½ÃÀ庸°í¼­
»óǰÄÚµå
1808597

Ĩ·¿ ½ÃÀå : ÇÁ·Î¼¼¼­, À¯Çü, Æ÷Àå ±â¼ú, ¼³°è ¾ÆÅ°ÅØÃ³, ÃÖÁ¾ ¿ëµµº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Chiplet Market by Processor, Type, Packaging Technology, Design Architecture, End-use - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 187 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Ĩ·¿ ½ÃÀåÀº 2024³â 142¾ï 2,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2025³â¿¡ 193¾ï ´Þ·¯¿¡ À̸£°í, CAGR 37.03%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 941¾ï 7,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ : 2024³â 142¾ï 2,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ : 2025³â 193¾ï ´Þ·¯
¿¹Ãø ¿¬µµ : 2030³â 941¾ï 7,000¸¸ ´Þ·¯
CAGR(%) 37.03%

Ĩ·¿ ±â¼úÀÇ ÁøÈ­¿Í Â÷¼¼´ë ¹ÝµµÃ¼ Çõ½Å °¡¼ÓÈ­¿¡ ÀÖ¾î Áß¿äÇÑ ¿ªÇÒÀ» Á¾ÇÕÀûÀ¸·Î ¼Ò°³ÇÕ´Ï´Ù.

Ĩ·¿ ±â¼úÀº Â÷¼¼´ë ¼º´É°ú ºñ¿ë È¿À²¼ºÀ» ½ÇÇöÇÒ ¼ö ÀÖ´Â ±âº» ÃàÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ¸ð³î¸®½Ä ¼³°è¸¦ ¸ðµâÈ­µÈ »óÈ£ ¿î¿ë °¡´ÉÇÑ ±¸¼º ¿ä¼Ò·Î ºÐÇØÇÔÀ¸·Î½á ¼³°èÀÚ´Â ´ë»ó ¿ëµµÀÇ Á¤È®ÇÑ ¼º´É, Àü·Â ¼Òºñ ¹× ¸éÀû ¿ä±¸ »çÇ׿¡ µû¶ó °¢ ±â´É ºí·ÏÀ» ÃÖÀûÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ¼Ò°³¿¡¼­´Â ¾÷°è ¸®´õµéÀÌ Ã·´Ü ÆÐŰ¡ ±â¼ú, ÀÌÁ¾ ÁýÀûÈ­, Ç¥ÁØÈ­µÈ ÀÎÅÍÆäÀ̽º¸¦ Ȱ¿ëÇÏ¿© ±âÁ¸ ½Ã½ºÅÛ ¿Â Ĩ Á¢±Ù ¹æ½ÄÀÇ È®Àå ¹®Á¦¸¦ ¾î¶»°Ô ±Øº¹Çϰí ÀÖ´ÂÁö ÀÌÇØÇÒ ¼ö ÀÖ´Â ±âÃʸ¦ Á¦½ÃÇÕ´Ï´Ù.

¸ðµâ½Ä ¹× È®Àå °¡´ÉÇÑ ¾ÆÅ°ÅØÃ³¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó Ĩ·¿ ½ÃÀå »óȲÀ» ÁÖµµÇÏ´Â Áß¿äÇÑ º¯È­ÀÇ ½Ã±â¸¦ ºÐ¼®ÇÕ´Ï´Ù.

Áö³­ 10³â°£ ¹ÝµµÃ¼ °¡Ä¡»ç½½Àº ¼³°è »ç°í¿Í Á¦Á¶ ÆÐ·¯´ÙÀÓÀ» À籸ÃàÇÏ´Â ÀÏ·ÃÀÇ Å« º¯È­¸¦ °Þ¾î¿Ô½À´Ï´Ù. óÀ½¿¡´Â ¹«¾îÀÇ ¹ýÄ¢¿¡ µû¸¥ ¼Óµµ ÀúÇϸ¦ ÇÇÇϱâ À§ÇØ ½ÃÀÛµÈ Ä¨ ¼³°è¿¡ ´ëÇÑ ¸ðµâ½Ä Á¢±Ù ¹æ½ÄÀº Á¡Â÷ ÁöÁö¸¦ ¾ò°í ÀÖÀ¸¸ç, »óÈ£ ¿î¿ë °¡´ÉÇÑ Ç¥ÁØÀ» È®¸³Çϱâ À§ÇØ IP Á¦°ø ¾÷ü, ÁÖÁ¶ ¹× Á¶¸³ ¾÷ü °£ÀÇ Çù¾÷À¸·Î À̾îÁö°í ÀÖ½À´Ï´Ù. ±× °á°ú, µðÀÚÀÎ ÆÀÀº ¸ð³î¸®½Ä ÅëÇÕ¿¡¼­ À¯¿¬¼º, ·¡Çǵå ÇÁ·ÎÅäŸÀÌÇÎ, À̱âÁ¾ ÅëÇÕÀ» ¿ì¼±½ÃÇÏ´Â »ç°í¹æ½ÄÀ¸·Î ÁøÈ­Çϰí ÀÖÀ¸¸ç, À̸¦ ÅëÇØ ½ÃÀå Ãâ½Ã ½Ã°£À» ´ÜÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

2025³â ½ÃÇàµÉ ¹Ì±¹ °ü¼¼°¡ Ĩ·¿ °ø±Þ¸Á°ú »ê¾÷ °æÁ¦¿¡ ¹ÌÄ¡´Â ´©Àû ¿µÇâ Æò°¡

2025³â, ¹Ì±¹ Á¤ºÎ°¡ ºÎ°úÇÑ »õ·Î¿î °ü¼¼´Â ±¹°æÀ» ÃÊ¿ùÇÑ ¹ÝµµÃ¼ Á¦Á¶ ¹× ºÎǰ Á¶´Þ¿¡ ÀÇÁ¸ÇÏ´Â ±â¾÷µé¿¡°Ô º¹ÀâÇÑ ºñ¿ë °ËÅäÀÇ ·¹À̾ µµÀÔÇß½À´Ï´Ù. ÀÌ·¯ÇÑ °ü¼¼ÀÇ ´©Àû È¿°ú´Â ±âÁ¸ °ø±Þ¸ÁÀ» È¥¶õ¿¡ ºü¶ß¸®°í ÁÖ¿ä Àç·á ¹× Á¦Á¶ °øÁ¤ÀÇ »ó·ú ºñ¿ëÀ» Áõ°¡½ÃÄ×½À´Ï´Ù. ÀÌ¿¡ µû¶ó µðÀÚÀÎÇϿ콺¿Í °Å·¡Ã³ ºê·£µå Á¦Á¶¾÷üµéÀº °ü¼¼ °ü·Ã ºñ¿ë »ó½Â¿¡ ´ëÇÑ ¸®½ºÅ©¸¦ ÁÙÀ̱â À§ÇØ °ø±Þ¾÷ü Àü·«À» Àç°ËÅäÇϰí ÀÖ½À´Ï´Ù.

ÇÁ·Î¼¼¼­ À¯Çü, ÆÐŰ¡ ±â¼ú, ÃÖÁ¾ ¿ëµµ ¹öƼÄÿ¡ °ÉÃÄ °íÀ¯ÇÑ ÃËÁø¿äÀÎÀ» ¹ß°ßÇÒ ¼ö ÀÖ´Â Áß¿äÇÑ ¼¼ºÐÈ­ ÀλçÀÌÆ®¸¦ Á¦°øÇÕ´Ï´Ù.

½ÃÀå ¼¼ºÐÈ­¿¡ ´ëÇÑ ±íÀº ÀÌÇØ¸¦ ÅëÇØ ´Ù¾çÇÑ ¿ëµµ¿¡¼­ Ĩ·¿ÀÇ Ã¤Åðú ¼º´É ÃÖÀûÈ­¸¦ Çü¼ºÇÏ´Â ½ÃÀå ¼ºÀå ÃËÁø¿äÀο¡ ´ëÇÑ Áß¿äÇÑ ÅëÂû·ÂÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. ÇÁ·Î¼¼¼­ ȯ°æÀ» °í·ÁÇÒ ¶§, ¼³°èÀÚ´Â ¹ü¿ë ÀÛ¾÷¿¡ ÃÖÀûÈ­µÈ ¿ëµµ ÇÁ·Î¼¼½Ì À¯´Ö, AI ¿öÅ©·Îµå¿¡ ¸Â°Ô Á¶Á¤µÈ ÀÎÅÚ¸®Àü½º Àü¿ë °¡¼Ó±â, Á¦¾î¿Í ¿¬»ê ±â´ÉÀÇ ±ÕÇüÀ» ¸ÂÃß´Â Áß¾Ó ¿¬»ê ó¸® ÀåÄ¡, Á¦Á¶ ÈÄ Ä¿½ºÅ͸¶ÀÌ¡ÀÌ °¡´ÉÇÑ À籸¼º °¡´ÉÇÑ Çʵå ÇÁ·Î±×·¡¸Óºí °ÔÀÌÆ® ¾î·¹ÀÌ, ½Ã°¢È­ ¹× º´·Ä ¿¬»ê ÀÛ¾÷À» °­È­ÇÏ´Â °í󸮷® ±×·¡ÇÈ ÇÁ·Î¼¼½Ì À¯´Ö Áß Çϳª¸¦ ¼±ÅÃÇÕ´Ï´Ù. °¢ ÇÁ·Î¼¼¼­ Ä«Å×°í¸®´Â °íÀ¯ÇÑ ÅëÇÕ °úÁ¦¿Í ¼º´É Æ®·¹À̵å¿ÀÇÁ¸¦ Á¦½ÃÇϸç, ÆÐŰ¡ ¼±Åðú ÀÎÅÍÆäÀ̽º Ç¥ÁØ¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù.

¹ÌÁÖ, Áßµ¿/¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ µ¿Çâ°ú °æÀï ¿ìÀ§¸¦ °­Á¶ÇÏ´Â ÁÖ¿ä Áö¿ªº° °íÂû ¹ßÇ¥

Áö¿ªº° °ø±Þ¸ÁÀÇ °­Á¡, Á¦Á¶ ´É·Â, ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©°¡ °æÀï ¿ìÀ§¸¦ Á¿ìÇϱ⠶§¹®¿¡ Áö¸®Àû ¿ªÇаü°è´Â Ĩ·¿ »ýŰèÀÇ ÁøÈ­¿¡ Å« ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ºÏ¹Ì¿Í ³²¹Ì¿¡¼­´Â ¼±ÁøÀûÀÎ ¿¬±¸ ±â°ü°ú ÃÖ÷´Ü ÁÖÁ¶ ¼­ºñ½ºÀÇ ÅºÅºÇÑ ³×Æ®¿öÅ©°¡ ÀÎÅÍÆ÷Àú ±â¼ú ¹× ÀÌÁ¾ ÁýÀû ±â¼ú Çõ½ÅÀ» ÃËÁøÇϰí, ±¹³» Á¤Ã¥ Áö¿øÀº ÇöÁö Á¶¸³ ¹× Å×½ºÆ® ¿ª·®¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

Ĩ·¿ »ê¾÷ »ýŰ迡¼­ Çõ½Å°ú °æÀï Àü·«À» ÃßÁøÇϸç Áö¼ÓÀûÀÎ ¼ºÀå°ú Â÷º°È­¸¦ ²ÒÇÏ´Â ÁÖ¿ä ±â¾÷ Á¶»ç

Ĩ·¿ ½ÃÀåÀº ¹ÝµµÃ¼ Çõ½Å ±â¾÷, ½Å»ý Ĩ·¿ Àü¹® ±â¾÷, Ç¥ÁØÈ­¿¡ ÁÖ·ÂÇÏ´Â °øµ¿ ÄÁ¼Ò½Ã¾ö¿¡ ÀÇÇØ Çü¼ºµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ÁýÀû ÀåÄ¡ Á¦Á¶¾÷üµéÀº ¸ðµâÇü ¼³°è ÇÁ·¹ÀÓ¿öÅ©¸¦ Áö¼ÓÀûÀ¸·Î È®ÀåÇϰí ÀÖÀ¸¸ç, »ýÅÂ°è ÆÄÆ®³Êµé¿¡°Ô °ËÁõµÈ IP¿Í Á¦Á¶ ÆÄÀÌÇÁ¶óÀο¡ ´ëÇÑ ¾×¼¼½º¸¦ Á¦°øÇÕ´Ï´Ù. Â÷¼¼´ë ·ÎÁ÷ ¹× ¸Þ¸ð¸® Àü¹®±â¾÷Àº ÷´Ü »óÈ£¿¬°á ¼Ö·ç¼ÇÀ» °³¹ßÇÏ¿© ´ë¿ªÆø ¹Ðµµ¿Í Àü·Â È¿À²ÀÇ ÇѰ踦 ¶Ù¾î³Ñ°í ÀÖ½À´Ï´Ù.

Ĩ·¿ ½ÃÀå ¿ªÇÐÀ» Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ °æÀï ¿ìÀ§¸¦ ±¸ÃàÇϱâ À§ÇÑ ¾÷°è ¸®´õ¸¦ À§ÇÑ Àü·«Àû Á¦¾È

Ĩ·¿ ºÐ¾ß¿¡¼­ ±Þ¼ºÀåÇÏ´Â ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇϱâ À§ÇØ ¾÷°è ¸®´õµéÀº Çõ½Å°ú °ø±Þ¸Á ź·Â¼ºÀ» µ¿½Ã¿¡ È®º¸ÇÒ ¼ö Àִ ü°èÀûÀÎ Á¢±Ù ¹æ½ÄÀ» äÅÃÇØ¾ß ÇÕ´Ï´Ù. ¸ÕÀú, Á¶Á÷Àº »óÈ£ ¿î¿ë °¡´ÉÇÑ ÀÎÅÍÆäÀ̽º Ç¥ÁØÀ» °³¹ßÇϰųª ȹµæÇÏ¿© ÀÌÁ¾ ´ÙÀÌÀÇ ¿øÈ°ÇÑ ÅëÇÕÀ» º¸ÀåÇÏ´Â µ¿½Ã¿¡ °ËÁõ ±â°£À» ´ÜÃàÇØ¾ß ÇÕ´Ï´Ù. µ¿½Ã¿¡ ÷´Ü ÆÐŰ¡ ¹× ±âÆÇ Àü¹®°¡¿ÍÀÇ Àü·«Àû ÆÄÆ®³Ê½ÊÀ» ±¸ÃàÇÏ¿© ½ÅÈï °øÁ¤ ³ëµå ¹× ¿­ °ü¸® ±â¼ú¿¡ ´ëÇÑ Á¶±â Á¢±ÙÀ» ÃËÁøÇÒ ¼ö ÀÖ½À´Ï´Ù.

Ĩ·¿ ½ÃÀå Æò°¡¸¦ À§ÇØ Ã¤ÅÃµÈ Ã¼°èÀûÀÎ Á¢±Ù ¹æ½Ä°ú ºÐ¼® ±â¹ýÀ» °³°ýÇÏ´Â Á¾ÇÕÀûÀÎ ¿¬±¸ ¹æ¹ý·Ð.

º» º¸°í¼­ÀÇ Á¶»ç °á°ú´Â Á¤·®Àû º¥Ä¡¸¶Å©¿Í Á¤¼ºÀû ÅëÂû·ÂÀ» ¸ðµÎ ÆÄ¾ÇÇϱâ À§ÇØ °í¾ÈµÈ ¾ö°ÝÇÏ°í ´Ù°¢ÀûÀÎ Á¶»ç ¹æ¹ýÀ» ±â¹ÝÀ¸·Î Çϰí ÀÖ½À´Ï´Ù. ¸ÕÀú, °ø°³ ¹× µ¶Á¡ Á¤º¸¿øÀ» Á¾ÇÕÀûÀ¸·Î Á¶»çÇÏ¿© ÇÙ½É ±â¼ú µ¿Çâ, ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©, ½ÅÈï ¿ëµµ¸¦ ÀÌÇØÇϱâ À§ÇÑ ±âÃʸ¦ ¸¶·ÃÇÏ¿´½À´Ï´Ù. ÀÌ Å¹»ó Á¶»ç´Â ÁÖ¿ä Çõ½Å°ú ÁöÀûÀç»êÀÌ ÁýÁßµÉ ¼ö ÀÖ´Â ºÐ¾ß¸¦ ÆÄ¾ÇÇϱâ À§ÇØ »ó¼¼ÇÑ Æ¯Çã ÇöȲ ºÐ¼®À» ÅëÇØ º¸°­µÇ¾ú½À´Ï´Ù.

°á·Ð ÁÖ¿ä Á¶»ç °á°ú¸¦ ÅëÇÕÇÏ¿© ¿©·¯ ºÐ¾ßÀÇ Ä¨·¿ ±â¼ú µµÀÔÀÇ ¹Ì·¡ ±ËÀûÀ» ¿¹ÃøÇÕ´Ï´Ù.

ºÐ¼® °á°ú¸¦ Á¾ÇÕÇØ º¸¸é, ÇâÈÄ Ä¨·¿ äÅÃÀÇ ¹Ì·¡ ±Ëµµ¸¦ Çü¼ºÇÒ ¸î °¡Áö Áß¿äÇÑ ÁÖÁ¦°¡ µµÃâµÇ¾ú½À´Ï´Ù. ¸ðµâÇü ÅëÇÕ ÇÁ·¹ÀÓ¿öÅ©´Â ±âÁ¸ ¸ð³î¸®½Ä ½ºÄÉÀϸµÀÇ ÇѰ踦 ±Øº¹Çϱâ À§ÇÑ Ç¥ÁØÀ¸·Î, ÄÄÇ»ÆÃ ÆÐºê¸¯À» °³º° ¿öÅ©·Îµå ÇÁ·ÎÆÄÀÏ¿¡ ¸Â°Ô Á¶Á¤ÇÏ´Â µ¥ ÀÖ¾î Àü·Ê ¾ø´Â À¯¿¬¼ºÀ» Á¦°øÇÕ´Ï´Ù. Æ÷Àå ¹× Á¶¸³ ºÐ¾ßÀÇ Áö¿ªÀû Àü¹®¼ºÀº Áö¼ÓÀûÀ¸·Î °æÀï ¿ìÀ§¸¦ ÃËÁøÇϰí, Áö¿ª ¹ÐÂøÇü Ŭ·¯½ºÅÍ´Â °øÁ¤ Çõ½ÅÀ» ÃËÁøÇÏ°í ºñ¿ëÀ» ³·Ãâ °ÍÀÔ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå Ĩ·¿ ½ÃÀå : ÇÁ·Î¼¼¼­º°

  • ¾ÖÇø®ÄÉÀÌ¼Ç Ã³¸® À¯´Ö
  • ÀΰøÁö´É ÁÖ¹®Çü ÁýÀûȸ·Î
  • Áß¾Ó Ã³¸® ÀåÄ¡
  • Çʵå ÇÁ·Î±×·¡¸Óºí °ÔÀÌÆ® ¾î·¹ÀÌ(FPGA)
  • ±×·¡ÇÈ Ã³¸® ÀåÄ¡

Á¦9Àå Ĩ·¿ ½ÃÀå : À¯Çüº°

  • I/O µå¶óÀ̹ö
  • ¸Þ¸ð¸® ºí·Ï
  • ÇÁ·Î¼¼¼­ ÄÚ¾î
  • ½ÅÈ£ ó¸® ÀåÄ¡

Á¦10Àå Ĩ·¿ ½ÃÀå : Æ÷Àå ±â¼úº°

  • 2.5D ¹× 3D
  • Çø³Ä¨ º¼ ±×¸®µå ¾î·¹ÀÌ
  • Çø³Ä¨ ½ºÄÉÀÏ ÆÐŰÁö
  • ½Ã½ºÅÛ ÀÎ ÆÐŰÁö(SIP)
  • ¿þÀÌÆÛ ·¹º§ Ĩ ½ºÄÉÀÏ ÆÐŰÁö

Á¦11Àå Ĩ·¿ ½ÃÀå : ¼³°è ¾ÆÅ°ÅØÃ³º°

  • ºÐ»êÇü SoC
  • ÀÌÁ¾ Ĩ·¿
  • ±ÕÁú Ĩ·¿

Á¦12Àå Ĩ·¿ ½ÃÀå : ÃÖÁ¾ ¿ëµµº°

  • ÀÚµ¿Â÷
  • ¼ÒºñÀÚ ÀÏ·ºÆ®·Î´Ð½º
  • ¹æÀ§ ¹× Ç×°ø¿ìÁÖ
  • ÇコÄɾî
  • Á¦Á¶¾÷
  • Åë½Å

Á¦13Àå ¾Æ¸Þ¸®Ä«ÀÇ Ä¨·¿ ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦14Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ Ä¨·¿ ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦15Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Ä¨·¿ ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦16Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024
  • °æÀï ºÐ¼®
    • Achronix Semiconductor Corporation
    • Advanced Micro Devices, Inc.
    • Apple Inc.
    • Arm Holdings PLC
    • ASE Technology Holding Co, Ltd.
    • Ayar Labs, Inc.
    • Beijing ESWIN Technology Group Co., Ltd.
    • Broadcom Inc.
    • Cadence Design Systems, Inc.
    • Chipuller
    • Eliyan Corp
    • GlobalFoundries Inc.
    • Huawei Technologies Co., Ltd.
    • Intel Corporation
    • International Business Machines Corporation
    • JCET Group
    • Kandou Bus, S.A.
    • Marvell Technology, Inc.
    • Mercury Systems, Inc.
    • Netronome Systems, Inc.
    • NHanced Semiconductors, Inc.
    • NVIDIA Corporation
    • NXP Semiconductors N.V.
    • Palo Alto Electron, Inc.
    • Qualcomm Incorporated
    • RANVOUS Inc.
    • Samsung Electronics Co., Ltd.
    • Socionext Inc.
    • Synopsys, Inc.
    • Tachyum S.r.o.
    • Taiwan Semiconductor Manufacturing Company Limited
    • Tenstorrent Inc.
    • TongFu Microelectronics Co., Ltd.
    • X-Celeprint by Xtrion N.V.
    • Egis Technology Inc

Á¦17Àå ¸®¼­Ä¡ AI

Á¦18Àå ¸®¼­Ä¡ Åë°è

Á¦19Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦20Àå ¸®¼­Ä¡ ±â»ç

Á¦21Àå ºÎ·Ï

LSH

The Chiplet Market was valued at USD 14.22 billion in 2024 and is projected to grow to USD 19.30 billion in 2025, with a CAGR of 37.03%, reaching USD 94.17 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 14.22 billion
Estimated Year [2025] USD 19.30 billion
Forecast Year [2030] USD 94.17 billion
CAGR (%) 37.03%

Comprehensive Introduction to Chiplet Technology Evolution and Its Critical Role in Accelerating Next-Generation Semiconductor Innovation

The semiconductor landscape is undergoing a profound transformation, with chiplet technology emerging as a foundational pillar for next-generation performance and cost efficiency. By decomposing monolithic designs into modular, interoperable components, chiplets enable designers to optimize each functional block according to the precise performance, power, and area requirements of their target applications. This introduction lays the groundwork for understanding how industry leaders are leveraging advanced packaging techniques, heterogeneous integration, and standardized interfaces to surmount the scaling challenges of traditional system-on-chip approaches.

As we embark on this exploration, it's essential to recognize how converging trends in application diversity, compute-intensive workloads, and supply chain resiliency are propelling the adoption of chiplet architectures. From the data center to the edge, and within sectors as varied as automotive, healthcare, and defense, the ability to rapidly assemble optimized systems from a library of specialized die has become a key enabler of innovation. Through careful analysis of market drivers, technological enablers, and ecosystem collaborations, this introduction sets the stage for a detailed examination of the transformative shifts, regulatory impacts, segmentation dynamics, and regional variations that define the chiplet landscape today and into the foreseeable future.

Analyzing Significant Transformative Shifts Driving the Chiplet Market Landscape Amidst Growing Demand for Modular and Scalable Architectures

Over the past decade, the semiconductor value chain has witnessed a series of profound shifts that are reshaping design philosophies and manufacturing paradigms. Initially driven by the need to circumvent the slowing pace of Moore's Law, a modular approach to chip design has gradually gained traction, leading to collaborations between IP providers, foundries, and assembly providers to establish interoperable standards. Consequently, design teams are evolving from monolithic integration to a mindset that prioritizes flexibility, rapid prototyping, and heterogeneous integration, which collectively accelerate time to market.

Simultaneously, advancements in interconnect technologies, thermal management solutions, and die-to-die interfaces have enabled higher levels of integration density without sacrificing signal integrity or thermal performance. These technical breakthroughs, coupled with mounting pressure to reduce development costs, are prompting OEMs and hyperscalers to adopt chiplet strategies for tailoring compute fabrics to specific workloads. Moreover, collaborations across traditional industry boundaries have fostered innovation hubs where open standards and ecosystem partnerships are catalyzing the next wave of packaging and substrate innovations. In essence, these foundational shifts underscore a broader transition toward more agile, cost-effective, and scalable system designs that are redefining competitive differentiation in the semiconductor industry.

Evaluating the Cumulative Impact of United States Tariffs Enacted in 2025 on Chiplet Supply Chains and Industry Economics

In 2025, newly imposed tariffs by the United States government introduced a complex layer of cost considerations for companies relying on cross-border semiconductor manufacturing and component sourcing. The cumulative effect of these tariffs has disrupted established supply chains, increasing the landed cost of key materials and manufacturing steps. As a result, design houses and original equipment manufacturers are revisiting their supplier strategies to mitigate exposure to tariff-related cost surges.

Moreover, these regulatory changes have spurred broader risk management initiatives, prompting stakeholders to diversify their geographic footprints and explore near-shoring alternatives. Companies are evaluating partnerships with domestic assembly and test facilities to avoid punitive duties and ensure supply continuity. This strategic realignment has wider implications for capital investment decisions, as firms must balance the benefits of globalized, cost-efficient manufacturing against the risks associated with fluctuating trade policies. Consequently, the tariff landscape is catalyzing a reevaluation of total cost of ownership analyses, compelling organizations to integrate tariff sensitivity into their design and procurement frameworks. Ultimately, in this evolving regulatory environment, the ability to dynamically adjust sourcing, manufacturing, and integration strategies will be a key determinant of resilience and competitive positioning.

Diving into Critical Segmentation Insights to Uncover Unique Growth Drivers Across Processor Types, Packaging Technologies, and End-Use Verticals

A nuanced understanding of market segmentation provides critical insight into the drivers shaping chiplet adoption and performance optimization across diverse applications. When examining the processor landscape, designers are choosing between application processing units optimized for general-purpose tasks, intelligence-specific accelerators tailored for AI workloads, central processing units that balance control and compute functions, reconfigurable field-programmable gate arrays enabling post-fabrication customization, and high-throughput graphic processing units powering visualization and parallel compute tasks. Each processor category presents unique integration challenges and performance trade-offs, influencing packaging choices and interface standards.

Shifting focus to the type-based segmentation reveals how interface and functional blocks like I/O drivers facilitate inter-die communication, while dedicated memory blocks, processor cores, and signal processing units contribute to overall system efficiency. Packaging technology itself emerges as a pivotal factor, with 2.5D and 3D silicon interposers enabling dense interconnects, flip chip ball grid arrays offering established reliability, flip chip scale packages driving miniaturization, system-in-package solutions supporting heterogeneous die stacking, and wafer-level chip scale packages paving the way for extreme form factor designs. Meanwhile, the underlying design architecture-whether disaggregated systems-on-chip, heterogeneous chiplets, or homogeneous chiplets-determines integration flexibility and upgrade pathways. Finally, end-use sectors ranging from automotive safety systems to high-performance consumer electronics, defense and aerospace applications, medical devices, advanced manufacturing equipment, and telecommunication infrastructure dictate specific reliability, performance, and cost considerations that ultimately inform chiplet design and packaging strategies.

Unveiling Key Regional Insights Highlighting Distinctive Trends and Competitive Advantages in the Americas, Europe Middle East & Africa, and Asia-Pacific

Geographic dynamics significantly influence the evolution of the chiplet ecosystem, as regional supply chain strengths, manufacturing capabilities, and regulatory frameworks dictate competitive advantages. In the Americas, a robust network of advanced research institutions and leading-edge foundry services is fostering innovation in interposer technology and heterogeneous integration, while domestic policy support is encouraging investment in local assembly and test capacity.

Conversely, Europe, Middle East & Africa benefit from a rich base of automotive and industrial equipment manufacturers that are early adopters of chiplet-based designs for safety-critical and high-reliability applications. Collaborative research consortia in this region are pioneering standardized interfaces and validating interoperability across diverse device footprints. In Asia-Pacific, the presence of major IDM players, large-scale OSAT providers, and expansive consumer electronics supply chains continues to drive aggressive scaling and cost optimization efforts. This region's vertically integrated business models facilitate rapid prototyping and volume production, positioning it as a global hub for both mature and emerging chiplet packaging solutions. Taken together, these distinctive regional characteristics underscore how geographic markets are shaping the trajectory of chiplet technology adoption and competitive differentiation.

Examining Leading Companies Driving Innovation and Competitive Strategies in the Chiplet Industry Ecosystem for Sustainable Growth and Differentiation

The chiplet market is shaped by a consortium of established semiconductor innovators, emerging pure-play chiplet specialists, and collaborative consortia focused on standardization. Leading integrated device manufacturers continue to expand their modular design frameworks, offering ecosystem partners access to proven IP and manufacturing pipelines. Next-generation logic and memory specialists are developing advanced interconnect solutions, pushing the boundaries of bandwidth density and power efficiency.

At the same time, specialized foundries and advanced packaging providers are investing in capacity expansions to accommodate wafer-level fan-out, 2.5D silicon interposers, and 3D stacking processes. This influx of capacity is enabling smaller design houses to access high-end packaging techniques that were once exclusive to hyperscale players. Meanwhile, global alliances and standards bodies are fostering interoperability across diverse chiplet building blocks, reducing integration risk and accelerating ecosystem maturity. Such coordinated efforts are not only lowering barriers to entry but also facilitating new business models that emphasize die as a service, modular IP marketplaces, and co-development partnerships. Taken together, these dynamics highlight how leading organizations are leveraging strategic investments, cross-industry collaborations, and robust IP portfolios to secure competitive advantage in the rapidly evolving chiplet landscape.

Strategic Actionable Recommendations for Industry Leaders to Capitalize on Chiplet Market Dynamics and Drive Long-Term Competitive Advantage

To capitalize on the burgeoning opportunities within the chiplet domain, industry leaders should adopt a systematic approach that balances innovation with supply chain resiliency. Initially, organizations must prioritize the development or acquisition of interoperable interface standards, ensuring seamless integration of heterogeneous die while reducing validation timelines. Concurrently, establishing strategic partnerships with advanced packaging and substrate specialists can facilitate early access to emerging process nodes and thermal management technologies.

Furthermore, embedding tariff sensitivity analyses into supplier selection and design decisions will prove critical in navigating evolving trade policies. By maintaining a diversified geographic footprint across assembly and test sites, companies can mitigate exposure to region-specific regulatory shifts while optimizing logistics and lead times. Leaders should also invest in modular IP libraries that support rapid design reuse, fostering greater agility in responding to shifting application requirements across verticals. Finally, cultivating cross-functional collaboration between design, procurement, and regulatory teams enhances end-to-end visibility, enabling proactive risk management and accelerated time to market. Through these targeted recommendations, organizations can effectively harness chiplet innovations to drive sustainable, high-value growth.

Comprehensive Research Methodology Outlining Systematic Approaches and Analytical Techniques Employed in Chiplet Market Assessment

This report's findings are grounded in a rigorous, multi-faceted research methodology designed to capture both quantitative benchmarks and qualitative insights. Initially, a comprehensive review of public and proprietary sources laid the foundation for understanding core technology trends, regulatory frameworks, and emerging applications. This desk research was augmented by detailed patent landscape analyses to identify key innovations and potential areas of intellectual property concentration.

Subsequently, in-depth interviews with senior executives, design engineers, and supply chain specialists provided firsthand perspectives on integration challenges, cost structures, and adoption drivers. Case studies of real-world chiplet deployments were evaluated to validate theoretical models with empirical performance and reliability data. Lastly, iterative validation workshops with cross-industry stakeholders ensured that segmentation categorizations, regional assessments, and competitive evaluations accurately reflect current market realities. By triangulating these diverse inputs, this methodology delivers robust, actionable intelligence that supports strategic decision-making across the chiplet ecosystem.

Conclusion Synthesizing Core Findings and Projecting Future Trajectories for Chiplet Technology Adoption Across Multiple Sectors

Bringing together the insights from our analysis, several key themes emerge that will shape the future trajectory of chiplet adoption. Modular integration frameworks are poised to become the standard for addressing the limitations of traditional monolithic scaling, enabling unprecedented flexibility in tailoring compute fabrics to distinct workload profiles. Regional specialization in packaging and assembly will continue to drive competitive advantages, with localized clusters pushing forward process innovation and driving down costs.

Moreover, the interplay between regulatory shifts-such as tariff realignments-and strategic supply chain diversification will increasingly influence total cost optimization. Collaborative standardization efforts across industry consortia will reduce integration complexity and accelerate ecosystem expansion, further lowering barriers to entry for emerging players. Collectively, these developments suggest a dynamic period of growth and consolidation, where organizations that effectively orchestrate technology innovation, supply chain strategy, and strategic partnerships will secure leadership positions. Ultimately, the convergence of these factors underscores a fundamentally new paradigm for semiconductor design and assembly, one driven by modularity, interoperability, and collaborative innovation.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. AI-driven verification and yield optimization tools enabling scalable chiplet production across fab nodes
  • 5.2. Advanced heterogeneous integration driving next-generation high-performance computing chiplet adoption
  • 5.3. Modular chiplet architectures enabling custom AI accelerator development for edge devices
  • 5.4. Emergence of chiplet supply chain standardization accelerating time-to-market in semiconductor industry
  • 5.5. Adoption of advanced packaging techniques reducing thermal bottlenecks in high-density chiplet systems
  • 5.6. Strategic partnerships between foundries and fabless firms shaping chiplet ecosystem expansion
  • 5.7. Rise of open-source silicon initiatives fostering interoperable chiplet design and collaboration
  • 5.8. Growth of chiplet-based automotive SoCs addressing evolving in-vehicle compute and safety requirements
  • 5.9. Localized thermal management solutions for multi-die chiplets in HPC workloads driving design innovation
  • 5.10. Development of high-bandwidth silicon bridge interposers to overcome data bottlenecks in chiplet integration

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Chiplet Market, by Processor

  • 8.1. Introduction
  • 8.2. Application Processing Unit
  • 8.3. Artificial Intelligence Application-Specific Integrated Circuit Compressor
  • 8.4. Central Processing Unit
  • 8.5. Field-Programmable Gate Array
  • 8.6. Graphic Processing Unit

9. Chiplet Market, by Type

  • 9.1. Introduction
  • 9.2. I/O Driver
  • 9.3. Memory Block
  • 9.4. Processor Core
  • 9.5. Signal Processing Unit

10. Chiplet Market, by Packaging Technology

  • 10.1. Introduction
  • 10.2. 2.5 & 3D
  • 10.3. Flip Chip Ball Grid Array
  • 10.4. Flip Chip Scale Package
  • 10.5. System-in-Package (SIP)
  • 10.6. Wafer-Level Chip Scale Package

11. Chiplet Market, by Design Architecture

  • 11.1. Introduction
  • 11.2. Disaggregated SoCs
  • 11.3. Heterogeneous Chiplets
  • 11.4. Homogeneous Chiplets

12. Chiplet Market, by End-use

  • 12.1. Introduction
  • 12.2. Automotive
  • 12.3. Consumer Electronics
  • 12.4. Defense & Aerospace
  • 12.5. Healthcare
  • 12.6. Manufacturing
  • 12.7. Telecommunications

13. Americas Chiplet Market

  • 13.1. Introduction
  • 13.2. United States
  • 13.3. Canada
  • 13.4. Mexico
  • 13.5. Brazil
  • 13.6. Argentina

14. Europe, Middle East & Africa Chiplet Market

  • 14.1. Introduction
  • 14.2. United Kingdom
  • 14.3. Germany
  • 14.4. France
  • 14.5. Russia
  • 14.6. Italy
  • 14.7. Spain
  • 14.8. United Arab Emirates
  • 14.9. Saudi Arabia
  • 14.10. South Africa
  • 14.11. Denmark
  • 14.12. Netherlands
  • 14.13. Qatar
  • 14.14. Finland
  • 14.15. Sweden
  • 14.16. Nigeria
  • 14.17. Egypt
  • 14.18. Turkey
  • 14.19. Israel
  • 14.20. Norway
  • 14.21. Poland
  • 14.22. Switzerland

15. Asia-Pacific Chiplet Market

  • 15.1. Introduction
  • 15.2. China
  • 15.3. India
  • 15.4. Japan
  • 15.5. Australia
  • 15.6. South Korea
  • 15.7. Indonesia
  • 15.8. Thailand
  • 15.9. Philippines
  • 15.10. Malaysia
  • 15.11. Singapore
  • 15.12. Vietnam
  • 15.13. Taiwan

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Achronix Semiconductor Corporation
    • 16.3.2. Advanced Micro Devices, Inc.
    • 16.3.3. Apple Inc.
    • 16.3.4. Arm Holdings PLC
    • 16.3.5. ASE Technology Holding Co, Ltd.
    • 16.3.6. Ayar Labs, Inc.
    • 16.3.7. Beijing ESWIN Technology Group Co., Ltd.
    • 16.3.8. Broadcom Inc.
    • 16.3.9. Cadence Design Systems, Inc.
    • 16.3.10. Chipuller
    • 16.3.11. Eliyan Corp
    • 16.3.12. GlobalFoundries Inc.
    • 16.3.13. Huawei Technologies Co., Ltd.
    • 16.3.14. Intel Corporation
    • 16.3.15. International Business Machines Corporation
    • 16.3.16. JCET Group
    • 16.3.17. Kandou Bus, S.A.
    • 16.3.18. Marvell Technology, Inc.
    • 16.3.19. Mercury Systems, Inc.
    • 16.3.20. Netronome Systems, Inc.
    • 16.3.21. NHanced Semiconductors, Inc.
    • 16.3.22. NVIDIA Corporation
    • 16.3.23. NXP Semiconductors N.V.
    • 16.3.24. Palo Alto Electron, Inc.
    • 16.3.25. Qualcomm Incorporated
    • 16.3.26. RANVOUS Inc.
    • 16.3.27. Samsung Electronics Co., Ltd.
    • 16.3.28. Socionext Inc.
    • 16.3.29. Synopsys, Inc.
    • 16.3.30. Tachyum S.r.o.
    • 16.3.31. Taiwan Semiconductor Manufacturing Company Limited
    • 16.3.32. Tenstorrent Inc.
    • 16.3.33. TongFu Microelectronics Co., Ltd.
    • 16.3.34. X-Celeprint by Xtrion N.V.
    • 16.3.35. Egis Technology Inc

17. ResearchAI

18. ResearchStatistics

19. ResearchContacts

20. ResearchArticles

21. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦