시장보고서
상품코드
1808028

IT 운영 애널리틱스 시장 : 솔루션 유형별, 분석 유형별, 데이터 소스별, 배포 형태별, 조직 규모별, 용도별, 산업 분야별 - 세계 예측(2025-2030년)

IT Operation Analytics Market by Solution Type, Analytics Type, Data Source, Deployment Mode, Organization Size, Application, Industry Vertical - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 181 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

IT 운영 애널리틱스 시장은 2024년에 217억 7,000만 달러로 평가되며, 2025년에는 245억 6,000만 달러, CAGR 13.37%로 성장하며, 2030년에는 462억 3,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준연도 2024 217억 7,000만 달러
추정연도 2025 245억 6,000만 달러
예측연도 2030 462억 3,000만 달러
CAGR(%) 13.37%

종합적인 데이터 스트림과 인프라 인사이트의 통합을 통해 현대 기업 생태계 전반에서 전례 없는 IT 운영 우수성을 실현

IT 운영 분석은 원활한 성능 유지, 안정성 향상, 운영 비용 절감을 목표로 하는 현대 기업에게 중요한 축으로 부상하고 있습니다. 디지털 전환이 가속화되면서 기업은 용도, 네트워크, 서버, 보안 시스템에서 생성되는 데이터의 양이 계속 증가하고 있는 상황에 직면하고 있습니다. 이러한 상황에서 기존의 모니터링 접근 방식으로는 더 이상 이상을 감지하거나 잠재적 장애가 고객 경험에 영향을 미치기 전에 예측할 수 없습니다.

차세대 가시성 및 AI 기반 분석을 도입하여 기업이 지속가능한 우위를 확보할 수 있도록 IT 운영 및 복원력을 최적화하는 방법을 재구축

최근 기업의 IT 운영 방식이 크게 변화하고 있습니다. 클라우드 네이티브 아키텍처, 컨테이너 오케스트레이션 플랫폼, 마이크로서비스의 등장으로 전통적인 모니터링이 아닌 관측 가능성에 초점이 맞추어지고 있습니다. 이를 통해 기업은 용도 성능 메트릭, 인프라 로그, 실제 사용자 행동 등 여러 계층의 원격 측정을 수집하여 보다 심층적인 근본 원인을 분석할 수 있게 되었습니다.

2025년 미국 관세 조정이 IT 운영 분석공급망과 비용 구조에 미치는 다각적인 영향 분석

미국이 2025년 발효되는 새로운 관세를 발표했을 때, IT 운영 분석 생태계는 하드웨어 조달, 부품 제조, 세계 공급망 전략 등 다양한 측면에서 다층적인 영향을 받았습니다. 주요 생산 기지에서 수입되는 반도체 부품 및 네트워크 장비에 대한 관세로 인해 하드웨어 비용이 상승함에 따라 많은 솔루션 프로바이더들이 벤더와의 계약을 재검토하고 조달 전략을 현지화해야 하는 상황에 직면했습니다.

솔루션, 분석, 데이터 소스, 배포, 조직 규모, 용도 프레임워크를 상세하게 조사하여 전략적 IT 운영 인사이트를 제공

이 시장은 서비스 및 소프트웨어 툴에 걸쳐 조사되었으며, 서비스는 관리형 서비스와 전문 서비스로, 소프트웨어 툴은 클라우드, 하이브리드, On-Premise 배포를 포괄하는 소프트웨어 툴로 세분화됩니다. 이러한 세분화를 통해 기업은 리소스 할당 및 지원 모델을 운영의 복잡성과 거버넌스 요구사항에 맞게 조정할 수 있습니다.

북미, 유럽, 중동 및 아프리카, 아시아태평양 시장 환경에서 IT 운영 분석의 채택을 형성하는 지역적 역학에 대해 알아봅니다.

지역적 요인은 IT 운영 분석 전략과 채택률 형성에 있으며, 매우 중요한 역할을 합니다. 북미와 남미에서는 잘 구축된 인프라, 성숙한 클라우드 생태계, 디지털 전환에 대한 중요성이 고급 분석 솔루션의 광범위한 도입을 촉진하고 있습니다. 많은 조직들이 중앙 집중식 데이터센터와 강력한 네트워크 백본을 활용하여 사전 예방적 모니터링과 자동 복구의 혁신을 추진하고 있습니다.

IT 운영 분석 솔루션의 진화를 촉진하는 업계 주요 기업의 전략, 혁신, 경쟁적 접근 방식 평가

IT 운영 분석 분야의 주요 시장 진출기업은 타겟팅된 연구개발, 전략적 제휴, 선택적 인수를 통해 지속적으로 자사 제품을 다듬어 나가고 있습니다. 머신러닝 프레임워크, 인공지능 엔진, 오픈소스 기술을 통합함으로써 이들 기업은 플랫폼 기능을 강화하고 가치 실현 시간을 단축하고 있습니다. 그 결과, 최종사용자는 보다 정확한 이상 징후 감지, 간소화된 워크플로우, DevOps 툴체인과의 원활한 통합을 통해 혜택을 누릴 수 있습니다.

IT 운영 분석의 새로운 동향과 기술을 활용하기 위해 업계 리더들에게 영향력 있는 전술적, 전략적 권장 사항을 제시

IT 운영 분석의 가치를 극대화하기 위해 업계 리더들은 우선적으로 이기종 소스의 원격 측정 데이터를 응집력 있는 분석 프레임워크에 통합하는 통합 데이터 파이프라인을 구축하는 것을 우선적으로 고려해야 합니다. 데이터 스키마를 표준화하고 일관된 인리치먼트 프로세스를 보장함으로써 조직은 수동 상관관계 분석에 소요되는 시간을 줄이고 실행 가능한 인사이트를 가속화할 수 있습니다.

신뢰도 높은 IT 운영 분석 인사이트를 보장하는 정성적 및 정량적 조사 방법, 엄격한 데이터 검증, 전문가별 컨설팅

이 분석을 지원하는 조사 방법은 종합적이고 신뢰할 수 있는 인사이트를 제공하기 위해 여러 데이터 수집 방법을 결합합니다. 1차 데이터는 업계 전문가, 솔루션 아키텍트, IT 운영 리더와의 심층 인터뷰와 워크숍을 통해 수집된 데이터로, 새로운 동향, 과제, 성공 요인에 대한 직접적인 관점을 포착했습니다. 이러한 교류는 복잡한 도입 시나리오에 대한 질적 깊이와 맥락적 이해를 제공했습니다.

IT 운영 분석 생태계에서 의사결정을 강화하고 지속적인 혁신을 촉진하기 위한 중요한 발견과 전략적 중요 사항 요약

이번 주요 요약에서는 IT 운영을 문제 해결이라는 소극적인 관점에서 성능 관리라는 적극적인 관점으로 전환하는 데 있으며, 통합 분석 플랫폼이 매우 중요한 역할을 할 수 있음을 강조했습니다. 클라우드 네이티브 아키텍처의 채택, AI를 통한 이상 징후 감지, 엣지 컴퓨팅 등 주요 변화는 조직이 인프라와 용도를 대규모로 모니터링하는 방식을 재구축하고 있습니다. 미국의 2025년 관세 조정 검토는 비용 압박을 완화하고 중단 없는 서비스 제공을 보장하기 위해 공급망 민첩성과 유연한 조달 전략의 필요성을 강조하고 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 IT 운영 애널리틱스 시장 : 솔루션 유형별

  • 서비스
    • 매니지드 서비스
    • 전문 서비스
  • 소프트웨어 툴
    • 클라우드
    • 하이브리드
    • 온프레미스

제9장 IT 운영 애널리틱스 시장 : 분석 유형별

  • 예측 분석
  • 처방적 분석

제10장 IT 운영 애널리틱스 시장 : 데이터 소스별

  • 애플리케이션 로그
  • IoT 디바이스 데이터
  • 네트워크 메트릭스
  • 보안 로그
  • 서버 메트릭스

제11장 IT 운영 애널리틱스 시장 : 배포 모드별

  • 클라우드
  • 온프레미스

제12장 IT 운영 애널리틱스 시장 : 조직 규모별

  • 대기업
  • 중소기업

제13장 IT 운영 애널리틱스 시장 : 용도별

  • 애플리케이션 퍼포먼스 관리
  • IT 자동화와 오케스트레이션
  • 로그 관리
  • 네트워크 감시
  • 보안 분석

제14장 IT 운영 애널리틱스 시장 : 업계별

  • 은행, 금융 서비스, 보험
  • 에너지·유틸리티
  • 정부 및 공공 부문
  • 헬스케어
  • IT·통신
  • 제조업
  • 소매·E-Commerce
  • 운송·물류

제15장 아메리카의 IT 운영 애널리틱스 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제16장 유럽, 중동 및 아프리카의 IT 운영 애널리틱스 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제17장 아시아태평양의 IT 운영 애널리틱스 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제18장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Cisco Systems, Inc.
    • Broadcom Inc.
    • BMC Software, Inc.
    • Apica
    • Hewlett Packard Enterprise Company
    • Dell Technologies Inc.
    • BigPanda, Inc.
    • Cloud Software Group, Inc.
    • Devo Technology Inc.
    • Diamanti, Inc.
    • Dynatrace, Inc.
    • Elasticsearch, Inc.
    • Evolven Software, Inc.
    • ExtraHop Networks, Inc.
    • HCL Technologies
    • Hitachi, Ltd.
    • International Business Machines Corporation
    • Ivanti Software, Inc.
    • Microsoft Corporation
    • NetApp, Inc.
    • New Relic, Inc.
    • Nexthink SA
    • Open Text Corporation
    • Oracle Corporation
    • SAP SE
    • SAS Institute Inc.
    • ServiceNow, Inc.
    • Sumo Logic, Inc.
    • Veritas Technology LLC

제19장 리서치 AI

제20장 리서치 통계

제21장 리서치 컨택

제22장 리서치 기사

제23장 부록

KSA 25.09.16

The IT Operation Analytics Market was valued at USD 21.77 billion in 2024 and is projected to grow to USD 24.56 billion in 2025, with a CAGR of 13.37%, reaching USD 46.23 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 21.77 billion
Estimated Year [2025] USD 24.56 billion
Forecast Year [2030] USD 46.23 billion
CAGR (%) 13.37%

Navigating the Convergence of Comprehensive Data Streams and Infrastructure Insights to Drive Unprecedented IT Operational Excellence Across Modern Enterprise Ecosystems

IT operation analytics has emerged as a critical pillar for modern enterprises striving to maintain seamless performance, enhance reliability and reduce operational costs. As digital transformation initiatives accelerate, organizations face an ever-increasing volume of data generated by applications, networks, servers and security systems. In this landscape, legacy monitoring approaches are no longer sufficient to detect anomalies or predict potential failures before they impact customer experience.

Consequently, enterprises are adopting integrated analytics platforms that ingest and correlate diverse data streams into a unified view of infrastructure health. These solutions leverage advanced machine learning models to distinguish noise from actionable signals, empowering teams to prioritize remediation efforts and optimize resource utilization. As such, effective IT operation analytics becomes the foundation for proactive maintenance and real-time decision making.

Moreover, the shift towards cloud, hybrid and multi-cloud deployments introduces new layers of complexity, requiring analytics frameworks to adapt dynamically to distributed architectures. This evolution emphasizes the importance of solution flexibility, scalability and the ability to integrate seamlessly with existing ecosystem tools. Moving forward, organizations that harness the full potential of IT operation analytics will not only realize improved uptime and performance but also establish a competitive edge in an increasingly data-driven business environment.

Embracing Next-Generation Observability and AI-Driven Analytics to Reshape How Enterprises Optimize IT Operations and Resilience for Sustainable Advantage

Recent years have witnessed a profound transformation in how enterprises approach IT operations. The rise of cloud-native architectures, container orchestration platforms and microservices has shifted the focus towards observability rather than traditional monitoring. This transition enables organizations to collect telemetry at multiple layers, including application performance metrics, infrastructure logs and real user behavior, which in turn supports deeper root-cause analysis.

Simultaneously, the integration of artificial intelligence and machine learning into IT operation analytics has introduced automated anomaly detection, predictive failure analysis and intelligent alerting. These AI-driven capabilities allow teams to move beyond reactive incident handling, enabling them to anticipate issues and implement remedial actions autonomously. As a result, mean time to resolution (MTTR) is significantly reduced, and operational efficiency is continuously enhanced.

Looking ahead, emerging trends such as edge computing, Internet of Things (IoT) telemetry and the growing demand for real-time insights will further redefine the analytical landscape. Organizations must therefore adopt flexible platforms that can scale horizontally and process high-velocity data streams. By embracing these transformative shifts, enterprises will unlock new levels of operational resilience and drive innovation across their IT environments.

Uncovering the Multifaceted Effects of 2025 U.S. Tariff Adjustments on IT Operational Analytics Supply Chains and Cost Structures

When the United States announced a new slate of tariffs effective in 2025, the IT operation analytics ecosystem encountered multiple layers of impact across hardware procurement, component manufacturing and global supply chain strategies. Hardware costs increased due to duties on semiconductor components and networking equipment imported from key production hubs, prompting many solution providers to reevaluate vendor agreements and localize sourcing strategies.

In parallel, software vendors faced upward pressure on licensing fees as they sought to offset elevated operational expenses associated with support infrastructure. End users consequently experienced revised subscription models reflecting these additional costs. While some enterprises absorbed the marginal increases, others chose to explore alternative suppliers or open source frameworks to maintain budgetary discipline.

Moreover, the redistribution of manufacturing footprints to regions outside the tariff scope introduced logistical challenges, including extended lead times and the need to establish new quality control protocols. To mitigate these effects, organizations have accelerated investments in cloud-based infrastructure, leveraging regional data centers to reduce reliance on physical hardware procurement. In doing so, they have not only navigated the immediate financial implications but also laid the groundwork for a more agile and geographically distributed operational analytics architecture.

Ultimately, these adjustments underscore the importance of supply chain agility and flexible deployment models, ensuring that IT operation analytics remains resilient against future policy shifts.

In-Depth Examination of Solution, Analytics, Data Source, Deployment, Organization Size and Application Frameworks to Drive Strategic IT Operations Insights

The market is studied across Services and Software Tools, with Services further categorized into managed and professional services and Software Tools encompassing cloud, hybrid and on-premises deployments. This segmentation helps organizations align resource allocation and support models with their operational complexity and governance requirements.

Analytics capabilities are divided into predictive analytics and prescriptive analytics, providing either forecasting of potential incidents or actionable recommendations for automated resolution. Data sources such as application logs, IoT device data, network metrics, security logs and server metrics enrich these insights, delivering targeted intelligence across different system domains.

Deployment and organizational dimensions are also critical, contrasting cloud and on-premises models and differentiating between large enterprises and small and medium enterprises based on scale, budgetary constraints and operational maturity. Application-level analysis spans use cases including application performance management, IT automation and orchestration, log management, network monitoring and security analytics. Furthermore, industry vertical assessment covers banking, financial services and insurance, energy and utilities, government and public sector, healthcare, IT and telecom, manufacturing, retail and e-commerce and transportation and logistics. Such a multi-tiered approach ensures that strategic decisions are informed by the specific demands of each operational environment.

Exploring Regional Dynamics Shaping IT Operation Analytics Adoption Across the Americas, Europe Middle East & Africa and Asia Pacific Market Environments

Regional factors play a pivotal role in shaping IT operation analytics strategies and adoption rates. In the Americas, established infrastructure, mature cloud ecosystems and a strong emphasis on digital transformation have fostered widespread deployment of advanced analytics solutions. Many organizations leverage centralized data centers and robust network backbones, driving innovation in proactive monitoring and automated remediation.

Meanwhile, the Europe Middle East & Africa region presents a mosaic of regulatory landscapes and data privacy standards that influence deployment modes and data handling practices. Organizations in this region often prioritize compliance frameworks alongside operational efficiency, resulting in tailored analytics implementations that balance visibility with governance. Public sector and heavily regulated industries such as banking and telecommunications are at the forefront of these initiatives.

In the Asia Pacific region, rapid digitalization efforts across both public and private sectors have catalyzed investment in IT operation analytics. Emerging economies are focusing on scalable cloud architectures to support growth, while established markets prioritize integration of edge computing and real-time analytics to accommodate high-velocity data from IoT deployments. As a result, Asia Pacific presents a dynamic environment where vendor partnerships, localized support and flexible pricing models play a significant role in solution adoption. These regional insights enable stakeholders to fine-tune their strategies to match geographic-specific requirements and growth trajectories.

Evaluating Leading Industry Players' Strategies, Innovations and Competitive Approaches That Are Driving the Evolution of IT Operation Analytics Solutions

Key participants in the IT operation analytics arena continually refine their offerings through targeted research and development, strategic alliances and selective acquisitions. By integrating machine learning frameworks, artificial intelligence engines and open source technologies, these companies enhance platform capabilities and accelerate time to value. In turn, end users benefit from more accurate anomaly detection, streamlined workflows and seamless integration with DevOps toolchains.

Moreover, partnerships between analytics vendors and cloud service providers have intensified, reflecting a convergence of infrastructure and analytics layers. These collaborations facilitate pre-configured deployments, shared support environments and unified billing structures, simplifying procurement and operational management for enterprise clients. Strategic alliances also extend to managed service providers that offer specialized expertise in customizing analytics solutions for vertical-specific requirements.

Competitive differentiation often emerges through the introduction of industry-focused modules and customizable dashboards, enabling organizations to tailor insights to unique operational metrics. Some providers emphasize low-code or no-code interfaces to democratize analytics consumption, while others invest in security-focused capabilities to address the growing importance of cyber threat intelligence. As market maturity advances, companies that prioritize interoperability, scalability and user experience will likely secure stronger positions in the IT operation analytics landscape.

Presenting High-Impact Tactical and Strategic Recommendations for Industry Leaders to Capitalize on Emerging IT Operation Analytics Trends and Technologies

To maximize the value of IT operation analytics, industry leaders should first prioritize the establishment of unified data pipelines that consolidate telemetry from disparate sources into a cohesive analytical framework. By standardizing data schemas and ensuring consistent enrichment processes, organizations can reduce time spent on manual correlation and accelerate actionable insights.

Subsequently, investing in both predictive and prescriptive analytics capabilities will enable teams to transition from reactive issue management to proactive problem resolution. Organizations should assess vendor roadmaps for AI-driven automation features that align with their long-term operational maturity models, ensuring continuous evolution of analytical competencies.

It is also essential to adopt flexible deployment architectures that accommodate hybrid scenarios, enabling seamless workloads across cloud, on-premises and edge environments. This strategy improves resilience, enhances compliance postures and optimizes performance based on data residency requirements.

Furthermore, cross-functional collaboration between IT operations, security and development teams fosters a shared responsibility model, enhancing overall efficiency and mitigating silos. Establishing clear governance policies, metrics and feedback loops will drive accountability and continuous improvement.

Finally, organizations should implement quantifiable key performance indicators such as mean time to detect, mean time to repair and operational cost efficiency to measure the impact of analytics initiatives. Regularly reviewing these metrics will guide resource allocation, refine analytic models and ensure that technology investments deliver tangible business outcomes.

Detailing Qualitative and Quantitative Methodologies, Rigorous Data Validation and Expert Consultations That Ensure Credible IT Operation Analytics Insights

The research methodology underpinning this analysis combines multiple data-gathering approaches to deliver comprehensive and reliable insights. Primary data was collected through in-depth interviews and workshops with industry experts, solution architects and IT operations leaders, capturing firsthand perspectives on emerging trends, challenges and success factors. These interactions provided qualitative depth and contextual understanding of complex deployment scenarios.

Secondary research supplemented these findings by reviewing technical papers, case studies and vendor whitepapers to map solution capabilities and market dynamics. Where available, publicly disclosed information from regulatory filings, technical roadmaps and partner announcements was used to validate product innovation trajectories and strategic partnerships.

To further enhance data accuracy, a rigorous validation process was implemented, involving cross-referencing information across sources and performing triangulation to reconcile any discrepancies. Quantitative data points related to solution adoption patterns, deployment characteristics and integration preferences were analyzed using statistical techniques to identify correlation and causation insights.

Throughout the research lifecycle, iterative feedback loops with an advisory panel of senior practitioners ensured that preliminary conclusions were refined and stress-tested against real-world experiences. This structured methodology guarantees that the resulting insights reflect both empirical observations and practitioner expertise, offering stakeholders a robust foundation for strategic decision making in IT operation analytics.

Summarizing the Critical Findings and Strategic Imperatives to Empower Decision Making and Foster Continuous Innovation in IT Operation Analytics Ecosystems

This executive summary has highlighted the pivotal role of integrated analytics platforms in transforming IT operations from reactive troubleshooting to proactive performance management. Key shifts, including the adoption of cloud-native architectures, AI-driven anomaly detection and edge computing, are reshaping how organizations monitor infrastructure and applications at scale. The examination of 2025 tariff adjustments in the United States underscores the necessity for supply chain agility and flexible procurement strategies to mitigate cost pressures and ensure uninterrupted service delivery.

Multi-dimensional segmentation analysis reveals that factors such as solution type, analytics model, data source and deployment mode profoundly influence the selection and effectiveness of IT operation analytics tools. Regional insights demonstrate the variability in adoption drivers, regulatory considerations and technological maturity across the Americas, Europe Middle East & Africa and Asia Pacific, guiding stakeholders in tailoring their deployment roadmaps.

Furthermore, leading solution providers differentiate through strategic alliances, modular architectures and intuitive interfaces, reflecting the market's evolution towards user-centric, interoperable frameworks. Actionable recommendations emphasize the importance of unified data pipelines, cross-functional collaboration and performance-based metrics to maximize ROI and sustain continuous improvement. Collectively, these findings establish a clear set of strategic imperatives that will empower organizations to elevate operational resilience, accelerate innovation and achieve tangible business outcomes through advanced IT operation analytics.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Emerging trends in automated root cause analysis techniques enhancing accuracy and speed in IT operation analytics
  • 5.2. Shift toward real-time data monitoring for enhanced IT operational efficiency
  • 5.3. Increasing adoption of predictive analytics to prevent IT system downtimes
  • 5.4. Integration of machine learning algorithms for smarter IT infrastructure management
  • 5.5. Role of cloud-based analytics platforms in optimizing IT operations
  • 5.6. Emerging trends in automated root cause analysis within IT operation analytics
  • 5.7. Impact of big data analytics on ensuring cybersecurity in IT environments
  • 5.8. Growing importance of user experience analytics in IT operational strategies
  • 5.9. Rise of edge computing analytics to support decentralized IT operations
  • 5.10. Developments in anomaly detection techniques to improve IT system reliability

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. IT Operation Analytics Market, by Solution Type

  • 8.1. Introduction
  • 8.2. Services
    • 8.2.1. Managed Services
    • 8.2.2. Professional Services
  • 8.3. Software Tools
    • 8.3.1. Cloud
    • 8.3.2. Hybrid
    • 8.3.3. On-Premises

9. IT Operation Analytics Market, by Analytics Type

  • 9.1. Introduction
  • 9.2. Predictive Analytics
  • 9.3. Prescriptive Analytics

10. IT Operation Analytics Market, by Data Source

  • 10.1. Introduction
  • 10.2. Application Logs
  • 10.3. IoT Device Data
  • 10.4. Network Metrics
  • 10.5. Security Logs
  • 10.6. Server Metrics

11. IT Operation Analytics Market, by Deployment Mode

  • 11.1. Introduction
  • 11.2. Cloud
  • 11.3. On Premises

12. IT Operation Analytics Market, by Organization Size

  • 12.1. Introduction
  • 12.2. Large Enterprises
  • 12.3. Small And Medium Enterprises

13. IT Operation Analytics Market, by Application

  • 13.1. Introduction
  • 13.2. Application Performance Management
  • 13.3. IT Automation & Orchestration
  • 13.4. Log Management
  • 13.5. Network Monitoring
  • 13.6. Security Analytics

14. IT Operation Analytics Market, by Industry Vertical

  • 14.1. Introduction
  • 14.2. Banking, Financial Services, & Insurance
  • 14.3. Energy & Utilities
  • 14.4. Government & Public Sector
  • 14.5. Healthcare
  • 14.6. IT & Telecom
  • 14.7. Manufacturing
  • 14.8. Retail & E Commerce
  • 14.9. Transportation & Logistics

15. Americas IT Operation Analytics Market

  • 15.1. Introduction
  • 15.2. United States
  • 15.3. Canada
  • 15.4. Mexico
  • 15.5. Brazil
  • 15.6. Argentina

16. Europe, Middle East & Africa IT Operation Analytics Market

  • 16.1. Introduction
  • 16.2. United Kingdom
  • 16.3. Germany
  • 16.4. France
  • 16.5. Russia
  • 16.6. Italy
  • 16.7. Spain
  • 16.8. United Arab Emirates
  • 16.9. Saudi Arabia
  • 16.10. South Africa
  • 16.11. Denmark
  • 16.12. Netherlands
  • 16.13. Qatar
  • 16.14. Finland
  • 16.15. Sweden
  • 16.16. Nigeria
  • 16.17. Egypt
  • 16.18. Turkey
  • 16.19. Israel
  • 16.20. Norway
  • 16.21. Poland
  • 16.22. Switzerland

17. Asia-Pacific IT Operation Analytics Market

  • 17.1. Introduction
  • 17.2. China
  • 17.3. India
  • 17.4. Japan
  • 17.5. Australia
  • 17.6. South Korea
  • 17.7. Indonesia
  • 17.8. Thailand
  • 17.9. Philippines
  • 17.10. Malaysia
  • 17.11. Singapore
  • 17.12. Vietnam
  • 17.13. Taiwan

18. Competitive Landscape

  • 18.1. Market Share Analysis, 2024
  • 18.2. FPNV Positioning Matrix, 2024
  • 18.3. Competitive Analysis
    • 18.3.1. Cisco Systems, Inc.
    • 18.3.2. Broadcom Inc.
    • 18.3.3. BMC Software, Inc.
    • 18.3.4. Apica
    • 18.3.5. Hewlett Packard Enterprise Company
    • 18.3.6. Dell Technologies Inc.
    • 18.3.7. BigPanda, Inc.
    • 18.3.8. Cloud Software Group, Inc.
    • 18.3.9. Devo Technology Inc.
    • 18.3.10. Diamanti, Inc.
    • 18.3.11. Dynatrace, Inc.
    • 18.3.12. Elasticsearch, Inc.
    • 18.3.13. Evolven Software, Inc.
    • 18.3.14. ExtraHop Networks, Inc.
    • 18.3.15. HCL Technologies
    • 18.3.16. Hitachi, Ltd.
    • 18.3.17. International Business Machines Corporation
    • 18.3.18. Ivanti Software, Inc.
    • 18.3.19. Microsoft Corporation
    • 18.3.20. NetApp, Inc.
    • 18.3.21. New Relic, Inc.
    • 18.3.22. Nexthink SA
    • 18.3.23. Open Text Corporation
    • 18.3.24. Oracle Corporation
    • 18.3.25. SAP SE
    • 18.3.26. SAS Institute Inc.
    • 18.3.27. ServiceNow, Inc.
    • 18.3.28. Sumo Logic, Inc.
    • 18.3.29. Veritas Technology LLC

19. ResearchAI

20. ResearchStatistics

21. ResearchContacts

22. ResearchArticles

23. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제