½ÃÀ庸°í¼­
»óǰÄÚµå
1808284

º¸¾È Å×½ºÆ® ½ÃÀå : À¯Çüº°, ±¸¼º¿ä¼Òº°, Å×½ºÆ® ¹æ¹ýº°, ¾÷Á¾º°, Àü°³ ¹æ½Äº°, Á¶Á÷ ±Ô¸ðº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Security Testing Market by Type, Component, Testing Methodology, Vertical, Deployment Mode, Organization Size - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 196 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

º¸¾È Å×½ºÆ® ½ÃÀåÀº 2024³â¿¡´Â 151¾ï 3,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾úÀ¸¸ç, 2025³â¿¡´Â 185¾ï 7,000¸¸ ´Þ·¯, CAGR 24.08%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 552¾ï 4,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ 2024³â 151¾ï 3,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ 2025³â 185¾ï 7,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ 2030³â 552¾ï 4,000¸¸ ´Þ·¯
CAGR(%) 24.08%

¿À´Ã³¯ÀÇ µðÁöÅÐ ÆÛ½ºÆ® ȯ°æ¿¡¼­ ±â¾÷Àº ³¯·Î ÁøÈ­ÇÏ´Â »çÀ̹ö À§Çù¿¡ Á÷¸éÇϰí ÀÖÀ¸¸ç, ¾ö°ÝÇÑ º¸¾È Å×½ºÆ® ÇÁ·ÎÅäÄÝÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ±â¾÷Àº µðÁöÅÐ ÀüȯÀ» À§ÇØ ¸¹Àº ÅõÀÚ¸¦ Çϰí Àֱ⠶§¹®¿¡ ¾ÖÇø®ÄÉÀ̼Ç, Ŭ¶ó¿ìµå ȯ°æ, µð¹ÙÀ̽º, ³×Æ®¿öÅ©°¡ °íµµÈ­µÈ °ø°Ý¿¡ Ãë¾àÇÑ »óŸ¦ À¯ÁöÇÒ ¼ö ÀÖµµ·Ï ÇØ¾ß ÇÕ´Ï´Ù. ±× °á°ú, º¸¾È Å×½ºÆ®´Â ±âÁ¸ÀÇ ¼Ò±ØÀûÀΠŵµ¸¦ ³Ñ¾î Áö¼ÓÀûÀÎ °³¹ß ¹× ¿î¿µ ÁÖ±âÀÇ ÇÙ½É ±¸¼º¿ä¼Ò°¡ µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ÀüȯÀº ±â¼úÀû ¿ä±¸¿¡ ºÎÀÀÇÒ »Ó¸¸ ¾Æ´Ï¶ó, ±ÔÁ¦ ´ç±¹ÀÇ ¾Ð¹Ú¿¡ ´ëÀÀÇϱâ À§ÇÑ Á¶Ä¡À̱⵵ ÇÕ´Ï´Ù.

¶ÇÇÑ, ¿ø°Ý ±Ù¹«ÀÇ È®»ê°ú ºÐ»ê ¾ÆÅ°ÅØÃ³¿Í °ü·ÃµÈ °ø°Ý ´ë»óÀÇ È®´ë·Î ÀÎÇØ ÀÚµ¿È­µÇ°í ÅëÇÕµÈ º¸¾È Å×½ºÆ® ¹æ¹ý·ÐÀÇ Ã¤ÅÃÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ Á¶Á÷Àº ¼ÒÇÁÆ®¿þ¾î °³¹ß ¶óÀÌÇÁ»çÀÌŬ Ãʱ⿡ Ãë¾àÁ¡À» ¹ß°ßÇÏ¿© ¼öÁ¤ ºñ¿ëÀ» Àý°¨Çϰí Àü¹ÝÀûÀÎ À§Çè °ü¸® ÇÁ·¹ÀÓ¿öÅ©¸¦ °­È­ÇÒ ¼ö ÀÖ½À´Ï´Ù. µ¿½Ã¿¡, Àü¹® Å×½ºÆ® ¼­ºñ½º´Â ¾÷°è °íÀ¯ÀÇ ÄÄÇöóÀ̾𽺠¿ä±¸»çÇ׿¡ ¸Â´Â ¸ÂÃãÇü Àü¹®°¡ ÁÖµµÇü Æò°¡¸¦ Á¦°øÇÔÀ¸·Î½á »ç³» ¿ª·®À» º¸¿ÏÇÕ´Ï´Ù.

ÀÌ º¸°í¼­´Â ÃֽŠº¸¾È Å×½ºÆ® ÇöȲÀ» Á¾ÇÕÀûÀ¸·Î ¼Ò°³Çϸç, ÁÖ¿ä ½ÃÀå ¼¼·Â, »õ·Î¿î µ¿Çâ, Àü·« ÃËÁø¿äÀο¡ ÃÊÁ¡À» ¸ÂÃß°í ÀÖ½À´Ï´Ù. ±â¼ú Çõ½Å, ÁøÈ­ÇÏ´Â À§Çù º¤ÅÍ, º¯È­ÇÏ´Â ÀÌÇØ°ü°èÀÚÀÇ ±â´ëÄ¡¸¦ °ËÁõÇÔÀ¸·Î½á ÀÇ»ç°áÁ¤±ÇÀÚ°¡ º¸¾È Å×½ºÆ®¿¡ ´ëÇÑ ÅõÀÚ¸¦ º¸´Ù ±¤¹üÀ§ÇÑ µðÁöÅÐ º¹¿ø·Â ¸ñÇ¥¿¡ ºÎÇÕÇϵµ·Ï ÇÏ´Â µ¥ ÇÊ¿äÇÑ ¸Æ¶ôÀ» Á¦°øÇÏ´Â °ÍÀ» ¸ñÇ¥·Î ÇÕ´Ï´Ù. ÀÌ ±âÃÊÀûÀÎ °³¿ä´Â ÀÌÈÄ ¼½¼Ç¿¡¼­ ´õ ±íÀÌ ÀÖ°Ô ºÐ¼®ÇÒ ¼ö ÀÖ´Â ¹ßÆÇÀ» ¸¶·ÃÇϰí, Á¡Á¡ ´õ º¹ÀâÇØÁö´Â º¸¾È ȯ°æÀ» ÇìÃijª°¥ ¼ö ÀÖ´Â ¸íÈ®ÇÑ ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

Àü ¼¼°è º¸¾È Å×½ºÆ® °üÇà¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ´Â °¡Àå Ãæ°ÝÀûÀÎ ±â¼ú º¯È­¿Í »õ·Î¿î À§ÇùÀÇ º¤Å͸¦ ¹àÈü´Ï´Ù.

º¸¾È Å×½ºÆ® ÇöÀåÀº ±Þ¼ÓÇÑ ±â¼ú Çõ½Å°ú À§Çù ¿äÀÎÀÇ ¿ª·® °­È­·Î ÀÎÇØ º¯È­ÀÇ ¹°°á¿¡ È۽ο© ÀÖ½À´Ï´Ù. ÀΰøÁö´É°ú ¸Ó½Å·¯´×ÀÇ ¹ßÀüÀ¸·Î º¸¾ÈÆÀÀº º¹ÀâÇÑ Ãë¾àÁ¡ ŽÁö ÇÁ·Î¼¼½º¸¦ ÀÚµ¿È­Çϰí, ÀͽºÇ÷ÎÀÕ ÆÐÅÏÀ» ¿¹ÃøÇϰí, º¹±¸ ÀÛ¾÷ÀÇ ¿ì¼±¼øÀ§¸¦ ÀÌÀüº¸´Ù ÈξÀ ´õ Á¤È®ÇÏ°Ô °áÁ¤ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ±× °á°ú, ±â¾÷µéÀº ÇöÀç AI ±â¹Ý ½ºÄ³³Ê¸¦ Áö¼ÓÀûÀÎ ÅëÇÕ ÆÄÀÌÇÁ¶óÀο¡ ÅëÇÕÇÏ¿© ÄÚµå ¹× ÀÎÇÁ¶ó º¯°æ »çÇ×À» ½Ç½Ã°£À¸·Î Æò°¡Çϰí, ¸±¸®½º ¼Óµµ¸¦ ´ÊÃßÁö ¾Ê°í ½Ç½Ã°£À¸·Î Æò°¡ÇÒ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù.

2025³â °ü¼¼ Á¤Ã¥ÀÌ ¹Ì±¹ Àü¿ªÀÇ º¸¾È Å×½ºÆ® ¾÷¹« °ø±Þ¸Á ¹× ¹èÆ÷ Àü·«¿¡ ¹ÌÄ¡´Â ±¤¹üÀ§ÇÑ ¿µÇ⠺м®

2025³â¿¡ ½ÃÇàµÈ °ü¼¼ °³Á¤À¸·Î º¸¾È Å×½ºÆ® ¹èÆ÷¿¡ »ç¿ëµÇ´Â Çϵå¿þ¾î ±¸¼º¿ä¼Ò, Ư¼ö Å×½ºÆ® ¾îÇöóÀ̾ð½º, ƯÁ¤ ¼ÒÇÁÆ®¿þ¾î ¶óÀ̼±½º¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â º¹ÀâÇÑ ¼öÀÔ °ü¼¼°¡ µµÀԵǾú½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­·Î ÀÎÇØ ±â¾÷µéÀº °ø±Þ¸ÁÀ» Àç°ËÅäÇϰí Ãß°¡ ºñ¿ë ºÎ´ãÀ» ÁÙÀ̱â À§ÇØ ±¹³» º¥´õ¿Í ´Ï¾î¼î¾î ÆÄÆ®³Ê·Î Á¶´Þ Àü·«À» ÀüȯÇϰí ÀÖ½À´Ï´Ù. ±× °á°ú, Å×½ºÆ® ¼­ºñ½º Á¦°ø¾÷üµéÀº ¼­ºñ½ºÀÇ ¿¬¼Ó¼º°ú ºñ¿ë ¿¹Ãø °¡´É¼ºÀ» À¯ÁöÇϱâ À§ÇØ Àåºñ °ø±Þ¾÷ü ³×Æ®¿öÅ©¸¦ À籸¼ºÇÏ°í ¹èÆ÷ ¹æ½ÄÀ» Á¶Á¤Çϰí ÀÖ½À´Ï´Ù.

À¯Çüº°, ±¸¼º¿ä¼Òº°, Å×½ºÆ® ±â¹ýº°, ¾÷Á¾º°, Àü°³ ¹æ½Äº°, Á¶Á÷ ±Ô¸ðº° º¸¾È Å×½ºÆ® ¼Ö·ç¼Ç ¼ö¿ä¸¦ ÃËÁøÇÏ´Â ½ÃÀå ¼¼ºÐÈ­ µ¿Çâ ÆÄ¾Ç

½ÃÀå ¼¼ºÐÈ­¿¡ ´ëÇÑ ÀλçÀÌÆ®¸¦ ÅëÇØ º¸¾È Å×½ºÆ®ÀÇ ´Ù¾çÇÑ Ãø¸é¿¡¼­ Â÷º°È­µÈ ¼ö¿ä ÃËÁø¿äÀÎÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. Å×½ºÆ® À¯ÇüÀ» °í·ÁÇÒ ¶§, Á¶Á÷Àº µ¿Àû, ÀÎÅÍ·¢Æ¼ºê, ·±Å¸ÀÓ º¸È£, Á¤Àû ºÐ¼® Á¢±Ù ¹æ½ÄÀ» Æ÷°ýÇÏ´Â ¾ÖÇø®ÄÉÀÌ¼Ç º¸¾È Å×½ºÆ®¸¦ Á¡Á¡ ´õ ¿ì¼±¼øÀ§¿¡ µÎ¾î ÄÚµå ¼ö¸íÁÖ±â Àü¹Ý¿¡ °ÉÃÄ Ãë¾àÁ¡À» ½Äº°Çϰí ÀÖ½À´Ï´Ù. ÇÑÆí, Ŭ¶ó¿ìµå º¸¾È Å×½ºÆ®ÀÇ Á¶»ç ¹æ¹ýÀº ±â¾÷ÀÌ ÆÛºí¸¯ ¹× ÇÁ¶óÀ̺ø ȯ°æ¿¡¼­ ÀÎÇÁ¶ó, Ç÷§Æû, ¼ÒÇÁÆ®¿þ¾î ¼­ºñ½º ±¸¼ºÀ» °ËÁõÇÏ´Â °úÁ¤¿¡¼­ ¸¹Àº ÁöÁö¸¦ ¹Þ°í ÀÖ½À´Ï´Ù. ÀåÄ¡ ¹× ³×Æ®¿öÅ© º¸¾È Å×½ºÆ®´Â IoT ÅëÇÕ ¹× °æ°è ¹æ¾î¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ¿ì·Á¸¦ ¹Ý¿µÇÏ¿© ¾ÈÁ¤ÀûÀÎ °ü·Ã¼ºÀ» À¯ÁöÇϰí ÀÖ½À´Ï´Ù.

¾Æ¸Þ¸®Ä«, À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Áö¿ªÀû ¿ªÇÐÀ» ÆÄ¾ÇÇϰí, º¸¾È Å×½ºÆ®¿¡ ´ëÇÑ ±ÔÁ¦¿Í ÅõÀÚ È帧ÀÇ °íÀ¯ÇÑ Ã¤Åà ÆÐÅÏÀÌ ¹àÇôÁ³½À´Ï´Ù.

Áö¿ªÀû ¿ªµ¿¼ºÀº º¸¾È Å×½ºÆ®¿¡ ´ëÇÑ ÅõÀÚ ¹× ä¿ë Àü·« ¼ö¸³¿¡ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¾Æ¸Þ¸®Ä«¿¡¼­´Â ¼º¼÷ÇÑ »çÀ̹ö º¸¾È ½ÃÀå°ú ±¤¹üÀ§ÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©°¡ ÷´Ü Å×½ºÆ® ¹æ¹ý·ÐÀÇ Á¶±â µµÀÔÀ» ÃËÁøÇϰí ÀÖÀ¸¸ç, ±â¾÷µéÀº ÅëÇÕµÈ DevSecOps ¸ðµ¨°ú Ŭ¶ó¿ìµå ³×ÀÌÆ¼ºê º¸¾È °ËÁõ¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. Áß¿ä ÀÎÇÁ¶ó¿Í ¼ÒºñÀÚ µ¥ÀÌÅÍ º¸¾ÈÀÌ ½Ã±ÞÇÑ »óȲ¿¡¼­ ±¹³» ¼­ºñ½º Á¦°ø¾÷ü¿Í ¾÷°è Àü¹®°¡µéÀÇ Çù·ÂÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù.

ÃÖ÷´Ü ¼Ö·ç¼Ç ÆÄÆ®³Ê½Ê°ú Àü·«Àû È®ÀåÀ» ÅëÇØ º¸¾È Å×½ºÆ®ÀÇ ¹Ì·¡¸¦ ¸¸µé¾î°¡´Â ¾÷°è ¼±µµ ±â¾÷ ¹× Çõ½Å°¡µéÀ» °ËÁõÇÕ´Ï´Ù.

ÁÖ¿ä º¸¾È Å×½ºÆ® Á¦°ø¾÷üµéÀº °æÀï»ç¿ÍÀÇ Â÷º°È­¸¦ À¯ÁöÇÏ°í »õ·Î¿î À§Çù »óȲ¿¡ ´ëÀÀÇϱâ À§ÇØ Áö¼ÓÀûÀ¸·Î ±â¼ú Çõ½ÅÀ» ÁøÇàÇϰí ÀÖ½À´Ï´Ù. Palo Alto Networks, Checkmarx, Veracode, Synopsys µîÀÇ º¥´õµéÀº ¸Ó½Å·¯´×À» Ȱ¿ëÇÑ Ãë¾àÁ¡ ¿ì¼±¼øÀ§ ÁöÁ¤°ú °³¹ßÀÚ Áß½ÉÀÇ ÅëÇÕÀ» ÅëÇØ Ç÷§ÆûÀ» °­È­Çϰí ÀÖ½À´Ï´Ù. ÇÑÆí, Rapid7°ú TenableÀº Ŭ¶ó¿ìµå º¸¾È »óÅ Æò°¡ ¹× ¿¡ÀÌÀüÆ®¸®½º ½ºÄ³´×À» Æ÷ÇÔÇÑ Á¦Ç° ¶óÀξ÷À» È®ÀåÇÏ¿© ÇÏÀ̺긮µå ȯ°æ Àü¹Ý¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ °¡½Ã¼ºÀ» Á¦°øÇÕ´Ï´Ù.

¾÷°è ¸®´õµéÀÌ º¸¾È Å×½ºÆ® ÇÁ·¹ÀÓ¿öÅ©ÀÇ °Å¹ö³Í½º ¹× ¿¹»ê ¹èºÐÀ» ÃÖÀûÈ­Çϰí, ź·Â¼ºÀ» ³ôÀ̱â À§ÇÑ Àü·«Àû ¹× ¿î¿µÀû Á¦¾ÈÀ» Á¦°øÇÕ´Ï´Ù.

¾÷°è ¸®´õµéÀº º¸´Ù ±¤¹üÀ§ÇÑ µðÁöÅÐ Àüȯ ¸ñÇ¥ ¹× ¸®½ºÅ© °ü¸® ÇÁ·¹ÀÓ¿öÅ©¿Í ÀÏÄ¡ÇÏ´Â »çÀü ¿¹¹æÀû º¸¾È Å×½ºÆ® Àü·«À» äÅÃÇØ¾ß ÇÕ´Ï´Ù. ±â¾÷Àº Áö¼ÓÀûÀÎ ÅëÇÕ ÆÄÀÌÇÁ¶óÀο¡ ÀÚµ¿È­µÈ Å×½ºÆ® ÅøÀ» ÅëÇÕÇÏ¿© ¸±¸®½º ÀÏÁ¤À» Áß´ÜÇÏÁö ¾Ê°í Ãë¾àÁ¡À» Á¶±â¿¡ ¹ß°ßÇÏ°í ¼öÁ¤ÇÒ ¼ö ÀÖµµ·Ï ÇØ¾ß ÇÕ´Ï´Ù. º¸¾È °ÔÀÌÆ®¸¦ DevSecOps ¿öÅ©Ç÷ο쿡 ÅëÇÕÇÔÀ¸·Î½á ÆÀÀº ¾ö°ÝÇÑ Ç°Áú ±âÁØÀ» À¯ÁöÇϸ鼭 ±â¼úÀû ºÎ並 ÁÙÀÌ°í ½ÃÀå Ãâ½Ã ½Ã°£À» ´ÜÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

º¸¾È Å×½ºÆ®ÀÇ ½ÃÀå ¿ªÇÐ ¹× °æÀï »óȲ Æò°¡¿¡¼­ ¾ö°ÝÇÑ Å¸´ç¼º°ú Åõ¸í¼ºÀ» º¸ÀåÇϱâ À§ÇØ Ã¤ÅÃÇÑ Á¾ÇÕÀûÀÎ Á¶»ç ¹æ¹ý·Ð¿¡ ´ëÇÑ ÀÚ¼¼ÇÑ ³»¿ë.

ÀÌ º¸°í¼­´Â º¸¾È Å×½ºÆ® ½ÃÀåÀÇ ¿ªÇÐÀ» ºÐ¼®ÇÏ´Â µ¥ ÀÖ¾î Ÿ´ç¼º°ú Åõ¸í¼ºÀ» º¸ÀåÇϱâ À§ÇØ ¾ö°ÝÇÑ È¥ÇÕ ¹æ¹ý·Ð ÇÁ·¹ÀÓ¿öÅ©¸¦ äÅÃÇß½À´Ï´Ù. 1Â÷ Á¶»ç¿¡¼­´Â »çÀ̹ö º¸¾È ½Ç¹«ÀÚ, ÃÖ°í Á¤º¸ º¸¾È Ã¥ÀÓÀÚ(CIO), ±â¼ú °æ¿µÁø°úÀÇ ½ÉÃþ ÀÎÅͺ並 ÅëÇØ Å×½ºÆ® ¿ì¼±¼øÀ§, ¹èÆ÷ °úÁ¦, ÁøÈ­ÇÏ´Â À§Çù ½Ã³ª¸®¿À¿¡ ´ëÇÑ »ý»ýÇÑ Á¤º¸¸¦ ¼öÁýÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ÁúÀû ÀÚ·á´Â ¾÷°è °£Ç๰, ±ÔÁ¦ º¸°í¼­, ÀϹݿ¡ °ø°³µÈ ±â¼ú ¹®¼­ µî 2Â÷ Á¶»ç¸¦ ÅëÇØ º¸¿ÏµÇ¾î Á¶»ç °á°ú¸¦ ¸Æ¶ôÈ­ÇÏ°í »õ·Î¿î µ¿ÇâÀ» ÆÄ¾ÇÇÏ´Â µ¥ µµ¿òÀÌ µÇ¾ú½À´Ï´Ù.

º¸¾È Å×½ºÆ® ½ÃÀåÀÇ ÁøÈ­¿¡ ´ëÇÑ ÁÖ¿ä °úÁ¦¿Í ÀÌÇØ°ü°èÀÚÀÇ È¸º¹Åº·Â¼º°ú ¼ºÀå ±Ëµµ¸¦ Á¤ÀÇÇÏ´Â Àü·«Àû ¿µÇâ·Â¿¡ ´ëÇÑ °á·ÐÀû ÀλçÀÌÆ® Á¦°ø

º» º¸°í¼­¸¦ ÅëÇØ º¸¾È Å×½ºÆ®°¡ ´ÜÀÏ Ã¼Å©Æ÷ÀÎÆ®¿¡¼­ Çö´ëÀÇ »çÀ̹ö º¸¾È Àü·«À» µÞ¹ÞħÇÏ´Â ÅëÇÕÀûÀ̰í Áö¼ÓÀûÀÎ °üÇàÀ¸·Î ÁøÈ­ÇßÀ½À» °­Á¶ÇØ ¿Ô½À´Ï´Ù. AI ±â¹Ý ÀÚµ¿È­, Ŭ¶ó¿ìµå ³×ÀÌÆ¼ºê ÇÁ·¹ÀÓ¿öÅ©, DevSecOps öÇÐÀÌ °áÇյǾî Á¶Á÷Àº Ãë¾àÁ¡À» Á¶±â¿¡ ½Äº°ÇÏ°í ´ëÀÀÇϸç, ¿î¿µ»óÀÇ ¸¶ÂûÀ» ÁÙÀ̰í, º¸´Ù ¹ÎøÇÏ°Ô ¾ö°ÝÇÑ ±ÔÁ¦ ¿ä°ÇÀ» ÃæÁ·ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå º¸¾È Å×½ºÆ® ½ÃÀå : À¯Çüº°

  • ¾ÖÇø®ÄÉÀÌ¼Ç º¸¾È Å×½ºÆ®
    • µ¿Àû ¾ÖÇø®ÄÉÀÌ¼Ç º¸¾È Å×½ºÆ®(DAST)
    • ÀÎÅÍ·¢Æ¼ºê ¾ÖÇø®ÄÉÀÌ¼Ç º¸¾È Å×½ºÆ®(IAST)
    • ·±Å¸ÀÓ ¾ÖÇø®ÄÉÀÌ¼Ç ÀÚü º¸È£(RASP)
    • Á¤Àû ¾ÖÇø®ÄÉÀÌ¼Ç º¸¾È Å×½ºÆ®(SAST)
  • Ŭ¶ó¿ìµå º¸¾È Å×½ºÆ®
    • IaaS º¸¾È Å×½ºÆ®
    • PaaS º¸¾È Å×½ºÆ®
    • SaaS º¸¾È Å×½ºÆ®
  • µð¹ÙÀ̽º º¸¾È Å×½ºÆ®
  • ³×Æ®¿öÅ© º¸¾È Å×½ºÆ®

Á¦9Àå º¸¾È Å×½ºÆ® ½ÃÀå : ±¸¼º¿ä¼Òº°

  • ¼­ºñ½º
    • ¸Å´ÏÁöµå ¼­ºñ½º
    • Àü¹® ¼­ºñ½º
  • µµ±¸
    • µ¿Àû ºÐ¼® µµ±¸
    • ÀÎÅÍ·¢Æ¼ºê Å×½ºÆ® µµ±¸
    • ³×Æ®¿öÅ© ½ºÄ³³Ê
    • Á¤Àû ºÐ¼® µµ±¸
    • Ãë¾à¼º °ü¸® µµ±¸

Á¦10Àå º¸¾È Å×½ºÆ® ½ÃÀå : Å×½ºÆ® ¹æ¹ýº°

  • ÀÚµ¿ Å×½ºÆ®
  • ¼öµ¿ Å×½ºÆ®

Á¦11Àå º¸¾È Å×½ºÆ® ½ÃÀå : ¾÷Á¾º°

  • ÀºÇࡤ±ÝÀ¶ ¼­ºñ½º¡¤º¸Çè(BFSI)
  • ±³À°
  • ¿¡³ÊÁö¡¤À¯Æ¿¸®Æ¼
  • Á¤ºÎ¡¤¹æÀ§
  • ÇコÄɾî
  • IT¡¤Åë½Å
  • Á¦Á¶
  • ¼Ò¸Å¡¤E-Commerce
  • ¿î¼Û¡¤¹°·ù

Á¦12Àå º¸¾È Å×½ºÆ® ½ÃÀå : Àü°³ ¹æ½Äº°

  • Ŭ¶ó¿ìµå ±â¹Ý
  • ¿ÂÇÁ·¹¹Ì½º

Á¦13Àå º¸¾È Å×½ºÆ® ½ÃÀå : Á¶Á÷ ±Ô¸ðº°

  • ´ë±â¾÷
  • Áß¼Ò±â¾÷

Á¦14Àå ¾Æ¸Þ¸®Ä«ÀÇ º¸¾È Å×½ºÆ® ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦15Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ º¸¾È Å×½ºÆ® ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦16Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ º¸¾È Å×½ºÆ® ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦17Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024
  • °æÀï ºÐ¼®
    • Apogee Corporation
    • Arrow Electronics
    • AT&T Inc.
    • Bugcrowd Inc.
    • Checkmarx Ltd.
    • Cigniti Technologies Ltd.
    • Cisco Systems, Inc.
    • DataArt Solutions Inc.
    • DXC Technology
    • Fortra, LLC
    • HackerOne Inc.
    • HCL Technologies Limited
    • ImmuniWeb SA
    • International Business Machines Corporation
    • Intertek Group plc
    • LogRhythm, Inc.
    • McAfee, LLC
    • NowSecure, Inc.
    • OpenText Corporation
    • Parasoft Corporation
    • PortSwigger Ltd.
    • Qualitest Group
    • Rapid7, Inc.
    • SafeAeon Inc.
    • ScienceSoft USA Corporation
    • Synopsys, Inc.

Á¦18Àå ¸®¼­Ä¡ AI

Á¦19Àå ¸®¼­Ä¡ Åë°è

Á¦20Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦21Àå ¸®¼­Ä¡ ±â»ç

Á¦22Àå ºÎ·Ï

KSM 25.09.23

The Security Testing Market was valued at USD 15.13 billion in 2024 and is projected to grow to USD 18.57 billion in 2025, with a CAGR of 24.08%, reaching USD 55.24 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 15.13 billion
Estimated Year [2025] USD 18.57 billion
Forecast Year [2030] USD 55.24 billion
CAGR (%) 24.08%

In today's digital-first environment, organizations confront ever-evolving cyber threats that demand rigorous security testing protocols. As enterprises invest heavily in digital transformation initiatives, they must ensure that applications, cloud environments, devices, and networks remain impervious to sophisticated attacks. Consequently, security testing has transcended its traditional reactive posture to become a core component of continuous development and operational cycles. This shift responds not only to technical imperatives but also to heightened regulatory pressures, as governments and industry bodies worldwide mandate demonstrable resilience measures to safeguard sensitive data.

Moreover, the proliferation of remote work and the expanded attack surface associated with distributed architectures have accelerated the adoption of automated and integrated security testing methodologies. These approaches enable organizations to uncover vulnerabilities earlier in the software development lifecycle, reducing remediation costs and strengthening overall risk management frameworks. At the same time, specialized testing services complement in-house capabilities by offering expert-led assessments, customized to industry-specific compliance requirements.

This report provides a holistic introduction to the latest security testing landscape, focusing on critical market forces, emerging trends, and strategic drivers. By examining technological innovations, evolving threat vectors, and shifting stakeholder expectations, we aim to equip decision-makers with the context needed to align security testing investments with their broader digital resilience objectives. This foundational overview sets the stage for deeper analysis in subsequent sections, offering a clear roadmap for navigating an increasingly complex security environment.

Unveiling the Most Impactful Technological Transformations and Emerging Threat Vectors That Are Revolutionizing Security Testing Practices Worldwide

The security testing landscape is undergoing a transformative wave driven by rapid technological innovation and intensifying threat actor capabilities. Advancements in artificial intelligence and machine learning have enabled security teams to automate complex vulnerability detection processes, predict exploit patterns, and prioritize remediation efforts with unprecedented precision. As a result, organizations now integrate AI-driven scanners into continuous integration pipelines, ensuring that code and infrastructure changes undergo real-time assessment without slowing down release cadence.

Concurrently, the shift toward cloud-native architectures and containerization has spurred the development of specialized testing frameworks designed to validate microservices, orchestration platforms, and ephemeral workloads. These solutions address security controls at each layer of a modern stack, from container images to runtime environments. In parallel, the emergence of DevSecOps philosophy has fostered tighter collaboration between development, security, and operations teams, embedding security testing early and often in application lifecycles.

Furthermore, threat actors have diversified their tactics, blending traditional malware campaigns with supply chain compromises and zero-day exploits. This evolution compels security teams to adopt multi-pronged testing strategies-combining dynamic analysis, interactive protection mechanisms, and behavioral analytics-to uncover vulnerabilities that evade conventional scanners. As a result, security testing is no longer an isolated checkpoint but a continuous, adaptive process that evolves in lockstep with emerging attack vectors.

Analyzing the Far-Reaching Consequences of 2025 Tariff Policies on Security Testing Operations Supply Chains and Deployment Strategies Across the United States

Tariff revisions enacted in 2025 have introduced a complex array of import duties affecting hardware components, specialized testing appliances, and certain software licenses used in security testing deployments. These changes have prompted organizations to reassess their supply chains, shifting procurement strategies toward domestic vendors or nearshore partners to mitigate additional cost burdens. Consequently, testing service providers have reconfigured their network of equipment suppliers and adjusted deployment methodologies to maintain service continuity and cost predictability.

At the same time, some testing tool vendors have localized manufacturing operations or established regional warehousing facilities to avoid tariff-induced price increases. This reorganization has significant implications for lead times, support agreements, and warranty structures, prompting enterprises to scrutinize contractual terms more closely. Moreover, professional services firms have updated their engagement frameworks to absorb tariff-related expenses or recommend alternative toolkits that deliver equivalent functionality with lower cross-border fees.

The cumulative impact of these tariffs extends beyond procurement to influence strategic decision-making around hybrid and multi-cloud testing environments. Organizations evaluating cloud-based solutions now weigh potential tariff liabilities tied to proprietary virtual appliances against the scalability benefits of on-demand testing platforms. In this dynamic context, business leaders are exploring new partnership models, developing flexible sourcing strategies, and renegotiating service level agreements to safeguard their security testing budgets against future trade policy shifts.

Illuminating Core Market Segmentation Trends from Application and Cloud to Deployment and Enterprise Size That Drive Demand for Security Testing Solutions

Insight into market segmentation reveals the differentiated drivers of demand across multiple dimensions of security testing. When examining test types, organizations increasingly prioritize application security testing, encompassing dynamic, interactive, runtime protection, and static analysis approaches to identify vulnerabilities throughout code lifecycles. Meanwhile, cloud security testing methodologies gain traction as enterprises validate infrastructure, platform, and software service configurations in public and private environments. Device and network security testing maintain steady relevance, reflecting ongoing concerns around IoT integrations and perimeter defense.

Component analysis underscores the coevolution of tools and services. Enterprises leverage advanced testing platforms for automated analysis, vulnerability management, and network scanning while complementing these capabilities with managed and professional services for specialized assessments, compliance audits, and bespoke remediation guidance. As testing methodology preferences evolve, automated frameworks dominate high-volume, continuous environments, whereas manual penetration testing retains its value for deep-dive explorations of sophisticated threat scenarios.

Vertical-specific insights highlight how industry contexts shape security testing adoption. Regulated sectors such as financial services, healthcare, and government emphasize stringent compliance testing, while manufacturing and retail focus on safeguarding intellectual property and customer data. Deployment mode preferences split between cloud-centric solutions for agility and on-premises installations for security control. Organization size further influences decision criteria, with large enterprises often opting for comprehensive, integrated platforms and smaller firms seeking cost-effective, scalable services.

Unraveling Regional Dynamics across the Americas EMEA and Asia-Pacific to Highlight Unique Adoption Patterns Regulation and Investment Flows in Security Testing

Regional dynamics play a pivotal role in shaping security testing investment and adoption strategies. In the Americas, mature cybersecurity markets and extensive regulatory frameworks have driven early adoption of advanced testing methodologies, with organizations investing in integrated DevSecOps models and cloud-native security validation. The urgency to secure critical infrastructure and consumer data has accelerated partnerships between domestic service providers and industry specialists.

Conversely, the Europe, Middle East & Africa region exhibits diverse regulatory landscapes and varying levels of digital infrastructure maturity. Stricter data protection regulations in Europe have spurred demand for comprehensive compliance-driven testing services, while emerging markets in the Middle East and Africa are prioritizing foundational network and device security testing to support rapid digitalization.

Across the Asia-Pacific region, high growth in cloud adoption and mobile-first initiatives has fueled the expansion of automated security testing solutions. Enterprises in this region focus on securing complex hybrid architectures and responding to evolving local regulations. Key markets are forging strategic alliances with global testing vendors to combine international best practices with localized expertise, driving innovation and enhancing resilience across all digital touchpoints.

Examining Leading Industry Players and Innovators That Are Shaping the Future of Security Testing with Cutting-Edge Solutions Partnerships and Strategic Expansions

Leading security testing providers are continuously innovating to maintain competitive differentiation and address emerging threat landscapes. Vendors such as Palo Alto Networks, Checkmarx, Veracode, and Synopsys have enhanced their platforms with machine learning-powered vulnerability prioritization and developer-centric integrations. Meanwhile, Rapid7 and Tenable have broadened their offerings to include cloud security posture assessments and agentless scanning, enabling holistic visibility across hybrid environments.

Strategic acquisitions and partnerships characterize the competitive landscape, as established players integrate specialized capabilities-such as runtime application self-protection, container security, and threat intelligence-into unified testing ecosystems. At the same time, niche providers focus on high-touch services and industry-specific compliance frameworks to differentiate their propositions in regulated sectors.

These dynamics encourage continuous collaboration between technology vendors and professional services firms, delivering end-to-end security testing solutions that align with each organization's risk posture and development methodologies. By leveraging complementary strengths, these partnerships drive innovation, accelerate time to remediation, and reinforce resilience against rapidly evolving cyber threats.

Delivering Strategic and Operational Recommendations to Help Industry Leaders Optimize Security Testing Frameworks Governance and Budget Allocations for Resilience

Industry leaders must embrace a proactive security testing strategy that aligns with broader digital transformation objectives and risk management frameworks. Companies should integrate automated testing tools within continuous integration pipelines to detect and remediate vulnerabilities early without disrupting release schedules. By embedding security gates into DevSecOps workflows, teams can reduce technical debt and accelerate time-to-market while maintaining rigorous quality standards.

Furthermore, organizations should adopt a risk-based testing approach, prioritizing assessments on critical applications, cloud workloads, and IoT devices that handle sensitive data or support mission-critical functions. This targeted strategy ensures that limited resources yield maximum security impact and compliance coverage. Leaders are also advised to cultivate in-house security expertise through training programs, certifications, and cross-functional collaboration, reinforcing a culture of shared accountability for secure development.

Finally, decision-makers should reevaluate their sourcing models by balancing tool investments with managed and professional services that offer specialized skills and industry-specific guidance. This hybrid approach provides flexibility to scale testing capabilities rapidly while addressing complex threat scenarios that require expert-led analysis. By combining robust tooling with advisory support, enterprises can maintain an adaptive security posture in an ever-changing threat landscape.

Detailing the Comprehensive Research Methodology Employed to Ensure Rigor Validity and Transparency in Assessing Security Testing Market Dynamics and Competitive Landscape

This research report employs a rigorous mixed-methodology framework to ensure validity and transparency in analyzing security testing market dynamics. Primary research involved in-depth interviews with cybersecurity practitioners, chief information security officers, and technology executives, capturing firsthand insights into testing priorities, deployment challenges, and evolving threat scenarios. These qualitative inputs were complemented by secondary research, including industry publications, regulatory reports, and publicly available technical documentation, to contextualize findings and identify emerging trends.

We also conducted comparative analysis of leading security testing solutions, evaluating feature sets, integration capabilities, and support models across multiple vendor platforms. This benchmarking process enabled us to assess competitive differentiation and uncover innovation hotspots within the ecosystem. To further validate our conclusions, we implemented triangulation by cross-referencing primary survey data with industry events, threat intelligence feeds, and case studies of high-profile security incidents.

Throughout the research process, we adhered to strict data governance standards, ensuring confidentiality and accuracy in sourcing. Our transparent methodology documentation provides stakeholders with the confidence needed to rely on the insights presented and apply them effectively to their organizational strategies.

Drawing Conclusive Insights on Security Testing Market Evolution Key Challenges and Strategic Imperatives That Will Define Resilience and Growth Trajectories for Stakeholders

Throughout this report, we have highlighted how security testing has evolved from a standalone checkpoint into an integrated, continuous practice that underpins modern cybersecurity strategies. The convergence of AI-driven automation, cloud-native frameworks, and DevSecOps philosophies has enabled organizations to identify and address vulnerabilities earlier, reduce operational friction, and meet stringent regulatory mandates with greater agility.

Key challenges persist, however, as trade policy shifts, supply chain complexities, and resource constraints compel stakeholders to reassess their testing frameworks. By leveraging strategic segmentation insights, regional analyses, and competitive benchmarks, decision-makers can refine their security testing roadmaps, optimize investment allocations, and enhance collaboration across development, security, and operations teams.

Ultimately, resilience in the face of an ever-changing threat landscape depends on the ability to adapt testing methodologies, integrate expert-led services, and maintain a forward-looking posture. This report provides the strategic foundation for industry leaders to navigate uncertainties, capitalize on emerging opportunities, and fortify their digital ecosystems against evolving cyber threats.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Integration of AI-driven vulnerability scanning to enhance continuous security testing in cloud native environments
  • 5.2. Rising demand for automated API security testing tools within complex microservices architectures
  • 5.3. Adoption of continuous penetration testing integrated into DevSecOps pipelines across enterprises
  • 5.4. Expansion of IoT device security testing services for smart city infrastructure and critical systems
  • 5.5. Increasing leverage of cloud-based fuzz testing platforms to identify vulnerabilities in distributed applications
  • 5.6. Emergence of privacy-preserving security testing approaches to comply with global data protection regulations
  • 5.7. Integration of behavioral analytics into security test suites to detect advanced persistent threats early

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Security Testing Market, by Type

  • 8.1. Introduction
  • 8.2. Application Security Testing
    • 8.2.1. Dynamic Application Security Testing (DAST)
    • 8.2.2. Interactive Application Security Testing (IAST)
    • 8.2.3. Runtime Application Self-Protection (RASP)
    • 8.2.4. Static Application Security Testing (SAST)
  • 8.3. Cloud Security Testing
    • 8.3.1. IaaS Security Testing
    • 8.3.2. PaaS Security Testing
    • 8.3.3. SaaS Security Testing
  • 8.4. Device Security Testing
  • 8.5. Network Security Testing

9. Security Testing Market, by Component

  • 9.1. Introduction
  • 9.2. Services
    • 9.2.1. Managed Services
    • 9.2.2. Professional Services
  • 9.3. Tools
    • 9.3.1. Dynamic Analysis Tools
    • 9.3.2. Interactive Testing Tools
    • 9.3.3. Network Scanners
    • 9.3.4. Static Analysis Tools
    • 9.3.5. Vulnerability Management Tools

10. Security Testing Market, by Testing Methodology

  • 10.1. Introduction
  • 10.2. Automated Testing
  • 10.3. Manual Testing

11. Security Testing Market, by Vertical

  • 11.1. Introduction
  • 11.2. Banking, Financial Services, & Insurance (BFSI)
  • 11.3. Education
  • 11.4. Energy & Utilities
  • 11.5. Government & Defense
  • 11.6. Healthcare
  • 11.7. IT & Telecommunications
  • 11.8. Manufacturing
  • 11.9. Retail & E-Commerce
  • 11.10. Transportation & Logistics

12. Security Testing Market, by Deployment Mode

  • 12.1. Introduction
  • 12.2. Cloud-Based
  • 12.3. On-Premises

13. Security Testing Market, by Organization Size

  • 13.1. Introduction
  • 13.2. Large Enterprises
  • 13.3. Small & Medium Enterprises (SMEs)

14. Americas Security Testing Market

  • 14.1. Introduction
  • 14.2. United States
  • 14.3. Canada
  • 14.4. Mexico
  • 14.5. Brazil
  • 14.6. Argentina

15. Europe, Middle East & Africa Security Testing Market

  • 15.1. Introduction
  • 15.2. United Kingdom
  • 15.3. Germany
  • 15.4. France
  • 15.5. Russia
  • 15.6. Italy
  • 15.7. Spain
  • 15.8. United Arab Emirates
  • 15.9. Saudi Arabia
  • 15.10. South Africa
  • 15.11. Denmark
  • 15.12. Netherlands
  • 15.13. Qatar
  • 15.14. Finland
  • 15.15. Sweden
  • 15.16. Nigeria
  • 15.17. Egypt
  • 15.18. Turkey
  • 15.19. Israel
  • 15.20. Norway
  • 15.21. Poland
  • 15.22. Switzerland

16. Asia-Pacific Security Testing Market

  • 16.1. Introduction
  • 16.2. China
  • 16.3. India
  • 16.4. Japan
  • 16.5. Australia
  • 16.6. South Korea
  • 16.7. Indonesia
  • 16.8. Thailand
  • 16.9. Philippines
  • 16.10. Malaysia
  • 16.11. Singapore
  • 16.12. Vietnam
  • 16.13. Taiwan

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. Apogee Corporation
    • 17.3.2. Arrow Electronics
    • 17.3.3. AT&T Inc.
    • 17.3.4. Bugcrowd Inc.
    • 17.3.5. Checkmarx Ltd.
    • 17.3.6. Cigniti Technologies Ltd.
    • 17.3.7. Cisco Systems, Inc.
    • 17.3.8. DataArt Solutions Inc.
    • 17.3.9. DXC Technology
    • 17.3.10. Fortra, LLC
    • 17.3.11. HackerOne Inc.
    • 17.3.12. HCL Technologies Limited
    • 17.3.13. ImmuniWeb SA
    • 17.3.14. International Business Machines Corporation
    • 17.3.15. Intertek Group plc
    • 17.3.16. LogRhythm, Inc.
    • 17.3.17. McAfee, LLC
    • 17.3.18. NowSecure, Inc.
    • 17.3.19. OpenText Corporation
    • 17.3.20. Parasoft Corporation
    • 17.3.21. PortSwigger Ltd.
    • 17.3.22. Qualitest Group
    • 17.3.23. Rapid7, Inc.
    • 17.3.24. SafeAeon Inc.
    • 17.3.25. ScienceSoft USA Corporation
    • 17.3.26. Synopsys, Inc.

18. ResearchAI

19. ResearchStatistics

20. ResearchContacts

21. ResearchArticles

22. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦