시장보고서
상품코드
1830398

축전지 시스템 시장 : 배터리 화학, 용량 범위, 설치, 용도별 - 세계 예측(2025-2032년)

Battery Storage System Market by Battery Chemistry, Capacity Range, Installation, Application - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 198 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

축전지 시스템 시장은 2032년까지 CAGR 30.90%로 575억 1,000만 달러로 성장할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 66억 7,000만 달러
추정 연도 2025년 87억 1,000만 달러
예측 연도 2032 575억 1,000만 달러
CAGR(%) 30.90%

기술의 진화, 정책 역학, 전력망 현대화가 어떻게 수렴하고 에너지 저장을 핵심 시스템 인에이블러로 재배치하는지에 대한 전략적 안내서

축전지 분야는 가속화되는 재생에너지 도입, 진화하는 그리드 아키텍처, 그리고 산업계의 탈탄소화 야망이 교차하는 지점에 위치하고 있습니다. 최근 전기화학, 재료 가공 및 시스템 통합 분야의 발전으로 인해 축전지는 보조적인 서비스에서 에너지 전략의 핵심 요소로 재정의되었습니다. 간헐적 발전의 규모가 확대됨에 따라 유틸리티 기획자, 상업 사업자 및 분산형 에너지 자원 통합업체는 변동성을 관리하고, 탄력성을 강화하며, 전체 에너지 시장의 가치를 실현하기 위해 스토리지를 점점 더 우선순위에 두고 있습니다.

동시에 업계는 공급망과 자본 배분을 재구성하는 복잡한 정책 및 무역 환경에 직면해 있습니다. 개발업체와 프로젝트 개발자들은 재료의 가용성, 재활용의 필요성, 라이프사이클 배출량을 고려하면서 비용 구조와 자금 조달 모델의 변화에 대응하고 있습니다. 기술 차별화는 화학제품 선택, 배터리 관리 시스템, 소프트웨어 기반 자산 구성에 이르기까지 다양하며, 각각 용량, 수명, 안전성에 대한 명확한 가치 제안을 제공합니다.

이 소개에서는 축전지를 전기화 및 전력망 현대화를 위한 전략적 인에이블러로 포지셔닝하고, 그 이후의 분석을 구성합니다. 기술적 성능, 규제적 배경, 상업적 타당성의 균형을 고려한 통합적 의사결정의 필요성을 강조하며, 독자들이 구체적인 변화, 관세의 영향, 세분화 패턴, 지역 역학, 경쟁 동향, 실행 가능한 권고안을 평가할 수 있도록 준비했습니다.

제조 규모, 진화하는 셀 화학, 정책적 인센티브, 순환 경제에 대한 압력이 경쟁 우위와 산업 전략을 재구성하는 방법

배터리 스토리지 환경은 경쟁 우위와 투자 우선순위를 재정의하는 일련의 구조적, 기술적 변화로 인해 변화하고 있습니다. 부품 비용의 하락과 제조 규모의 확대가 채택을 가속화하고 있지만, 더 중요한 변화는 정책적 인센티브, 공급망 재구성, 소프트웨어에 의한 자산 최적화가 교차하는 지점에서 일어나고 있습니다. 이러한 힘으로 인해 제조업체와 통합업체들은 하드웨어, 제어, 서비스를 통합한 고부가가치 시스템 솔루션으로 포트폴리오를 재구성해야 하는 상황에 직면해 있습니다.

한편, 셀 화학 및 팩 설계의 발전으로 사이클 수명이 연장되고, 안전 마진이 개선되고, 기존의 주파수 응답과 피크 컷에 국한되지 않는 새로운 사용 사례가 가능해졌습니다. 상업 및 주거 지역에서의 비하인드 더 미터 애플리케이션의 출현은 보다 분산된 가치 풀을 창출하는 한편, 유틸리티 규모의 도입은 용량 강화 및 재생에너지 통합을 지원하는 몇 시간 지속 시스템으로 진화하고 있습니다. 또한, 순환성에 대한 관심이 높아지면서 분해 설계, 2차 이용 경로, 공식적인 재활용 흐름에 대한 투자가 촉진되고 있습니다.

이러한 변화를 종합하면, 수직적으로 협력하는 플레이어와 자재 조달, 제조, 디지털 서비스를 조정할 수 있는 민첩한 공급업체가 유리할 것입니다. 기존 기업과 신규 진입 기업 모두 진화하는 밸류체인에서 더 광범위한 점유율을 확보하기 위해 화학, 시스템 통합, 소프트웨어에 걸친 역량 구축에 박차를 가해야 합니다.

최근 미국의 무역 조치가 배터리 저장소 조달, 육상 용량 결정, 장기적인 공급망 강건성에 미치는 다각적인 영향

2025년 중 미국의 무역 조치와 관세 정책의 발동은 배터리 스토리지 생태계 전체에 다면적인 영향을 미칠 것이며, 이는 직접적인 비용 조정에 그치지 않을 것입니다. 단기적으로 관세는 수입 셀 및 전구체 재료의 프리미엄을 증가시켰고, 조달팀은 공급업체의 다양성과 재고 전략을 재평가하게 되었습니다. 이러한 단기적인 변화는 지역 제조업체의 공급업체 인증 프로세스를 가속화하고 공급을 안정화하며 변동성을 완화하기 위한 장기 계약을 촉진했습니다.

더 넓은 관점에서 보면, 관세 주도 신호는 국내 생산능력 확대와 업스트림 소재 가공을 위한 자본의 흐름을 촉진했습니다. 프로젝트 개발자와 OEM은 향후 무역 단절에 대한 헤지 수단으로 육상 생산을 평가하고 있으며, 이는 현지 인력 개발, 인허가, 물류에 영향을 미칠 수 있습니다. 동시에 일부 구매자는 대체 화학제품 사용, 재활용 원료에 대한 의존도 확대, 영향을 받지 않는 공급업체와의 전략적 제휴 등 공급망 회피 방안을 모색하고 있습니다.

경영 측면에서는 투입 비용의 증가로 인해 성능 요구 사항을 유지하면서 마진을 확보하기 위해 조달, 엔지니어링 및 재무 기능 간의 통합이 강화되었습니다. 정책적 측면에서는 관세 인상으로 인해 생산 장려책, 인허가 간소화, 인력 지원 등 국내 생산이 효율적이고 국제 경쟁력을 유지할 수 있는 보완책에 대해 산업계와 규제당국과의 대화가 활발해지고 있습니다.

화학, 용량, 설치 형태, 최종 용도를 연계한 다각적인 세분화 관점에서 차별화된 기술적, 상업적 우선순위를 파악할 수 있습니다.

세분화 분석은 화학, 용량, 설치 방법, 용도 측면에서 제품 개발, 상업적 접근 방식 및 배포 경로에 영향을 미치는 차별화 된 역학을 보여줍니다. 배터리 화학을 기반으로 한 시장 조사 범위는 납산, 리튬 이온, 리튬 이온, 나트륨 황으로 확장되며, 리튬 이온은 리튬 코발트 산염, 리튬 철 인산염, 리튬 니켈 망간 코발트 산염으로 더욱 구분됩니다. 각 화합물은 에너지 밀도, 사이클 수명, 안전성 프로파일, 비용 동인 사이에서 명확한 트레이드오프를 제시하며, 특정 기간과 용도에 대한 적합성을 형성합니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 축전지 시스템 시장 : 배터리 화학별

  • 납축배터리
  • 리튬이온
    • 코발트산 리튬
    • 인산철리튬
    • 리튬 니켈 망간 코발트 산화물
  • 유황 나트륨

제9장 축전지 시스템 시장 : 용량 범위별

  • 1-10MWh
  • 10 MWh 이상
  • 1 MWh 미만

제10장 축전지 시스템 시장 : 설비별

  • 오프그리드
  • 온그리드

제11장 축전지 시스템 시장 : 용도별

  • 상업용
  • 산업
  • 주거용
  • 유틸리티

제12장 축전지 시스템 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제13장 축전지 시스템 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제14장 축전지 시스템 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제15장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Tesla, Inc.
    • BYD Company Limited
    • LG Energy Solution, Ltd.
    • Fluence Energy, Inc.
    • Samsung SDI Co., Ltd.
    • Contemporary Amperex Technology Co., Limited
    • Panasonic Holdings Corporation
    • NEC Energy Solutions, LLC
    • Hitachi Energy Ltd.
    • Sungrow Power Supply Co., Ltd.
KSM

The Battery Storage System Market is projected to grow by USD 57.51 billion at a CAGR of 30.90% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 6.67 billion
Estimated Year [2025] USD 8.71 billion
Forecast Year [2032] USD 57.51 billion
CAGR (%) 30.90%

A strategic primer on how technology evolution, policy dynamics, and grid modernization converge to reposition energy storage as a core system enabler

The battery storage sector sits at the intersection of accelerating renewable deployment, evolving grid architectures, and industrial decarbonization ambitions. Recent advances in electrochemistry, materials processing, and system integration have reframed storage from an ancillary service to a central component of energy strategy. As intermittent generation scales, utility planners, commercial operators, and distributed energy resource integrators are increasingly prioritizing storage to manage variability, enhance resiliency, and unlock value across energy markets.

Concurrently, the industry faces a complex policy and trade environment that is reshaping supply chains and capital allocation. Manufacturers and project developers are navigating material availability, recycling imperatives, and lifecycle emissions considerations while also contending with changing cost structures and financing models. Technology differentiation spans chemistry choices, battery management systems, and software-driven asset orchestration, each delivering distinct value propositions for capacity, longevity, and safety.

This introduction frames the subsequent analysis by situating battery storage as a strategic enabler for electrification and grid modernization. It underscores the need for integrated decision-making that balances technical performance, regulatory context, and commercial viability, and it prepares readers to evaluate specific shifts, tariff impacts, segmentation patterns, regional dynamics, competitive behavior, and actionable recommendations.

How manufacturing scale, evolving cell chemistries, policy incentives, and circular economy pressures are reshaping competitive advantage and industry strategy

The landscape of battery storage is being transformed by a suite of structural and technological shifts that are redefining competitive advantage and investment priorities. Falling component costs and manufacturing scale have accelerated adoption, but more consequential changes are occurring at the intersection of policy incentives, supply chain reconfiguration, and software-enabled asset optimization. These forces are prompting manufacturers and integrators to rebalance their portfolios toward higher-value system solutions that integrate hardware, controls, and services.

Meanwhile, advances in cell chemistry and pack design are extending cycle life and improving safety margins, which enable new use cases beyond traditional frequency response and peak shaving. The emergence of behind-the-meter applications at commercial and residential sites is creating a more distributed value pool, while utility-scale deployments are evolving toward multi-hour duration systems that support capacity firming and renewable integration. Moreover, the intensifying focus on circularity is driving investments in design for disassembly, second-life pathways, and formal recycling streams.

Taken together, these shifts favor vertically coordinated players and agile suppliers that can align material sourcing, manufacturing, and digital services. The strategic implication is clear: incumbents and new entrants alike must accelerate capability building across chemistry, system integration, and software to capture a broader share of evolving value chains.

The multifaceted consequences of recent U.S. trade measures on procurement, onshore capacity decisions, and long-term supply chain resilience in battery storage

The imposition of trade measures and tariff policies in the United States during 2025 has produced a multifaceted effect across the battery storage ecosystem that extends beyond immediate cost adjustments. In the short term, tariffs have increased the premium on imported cells and precursor materials, prompting procurement teams to re-evaluate supplier diversity and inventory strategies. This near-term shift has accelerated supplier qualification processes for regional manufacturers and encouraged longer-term contracts to stabilize supply and mitigate volatility.

Over a broader horizon, tariff-driven signals have catalyzed capital flows toward domestic capacity expansion and upstream material processing. Project developers and OEMs are assessing onshore manufacturing as a hedge against future trade disruptions, which in turn has implications for local workforce development, permitting, and logistics. Simultaneously, some buyers have pursued supply chain workarounds such as alternative chemistries, greater reliance on recycled feedstocks, or strategic partnerships with non-affected suppliers.

From an operational standpoint, increased input costs have prompted tighter integration between procurement, engineering, and finance functions to preserve margins while maintaining performance requirements. At the policy interface, tariffs have intensified dialogue between industry and regulators about complementary measures-such as production incentives, streamlined permitting, and workforce support-to ensure domestic build-out remains efficient and globally competitive.

A multifaceted segmentation perspective linking chemistry, capacity, installation modality, and end-use application to reveal differentiated technological and commercial priorities

Segmentation analysis reveals differentiated dynamics that influence product development, commercial approaches, and deployment pathways across chemistry, capacity, installation, and application dimensions. Based on Battery Chemistry, market study horizons span Lead Acid, Lithium Ion, and Sodium Sulfur, with Lithium Ion further differentiated across Lithium Cobalt Oxide, Lithium Iron Phosphate, and Lithium Nickel Manganese Cobalt Oxide. Each chemistry presents distinct trade-offs between energy density, cycle life, safety profile, and cost drivers, which shape suitability for specific durations and applications.

Based on Capacity Range, the market is examined across 1-10 MWh, Greater Than 10 MWh, and Less Than 1 MWh, reflecting how duration and scale influence system architecture, thermal management, and economic use cases. Smaller capacity systems often target behind-the-meter resiliency and demand charge management, while larger capacity ranges accommodate utility-scale firming and multi-hour storage for renewable integration. Based on Installation, deployments are characterized as Off Grid and On Grid, each with unique grid interface requirements, standards compliance, and commissioning pathways that influence balance-of-system design and lifecycle services.

Based on Application, the analysis spans Commercial, Industrial, Residential, and Utility segments, where differing procurement cycles, performance priorities, and financing models dictate go-to-market strategies. Commercial and industrial customers typically prioritize reliability and return on energy services, residential adoption is driven by self-consumption and resiliency motives, and utilities focus on system reliability, capacity planning, and market participation. The segmentation layers collectively inform which technological choices and business models are most viable for specific deployment contexts.

How divergent regional policy, grid architecture, and manufacturing priorities create distinct demand signals and strategic options across global markets

Regional dynamics exert pronounced influence on demand drivers, regulatory frameworks, and supply chain orientation for battery storage deployments. The Americas region shows a mixture of mature utility-scale projects and fast-growing distributed deployments, supported by diverse policy levers and market structures that incentivize both resilience and renewable integration. Investment and innovation centers are concentrated where regulatory clarity, financial incentives, and grid modernization programs align to lower barriers to entry.

Europe, Middle East & Africa exhibits a heterogeneous landscape where aggressive decarbonization targets and grid flexibility needs coexist with policy fragmentation across jurisdictions. In some markets, tight ancillary markets and ambitious renewable mandates have created fertile ground for multi-service storage platforms, while in others, regulatory ambiguity and infrastructure constraints temper deployment timelines. Cross-border interconnections and regional trading arrangements further complicate the value calculus for storage assets.

Asia-Pacific continues to combine rapid renewable growth with large-scale industrial policy support for manufacturing and domestic supply chains. Several economies in the region are strategically prioritizing onshore battery production and battery materials processing, which is influencing global supply dynamics. Differences in grid architecture, financing environments, and energy policy objectives across these regions mean that go-to-market approaches must be tailored to local market signals and regulatory pathways.

Why integrated supply strategies, technology differentiation, and service-driven business models determine who captures durable value in the storage value chain

Competitive behavior in the battery storage space is defined by a portfolio of strategic responses that include vertical integration, technology differentiation, and services expansion. Leading players are investing in downstream system integration capabilities while simultaneously seeking secure access to upstream materials through partnerships, joint ventures, or direct investment in processing assets. This dual emphasis on supply security and system-level competency mitigates risk and enhances the ability to offer bundled products with predictable performance.

Innovation roadmaps emphasize not only improvements in cell chemistry and thermal management, but also sophisticated battery management systems, predictive analytics, and lifecycle services such as maintenance and recycling. Strategic partnerships between technology providers, utilities, and industrial customers are increasingly common, as each party seeks to capture a portion of recurring revenue streams associated with grid services, demand response, and capacity contracts. At the same time, smaller, specialized firms focus on niche value propositions-such as long-duration chemistries or ultra-safe formats-that address specific market gaps.

Competitive positioning now hinges on a combination of technical credibility, demonstrated field performance, and commercial flexibility. Firms that can rapidly validate system reliability, provide transparent lifecycle costing, and offer scalable deployment options stand to capture procurement mandates from conservative institutional buyers and agile commercial customers alike.

A pragmatic playbook of prioritized actions to fortify supply resilience, accelerate system integration, and capture multi-service value opportunities in storage

Leaders aiming to preserve or expand competitive positions in battery storage should take a series of prioritized, actionable steps that align technology choices with market realities and policy trends. First, strengthen supply chain resilience by diversifying material sources, qualifying regional suppliers, and investing in recycling partnerships to reduce exposure to trade disruptions and raw material volatility. Second, accelerate development of system-level competencies, including advanced battery management, grid-interactive controls, and digital service layers that unlock multiple revenue streams across markets.

Third, pursue targeted strategic alliances with utilities, industrial customers, and technology partners to co-develop demonstrator projects that validate performance and commercial models. Fourth, optimize product roadmaps by aligning chemistry selection and capacity configurations to highest-value applications identified in segmentation analysis, balancing energy density, safety, and total lifecycle costs. Fifth, proactively engage with policymakers to shape incentive frameworks, standards, and permitting processes that support efficient scale-up of domestic manufacturing and deployment.

Finally, institutionalize robust lifecycle and circularity strategies that include design for disassembly, second-life use cases, and formal recycling pathways to address regulatory expectations and corporate sustainability commitments. These steps create a coherent playbook for turning market insights into operational advantages and reduce execution risk as the sector matures.

A transparent mixed-methods approach combining stakeholder engagement, technical review, and scenario analysis to produce defensible and actionable strategic insights

The research methodology underpinning this analysis blends qualitative and quantitative techniques to deliver a robust, verifiable assessment of the battery storage landscape. Primary inputs included structured interviews with industry stakeholders spanning technology providers, system integrators, utilities, project developers, and materials suppliers, each providing insights into procurement behavior, adoption barriers, and strategic priorities. These conversations were triangulated with a comprehensive review of technical literature, standards, and policy documents to ensure alignment with prevailing regulatory and technical norms.

Secondary analysis incorporated supply chain mapping, value chain deconstruction, and technology readiness evaluations to assess where performance improvements and cost drivers are most material. Scenario analysis was used to test sensitivities around trade measures, supply disruptions, and adoption pathways, with focus on implications for procurement strategies and manufacturing location decisions. Cross-validation involved reviewing public filings, engineering specifications, and operational case studies to confirm performance claims and deployment outcomes.

Throughout the methodology, emphasis was placed on transparency of assumptions, reproducibility of analytical steps, and clear separation between observed facts and interpretive insights. This approach ensures the findings are actionable for decision-makers who require defensible intelligence to guide strategy, procurement, and investment planning.

A concise synthesis that connects technological maturation, policy-driven supply realignment, and strategic priorities for organizations competing in storage

In conclusion, battery storage has transitioned from a supportive grid function to a central platform for achieving decarbonization, resilience, and market participation objectives. The interplay of technology evolution, policy interventions, and shifting supply chain dynamics is creating both opportunity and complexity for incumbents and new entrants. Adaptation will require purposeful alignment across chemistry choices, system integration capabilities, and commercial models that reflect differentiated needs across capacity ranges, installation types, and application segments.

Trade measures enacted in recent policy cycles have served as a catalyst for onshore capacity discussions and supply chain diversification, underscoring the strategic importance of supply security and circularity. Firms that proactively pursue vertical coordination, invest in digital services, and engage constructively with policymakers will be better positioned to capture enduring value. The path forward is not solely technological; it is organizational and strategic, demanding tightened coordination between procurement, R&D, regulatory affairs, and commercial teams.

Ultimately, success in the evolving battery storage market will be driven by those who can translate deep technical capability into scalable, commercially viable offerings while navigating policy shifts and regional market nuances with agility and foresight.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Integration of artificial intelligence and machine learning in battery management systems to optimize performance and lifespan
  • 5.2. Commercialization of solid state battery technology for safer and higher energy density grid storage
  • 5.3. Deployment of modular and scalable plug and play battery storage solutions for distributed energy resources
  • 5.4. Expansion of long duration flow battery installations for enhancing renewable energy integration and grid resilience
  • 5.5. Strengthening of recycling infrastructure and circular economy initiatives for critical battery materials supply security
  • 5.6. Influence of evolving regulatory frameworks and financial incentives on utility scale battery storage deployment strategies

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Battery Storage System Market, by Battery Chemistry

  • 8.1. Lead Acid
  • 8.2. Lithium Ion
    • 8.2.1. Lithium Cobalt Oxide
    • 8.2.2. Lithium Iron Phosphate
    • 8.2.3. Lithium Nickel Manganese Cobalt Oxide
  • 8.3. Sodium Sulfur

9. Battery Storage System Market, by Capacity Range

  • 9.1. 1-10 MWh
  • 9.2. Greater Than 10 MWh
  • 9.3. Less Than 1 MWh

10. Battery Storage System Market, by Installation

  • 10.1. Off Grid
  • 10.2. On Grid

11. Battery Storage System Market, by Application

  • 11.1. Commercial
  • 11.2. Industrial
  • 11.3. Residential
  • 11.4. Utility

12. Battery Storage System Market, by Region

  • 12.1. Americas
    • 12.1.1. North America
    • 12.1.2. Latin America
  • 12.2. Europe, Middle East & Africa
    • 12.2.1. Europe
    • 12.2.2. Middle East
    • 12.2.3. Africa
  • 12.3. Asia-Pacific

13. Battery Storage System Market, by Group

  • 13.1. ASEAN
  • 13.2. GCC
  • 13.3. European Union
  • 13.4. BRICS
  • 13.5. G7
  • 13.6. NATO

14. Battery Storage System Market, by Country

  • 14.1. United States
  • 14.2. Canada
  • 14.3. Mexico
  • 14.4. Brazil
  • 14.5. United Kingdom
  • 14.6. Germany
  • 14.7. France
  • 14.8. Russia
  • 14.9. Italy
  • 14.10. Spain
  • 14.11. China
  • 14.12. India
  • 14.13. Japan
  • 14.14. Australia
  • 14.15. South Korea

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2024
  • 15.2. FPNV Positioning Matrix, 2024
  • 15.3. Competitive Analysis
    • 15.3.1. Tesla, Inc.
    • 15.3.2. BYD Company Limited
    • 15.3.3. LG Energy Solution, Ltd.
    • 15.3.4. Fluence Energy, Inc.
    • 15.3.5. Samsung SDI Co., Ltd.
    • 15.3.6. Contemporary Amperex Technology Co., Limited
    • 15.3.7. Panasonic Holdings Corporation
    • 15.3.8. NEC Energy Solutions, LLC
    • 15.3.9. Hitachi Energy Ltd.
    • 15.3.10. Sungrow Power Supply Co., Ltd.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제