¼°è ¹«¿ªÀÇ ¼ºÀå

E-Commerce Ç÷§ÆûÀÇ È®»ê°ú °ø±Þ¸ÁÀÇ ¼¼°èÈ­´Â AI¸¦ Ȱ¿ëÇÑ °ø±Þ¸Á ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ½Ç½Ã°£ ¹è¼Û°ú Åõ¸í¼º¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ±â´ë¿¡ ÈûÀÔ¾î ±â¾÷Àº AI¸¦ Ȱ¿ëÇÏ¿© Àç°í, ¹è¼Û, Ç®ÇÊ¸ÕÆ® ¾÷¹«¸¦ ÃÖÀûÈ­Çϰí ÀÖ½À´Ï´Ù. ¹æ´ëÇÑ Á¦Ç°±º°ú ´ÙÃþÀûÀÎ °ø±Þ¾÷ü »ýŰ踦 °ü¸®ÇØ¾ß ÇÒ Çʿ伺¿¡ µû¶ó AI´Â ¿£µåÅõ¿£µå °¡½Ã¼º°ú ¹ÝÀÀ¼ºÀ» Á¦°øÇÕ´Ï´Ù. ºñ¿ë ÃÖÀûÈ­°¡ ¿ä±¸µÇ´Â °¡¿îµ¥, AI´Â Çö´ë °ø±Þ¸ÁÀÇ È¿À²¼º°ú ź·Â¼ºÀ» ³ôÀÌ´Â Àü·«Àû Åø·Î ºü¸£°Ô ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù.

µ¥ÀÌÅÍ ÅëÇÕ ¹× »óÈ£¿î¿ë¼º ¹®Á¦

AIÀÇ ´É·ÂÀÌ Çâ»óµÇ°í ÀÖÀ½¿¡µµ ºÒ±¸Çϰí À̸¦ ±âÁ¸ °ø±Þ¸Á ÀÎÇÁ¶ó¿¡ ÅëÇÕÇÏ´Â µ¥¿¡´Â Å« ¾î·Á¿òÀÌ ÀÖ½À´Ï´Ù. ÆÄÆíÈ­µÈ IT ½Ã½ºÅÛ°ú ºÎ¼­¿Í ÆÄÆ®³Ê¿¡ µû¶ó »çÀÏ·ÎÈ­µÈ µ¥ÀÌÅÍ·Î ÀÎÇØ ¿øÈ°ÇÑ »óÈ£¿î¿ë¼ºÀ» ±¸ÇöÇÏ´Â °ÍÀÌ ¾î·Á¿î °æ¿ì°¡ ¸¹½À´Ï´Ù. ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸® ±â´ÉÀÌ ¾ø´Â ·¹°Å½Ã ½Ã½ºÅÛ¿¡ ÀÇÇØ AIÀÇ ÀáÀç·ÂÀº ¸¹Àº ±â¾÷¿¡¼­ Ȱ¿ëµÇÁö ¸øÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¦¾à Á¶°ÇÀ¸·Î ÀÎÇØ AI ±â¹Ý °ø±Þ¸ÁÀÌ ±× ÀáÀç·ÂÀ» ÃÖ´ëÇÑ ¹ßÈÖÇϱâ À§Çؼ­´Â ÅëÀÏµÈ µðÁöÅÐ ¾ÆÅ°ÅØÃ³¿Í °­·ÂÇÑ µ¥ÀÌÅÍ Ç¥ÁØÀÌ ÇʼöÀûÀÔ´Ï´Ù.

¼ö¿ä ¿¹Ãø Á¤È®µµ Çâ»ó

¼ö¿ä ¿¹ÃøÀ» °³¼±ÇÏ´Â AIÀÇ ´É·ÂÀº °ø±Þ¸ÁÀÇ È¿À²¼º°ú ´ëÀÀ·ÂÀ» Çõ½ÅÀûÀ¸·Î º¯È­½Ãų ¼ö ÀÖ½À´Ï´Ù. °ú°Å µ¥ÀÌÅÍ, ³¯¾¾ µ¿Çâ, ½ÃÀå ½É¸®, »çȸ°æÁ¦Àû ÁöÇ¥¸¦ ±â¹ÝÀ¸·Î ÇнÀµÈ ¸Ó½Å·¯´× ¸ðµ¨À» ÅëÇØ ¿¹ÃøÀº ´õ¿í ¿ªµ¿ÀûÀÌ°í ¼¼¹ÐÇÏ°Ô ÀÌ·ç¾îÁý´Ï´Ù. ¿¹Ãø ¿À·ù¸¦ ÁÙÀÓÀ¸·Î½á ±â¾÷Àº Àç°í ¼ÒÁø ÃÖ¼ÒÈ­, º¸À¯ ºñ¿ë Àý°¨, ¼­ºñ½º ¼öÁØ Çâ»ó µîÀÇ ÀÌÁ¡À» ´©¸± ¼ö ÀÖ½À´Ï´Ù. AIÀÇ ¿¹Ãø ´É·Â¿¡ µû¶ó ±â¾÷Àº ´Ù¾çÇÑ '¸¸¾àÀÇ °æ¿ì'°ø±Þ¸Á ½Ã³ª¸®¿À¸¦ ¸ðµ¨¸µÇÏ¿© Áغñ ż¼¿Í ¹Îø¼ºÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù.

AI ½Ã½ºÅÛ¿¡ ´ëÇÑ °úµµÇÑ ÀÇÁ¸µµ

°ø±Þ¸Á °ü¸®¿¡¼­ ÀÇ»ç°áÁ¤À» À§ÇÑ AI¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁü¿¡ µû¶ó ½Ã½ºÅÛ Àå¾Ö ¹× ¿¹±âÄ¡ ¸øÇÑ µ¥ÀÌÅÍ ÀÌ»ó¿¡ ´ëÇÑ ¸®½ºÅ©°¡ ¹ß»ýÇÕ´Ï´Ù. Áß¿äÇÑ ÇÁ·Î¼¼½ºÀÇ ÀÚµ¿È­¿¡ ÈûÀÔ¾î AI¿¡ °úµµÇÏ°Ô ÀÇÁ¸ÇÏ°Ô µÇ¸é, Àΰ£ÀÇ °¨½Ã ´É·Â°ú ¹®Á¦ ÇØ°á ´É·ÂÀÌ ÀúÇ쵃 ¼ö ÀÖ½À´Ï´Ù. AI°¡ ¹®¸ÆÀ» ÇØ¼®ÇÏ°í ºí·¢½º¿Ï Çö»ó¿¡ ´ëÀÀÇÏ´Â ´É·ÂÀÇ ÇѰ迡 ºÎµúÈ÷¸é¼­ Á¶Á÷Àº ¿¹¿ÜÀûÀÎ »óȲ¿¡¼­ È¥¶õ¿¡ Á÷¸éÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ì·Á·Î ÀÎÇØ ±â¾÷Àº AI¸¦ ÅëÇÑ ÀÚµ¿È­¿Í Àΰ£ÀÇ Àü¹®¼º »çÀÌ¿¡¼­ ±ÕÇüÀ» ¸ÂÃß¾î ź·ÂÀûÀÎ °ø±Þ¸ÁÀ» À¯ÁöÇØ¾ß ÇÕ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ:

COVID-19 ÆÒµ¥¹ÍÀº ¼¼°è °ø±Þ¸ÁÀÇ ½É°¢ÇÑ Ãë¾àÁ¡À» µå·¯³Â°í, AI¸¦ Ȱ¿ëÇÑ ÃÖÀûÈ­ Åø¿¡ ´ëÇÑ ÅõÀÚ¸¦ °¡¼ÓÈ­Çß½À´Ï´Ù. ¿¹ÃøÇÒ ¼ö ¾ø´Â ¼ö¿ä ÆÐÅÏ, ¹è¼Û Áö¿¬, ¿øÀÚÀç ºÎÁ·À¸·Î ÀÎÇØ AI´Â ±â¾÷ÀÌ Áï½Ã Á¶´Þ ¹× À¯Åë ¸ðµ¨À» À籸¼ºÇÏ´Â µ¥ µµ¿òÀÌ µÇ¾ú½À´Ï´Ù. ¿ø°Ý ±Ù¹«¿Í Ŭ¶ó¿ìµå Çù¾÷ Åø·ÎÀÇ Àüȯ¿¡ µû¶ó AI Ç÷§ÆûÀº ÆÒµ¥¹Í ±â°£ Áß ´õ ½±°Ô Á¢±ÙÇÏ°í ½ºÄÉÁÙ¸µÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ±³ÈÆÀ» ¹ÙÅÁÀ¸·Î ±â¾÷Àº ÇöÀç Àå±âÀûÀÎ ³»°áÇÔ¼ºÀ» º¸ÀåÇϱâ À§ÇØ AI¸¦ °ø±Þ¸Á Àü·«¿¡ ´õ¿í ±í¼÷ÀÌ ÅëÇÕÇϰíÀÚ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ Áß ¸Ó½Å·¯´× ºÎ¹®ÀÌ °¡Àå Å« ½ÃÀåÀ¸·Î ºÎ»óÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸Ó½Å·¯´× ºÐ¾ß´Â °ø±Þ¸ÁÀÇ ´Ù¾çÇÑ °úÁ¦¿¡ ´ëÀÀÇÒ ¼ö ÀÖ´Â ¹ü¿ë¼ºÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ Áß °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±³»ç-ºñ±³»ç ÇнÀ ¸ðµ¨ÀÇ Áö¼ÓÀûÀÎ ¹ßÀü¿¡ ÈûÀÔ¾î ÀÌ ±â¼úÀº ±â¾÷ °ø±Þ¸Á ¼ÒÇÁÆ®¿þ¾î¿¡ Á¡Á¡ ´õ ¸¹ÀÌ ÅëÇյǰí ÀÖ½À´Ï´Ù. ¸Ó½Å·¯´×Àº Á¶´Þ, À¯Åë, ¹°·ù, °í°´ ¼­ºñ½º µî °ø±Þ¸Á Àü¹Ý¿¡ °ÉÃÄ Æø³Ð°Ô Àû¿ëµÇ¸é¼­ °ø±Þ¸Á Àü¹Ý¿¡ °ÉÃÄ µµÀԵǰí ÀÖ½À´Ï´Ù. È®À强°ú ÅëÇÕ °¡´É¼º¿¡ ÈûÀÔ¾î ÀÌ ºÎ¹®Àº ¿¹Ãø ±â°£ Áß Áö¹èÀûÀÎ À§Ä¡¸¦ À¯ÁöÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

°ø±Þ¸Á °èȹ ºÐ¾ß´Â ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¿¹Ãø ±â°£ Áß °ø±Þ¸Á °èȹ ºÐ¾ß´Â ½Ç½Ã°£ °¡½Ã¼º°ú »çÀü ¿¹¹æÀû ÀÇ»ç°áÁ¤¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ÈûÀÔ¾î °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼ÒºñÀÚ ¼ö¿äÀÇ º¯µ¿°ú ÁöÁ¤ÇÐÀû ºÒÈ®½Ç¼ºÀ¸·Î ÀÎÇÑ È¥¶õÀÌ °¡ÁߵǸ鼭 AI ±â¹Ý Ç÷¡´× ÅøÀÌ ÇʼöÀûÀ¸·Î ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ¼ö¿ä °¨Áö, »ý»ê ½ºÄÉÁÙ¸µ, ÀÚ¿ø ¹èºÐ ÅëÇÕ¿¡ ±â¹ÝÇÑ AI ±â¹Ý °èȹÀº ÅëÇÕÀûÀÌ°í ¿ªµ¿ÀûÀÎ Á¢±Ù ¹æ½ÄÀ» Á¦°øÇÕ´Ï´Ù. °æÀïÀÇ ¾Ð·Â°ú °í°´ Áß½ÉÀÇ ¹°·ù¿¡ ÈûÀÔ¾î °èȹ ±â´ÉÀº AI¸¦ Ȱ¿ëÇÑ °ø±Þ¸Á Çõ½ÅÀÇ ÇÙ½ÉÀ¸·Î ÁøÈ­Çϰí ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¿¹Ãø ±â°£ Áß ¾Æ½Ã¾ÆÅÂÆò¾çÀº ¼¼°è Á¦Á¶ ¹× ¹°·ùÀÇ Çãºê ¿ªÇÒÀ» ¼öÇàÇÔ¿¡ µû¶ó °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹, ÀϺ», Àεµ µîÀÇ ±¹°¡¿¡¼­ ±Þ¼ÓÇÑ µðÁöÅÐ Çõ½Å¿¡ ÈûÀÔ¾î »ê¾÷ ¹× ¼Ò¸Å °ø±Þ¸Á Àü¹Ý¿¡ °ÉÃÄ AI µµÀÔÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. Á¤ºÎÀÇ Àû±ØÀûÀÎ Áö¿ø¿¡ ÈûÀÔ¾î Áö¿ª ÇÏÀÌÅ×Å© ½ºÅ¸Æ®¾÷µéÀº Áö¿ª ½ÃÀå ¿ªÇп¡ ¸Â´Â AI ±â¹Ý SCM Ç÷§ÆûÀ» Á¦°øÇÕ´Ï´Ù. ºñ¿ë °æÀï·Â ÀÖ´Â ³ëµ¿·Â, ¹æ´ëÇÑ À¯Åë¸Á, ¼ºÀåÇÏ´Â µðÁöÅÐ ÀÎÇÁ¶ó¿¡ ÈûÀÔ¾î ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ AI ±â¹Ý °ø±Þ¸Á µµÀÔÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

¿¹Ãø ±â°£ Áß ºÏ¹Ì´Â ¼Ò¸Å, ÀÚµ¿Â÷, ÇコÄÉ¾î ºÎ¹® ¼ö¿ä¿¡ ÈûÀÔ¾î °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ½Ç½Ã°£ °ø±Þ °èȹ°ú ¿¹Áöº¸ÀüÀÌ Áß¿äÇÑ ÁßÁ¡ ºÐ¾ßÀÔ´Ï´Ù. ¼¼°è ºÒ¾ÈÁ¤ ¿äÀÎÀ¸·Î ÀÎÇÑ È¥¶õÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ºÏ¹Ì ±â¾÷Àº ¸®½ºÅ© °¨¼Ò¿Í ½Ã³ª¸®¿À ¸ðµ¨¸µ °­È­¸¦ À§ÇØ AI¿¡ ÁÖ¸ñÇϰí ÀÖ½À´Ï´Ù. AI °³¹ßÀÚ, Ŭ¶ó¿ìµå ¼­ºñ½º ÇÁ·Î¹ÙÀÌ´õ, ÅëÇÕ¾÷üÀÇ °­·ÂÇÑ »ýŰ踦 ¹ÙÅÁÀ¸·Î ÀÌ Áö¿ªÀÇ ±â¾÷Àº ¹°·ù ¹× Á¶´Þ ºÐ¾ß¿¡¼­ AI µµÀÔÀÇ ÃÖÀü¼±¿¡ ¼­ ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ °Å¹ö³Í½º Ç¥Áذú Çõ½Å º¸Á¶±Ý¿¡ ÀÇÇØ ÁÖµµµÈ ÀÌ Áö¿ªÀº °ø±Þ¸Á Çõ½Å ³ë·ÂÀ» °è¼Ó ÁÖµµÇϰí ÀÖ½À´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ Á¦°ø:

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷¼Ò°³
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3»ç)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(ÃÖ´ë 3»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå Ã߻ꡤ¿¹Ãø¡¤CAGR(ÁÖ: Ÿ´ç¼º °ËÅä¿¡ µû¶ó ´Ù¸§)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¿ªÀû ÀÔÁö, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå °³¿ä

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç ¾îÇÁ·ÎÄ¡
  • Á¶»ç ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ¹ÙÀ̾îÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ °ø±Þ¸Á ÃÖÀûÈ­¿ë AI ½ÃÀå : Á¦°øº°

  • Çϵå¿þ¾î
  • ¼ÒÇÁÆ®¿þ¾î
  • ¼­ºñ½º

Á¦6Àå ¼¼°èÀÇ °ø±Þ¸Á ÃÖÀûÈ­¿ë AI ½ÃÀå : ±â¼úº°

  • ±â°èÇнÀ
  • ÄÄÇ»ÅÍ ºñÀü
  • ÀÚ¿¬¾ð¾îó¸®
  • »óȲ ÀÎ½Ä ÄÄÇ»ÆÃ
  • ±âŸ ±â¼ú

Á¦7Àå ¼¼°èÀÇ °ø±Þ¸Á ÃÖÀûÈ­¿ë AI ½ÃÀå : ¿ëµµº°

  • °ø±Þ¸Á °èȹ
  • â°í °ü¸®
  • Çø´ °ü¸®
  • °¡»ó ºñ¼­
  • ¸®½ºÅ© °ü¸®
  • Àç°í °ü¸®
  • °èȹ°ú ¹°·ù

Á¦8Àå ¼¼°èÀÇ °ø±Þ¸Á ÃÖÀûÈ­¿ë AI ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • Á¦Á¶¾÷
  • ½Äǰ ¹× À½·á
  • ÇコÄɾî
  • ÀÚµ¿Â÷
  • Ç×°ø¿ìÁÖ
  • ¼Ò¸Å
  • ¼ÒºñÀç
  • ±âŸ ÃÖÁ¾»ç¿ëÀÚ

Á¦9Àå ¼¼°èÀÇ °ø±Þ¸Á ÃÖÀûÈ­¿ë AI ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦10Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, Á¶ÀÎÆ® º¥Ã³
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦11Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Oracle Corporation
  • Google LLC(Alphabet Inc.)
  • Amazon Web Services, Inc.
  • NVIDIA Corporation
  • Kinaxis Inc.
  • Anaplan, Inc.
  • Coupa Software Inc.
  • Infor
  • O9 Solutions, Inc.
  • Llamasoft, Inc.
  • ToolsGroup
  • Manhattan Associates, Inc.
  • ClearMetal
  • Project44
  • FusionOps
  • C3.ai, Inc.
  • Blue Yonder Group, Inc.
  • IBM Corporation
  • Microsoft Corporation
  • SAP SE
KSA 25.08.04

According to Stratistics MRC, the Global AI in Supply Chain Optimization Market is accounted for $9.9 billion in 2025 and is expected to reach $105 billion by 2032 growing at a CAGR of 40.1% during the forecast period. AI in supply chain optimization involves using artificial intelligence to enhance logistics and operations. AI algorithms analyze data to streamline processes like inventory management, demand forecasting, and transportation routing. It improves efficiency, reduces costs, and enhances decision-making by predicting disruptions and optimizing resource allocation across the supply chain.

According to McKinsey, companies using AI in supply chains have already seen a 12.7% drop in logistics costs and a 20.3% reduction in inventory levels, resulting in billions in savings.

Market Dynamics:

Driver:

Growth in e-commerce and global trade

The proliferation of e-commerce platforms and the globalization of supply networks are accelerating the adoption of AI-powered supply chain solutions. Spurred by consumer expectations for real-time delivery and transparency, companies are leveraging AI to optimize inventory, routing, and fulfillment operations. Motivated by the need to manage vast product assortments and multi-tier supplier ecosystems, AI provides end-to-end visibility and responsiveness. By cost-optimization mandates, AI is fast becoming a strategic tool in enhancing the efficiency and resilience of modern supply chains.

Restraint:

Data integration and interoperability issues

Despite the growing capabilities of AI, integrating it into existing supply chain infrastructures poses significant challenges. Driven by fragmented IT systems and siloed data across departments and partners, seamless interoperability is often difficult to achieve. Backed by legacy systems that lack real-time data handling capabilities, the potential of AI remains underutilized in many enterprises. Fueled by these limitations, a unified digital architecture and strong data standards are critical for AI-driven supply chains to realize their full potential.

Opportunity:

Enhanced demand forecasting accuracy

AI's ability to improve demand forecasting represents a transformative opportunity for supply chain efficiency and responsiveness. Spurred by machine learning models trained on historical data, weather trends, market sentiment, and socio-economic indicators, forecasts are now more dynamic and granular. Fueled by reduced forecasting errors, companies benefit from minimized stockouts, lower holding costs, and higher service levels. Guided by AI's predictive capabilities, enterprises can also model various "what-if" supply chain scenarios, enhancing their preparedness and agility.

Threat:

Overreliance on AI systems

The increasing dependence on AI for decision-making in supply chain management introduces risks related to system failures and unforeseen data anomalies. Driven by automation of critical processes, overreliance on AI can diminish human oversight and problem-solving skills. Spurred by limitations in AI's ability to interpret context or respond to black-swan events, organizations may face disruptions during exceptional circumstances. Guided by these concerns, companies must strike a balance between AI-driven automation and human expertise to maintain resilient supply chains.

Covid-19 Impact:

The COVID-19 pandemic exposed severe vulnerabilities in global supply chains, prompting accelerated investment in AI-enabled optimization tools. Spurred by unpredictable demand patterns, shipping delays, and raw material shortages, AI helped companies reconfigure sourcing and distribution models on the fly. With the shift to remote work and cloud collaboration tools, AI platforms became more accessible and scalable during the pandemic. Motivated by lessons learned, enterprises are now embedding AI more deeply into their supply chain strategies for long-term resilience.

The machine learning segment is expected to be the largest during the forecast period

The machine learning segment is expected to account for the largest market share during the forecast period, owing to its versatility in addressing various supply chain challenges. Spurred by ongoing advancements in supervised and unsupervised learning models, this technology is increasingly embedded into enterprise supply chain software. With widespread applications across sourcing, distribution, logistics, and customer service, machine learning is being deployed across the supply chain spectrum. Guided by its scalability and integration potential, the segment is set to retain its dominant position throughout the forecast horizon.

The supply chain planning segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the supply chain planning segment is predicted to witness the highest growth rate, impelled by the growing demand for real-time visibility and proactive decision-making. Spurred by disruptions from fluctuating consumer demand and geopolitical uncertainties, AI-driven planning tools are becoming indispensable. Driven by the integration of demand sensing, production scheduling, and resource allocation, AI-based planning offers a unified and dynamic approach. Motivated by competitive pressures and customer-centric logistics, the planning function is evolving into a core driver of AI-enabled supply chain transformation.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, driven by its role as a global manufacturing and logistics hub. Spurred by rapid digital transformation in countries like China, Japan, and India, AI implementation is scaling across industrial and retail supply chains. Backed by favorable government support, regional tech startups are increasingly offering AI-powered SCM platforms tailored to local market dynamics. Guided by its cost-competitive labor, vast distribution networks, and growing digital infrastructure, Asia Pacific dominates AI-driven supply chain adoption.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, spurred by demand from retail, automotive, and healthcare sectors. Real-time supply planning and predictive maintenance are key focus areas. Due to rising disruptions from global instability, North American firms are turning to AI for enhanced risk mitigation and scenario modelling. Backed by a strong ecosystem of AI developers, cloud service providers, and integrators, regional firms are at the forefront of AI deployment in logistics and procurement. Guided by data governance standards and innovation grants, the region continues to lead in supply chain transformation initiatives.

Key players in the market

Some of the key players in AI in Supply Chain Optimization Market include Oracle Corporation, Google LLC (Alphabet Inc.), Amazon Web Services, Inc., NVIDIA Corporation, Kinaxis Inc., Anaplan, Inc., Coupa Software Inc., Infor, O9 Solutions, Inc., Llamasoft, Inc., ToolsGroup, Manhattan Associates, Inc., ClearMetal, Project44, FusionOps, C3.ai, Inc., Blue Yonder Group, Inc., IBM Corporation, Microsoft Corporation, and SAP SE.

Key Developments:

In May 2025, Google LLC launched an AI tool on Google Cloud for real-time supply chain visibility. It optimizes logistics by providing actionable insights, reducing delays, and enhancing efficiency across global supply chain networks.

In April 2025, Amazon Web Services unveiled AWS Supply Chain AI for automated warehouse management. It optimizes delivery routes, reducing costs and improving efficiency with real-time data analytics for seamless logistics operations.

In February 2025, ToolsGroup introduced an AI-driven inventory optimization platform. It enables real-time stock management, reducing excess inventory and costs while ensuring product availability through predictive analytics.

Offerings Covered:

  • Hardware
  • Software
  • Services

Technologies Covered:

  • Machine Learning
  • Computer Vision
  • Natural Language Processing
  • Context-Aware Computing
  • Other Technologies

Applications Covered:

  • Supply Chain Planning
  • Warehouse Management
  • Fleet Management
  • Virtual Assistant
  • Risk Management
  • Inventory Management
  • Planning & Logistics

End Users Covered:

  • Manufacturing
  • Food & Beverages
  • Healthcare
  • Automotive
  • Aerospace
  • Retail
  • Consumer-Packaged Goods
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global AI in Supply Chain Optimization Market, By Offering

  • 5.1 Introduction
  • 5.2 Hardware
  • 5.3 Software
  • 5.4 Services

6 Global AI in Supply Chain Optimization Market, By Technology

  • 6.1 Introduction
  • 6.2 Machine Learning
  • 6.3 Computer Vision
  • 6.4 Natural Language Processing
  • 6.5 Context-Aware Computing
  • 6.6 Other Technologies

7 Global AI in Supply Chain Optimization Market, By Application

  • 7.1 Introduction
  • 7.2 Supply Chain Planning
  • 7.3 Warehouse Management
  • 7.4 Fleet Management
  • 7.5 Virtual Assistant
  • 7.6 Risk Management
  • 7.7 Inventory Management
  • 7.8 Planning & Logistics

8 Global AI in Supply Chain Optimization Market, By End User

  • 8.1 Introduction
  • 8.2 Manufacturing
  • 8.3 Food & Beverages
  • 8.4 Healthcare
  • 8.5 Automotive
  • 8.6 Aerospace
  • 8.7 Retail
  • 8.8 Consumer-Packaged Goods
  • 8.9 Other End Users

9 Global AI in Supply Chain Optimization Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Oracle Corporation
  • 11.2 Google LLC (Alphabet Inc.)
  • 11.3 Amazon Web Services, Inc.
  • 11.4 NVIDIA Corporation
  • 11.5 Kinaxis Inc.
  • 11.6 Anaplan, Inc.
  • 11.7 Coupa Software Inc.
  • 11.8 Infor
  • 11.9 O9 Solutions, Inc.
  • 11.10 Llamasoft, Inc.
  • 11.11 ToolsGroup
  • 11.12 Manhattan Associates, Inc.
  • 11.13 ClearMetal
  • 11.14 Project44
  • 11.15 FusionOps
  • 11.16 C3.ai, Inc.
  • 11.17 Blue Yonder Group, Inc.
  • 11.18 IBM Corporation
  • 11.19 Microsoft Corporation
  • 11.20 SAP SE
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦