시장보고서
상품코드
1830619

TSN(Time-Sensitive Networking) 시장 : 유형, 컴포넌트, 용도별 - 세계 예측(2025-2032년)

Time-Sensitive Networking Market by Type, Components, Applications - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 199 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

TSN(Time-Sensitive Networking) 시장은 2032년까지 CAGR 50.18%로 393억 3,000만 달러로 성장할 것으로 예측됩니다.

주요 시장 통계
기준연도 2024 15억 1,000만 달러
추정연도 2025 22억 9,000만 달러
예측연도 2032 393억 3,000만 달러
CAGR(%) 50.18%

TSN(Time-Sensitive Networking)의 핵심과 결정론적 네트워크 역량을 비즈니스 및 운영 목표에 맞추기 위한 경영진의 우선순위에 대한 전략적 소개서

시간 민감형 네트워킹(TSN)은 결정론적 이더넷 표준의 틈새 시장에서 지연 시간, 신뢰성, 동기화 타이밍이 비즈니스 크리티컬한 분야의 전략적 인프라 고려사항으로 발전했습니다. 최근 수년간 산업 자동화, 자동차의 차량용 네트워크, 통신의 전송 요구사항이 통합되면서 TSN은 실험실의 실증 실험에서 실제 배치 파일럿 및 초기 상업적 배치로 발전하고 있습니다. 이 소개는 이기종 네트워크 간 TSN 도입의 운영, 아키텍처 및 조달의 의미를 평가해야 하는 경영진을 위한 단계를 설정합니다.

즉, 레거시 프로토콜과 함께 새로운 IEEE TSN 표준을 통합하고, 저지연 포워딩과 시간을 의식한 스케줄링을 지원하는 하드웨어를 선택하고, 관찰 가능성과 정책 기반 구성을 가능하게 하는 소프트웨어 스택과 관리 툴을 채택해야 합니다. 등입니다. 표준, 구성 요소, 대상 용도에 대한 초기 결정은 상호운용성, 업그레이드 주기, 공급업체 선택에 중대한 영향을 미칩니다. 따라서 의사결정자는 TSN이 무엇을 제공하는지, 기업 및 산업 목표에 어떻게 대응하는지, 그리고 운영 가치를 극대화하면서 혼란을 최소화하는 일련의 절차에 대한 명확한 프레임워크가 필요합니다.

이 섹션에서는 TSN의 기초가 되는 핵심 기술 메커니즘과 그 채택의 전략적 근거에 대해 간결하게 방향을 제시합니다. 경영진이 결정론적 네트워킹의 잠재력을 지연에 취약한 이용 사례에서 측정 가능한 성과로 연결하기 위해 네트워크 엔지니어링, OT/IT 컨버전스 팀, 제품 개발 및 조달 간의 기능 간 조정을 우선시해야 하는 이유를 강조합니다.

진화하는 반도체 통합, 표준 상호운용성 구상, OT IT의 통합 요구사항이 시간 민감형 네트워킹의 채택 상황을 어떻게 재구성하고 있는가?

TSN(Time-Sensitive Networking)을 둘러싼 환경은 상호 의존적인 기술 및 시장 역학으로 인해 일련의 변혁적인 변화가 진행되고 있습니다. 반도체 집적도의 발전과 스위치 실리콘의 성숙으로 인해 IEEE TSN의 기능 세트가 보다 광범위한 디바이스에서 사용할 수 있게 되었고, 그 결과 맞춤형 구현에서 표준화된 상호 운용 가능한 배포로의 전환이 가속화되고 있습니다. 동시에 통신의 고대역폭, 저지연 전송 시스템의 확대와 차량용 아키텍처에서 결정론적 이더넷의 추진은 제품 로드맵과 표준의 진화 모두에 영향을 미치는 반복적인 수요 패턴을 만들어내고 있습니다.

벤더, 시스템 통합사업자, 표준화 단체가 상호운용성 테스트베드 및 인증 경로에 집중함에 따라 생태계 협업이 진화하고 있습니다. 이러한 협력적 움직임은 통합 리스크를 줄이고 도입 기업의 도입 기간을 단축하는 동시에 벤더의 지원, 소프트웨어 툴, 수명주기관리에 대한 기대치를 높이고 있습니다. 또한 기업이 OT/IT 통합 전략을 추구함에 따라 통합의 과제는 순수한 엔지니어링의 문제가 아닌 영역 간 프로그램의 위험으로 재인식되고 있으며, 하이브리드 환경을 반영한 거버넌스, 보안, 운영의 플레이북이 필요하게 되었습니다.

마지막으로 안전과 신뢰성을 위한 결정론을 우선시하는 규제와 업계 특유의 추진력으로 인해 채택 곡선이 형성되고 있습니다. 이러한 힘은 레퍼런스 아키텍처로 작용하는 집중 투자 및 파일럿 프로젝트의 포켓을 생성하여 조달 선호도를 형성하고 일부 부문에서는 공급업체 통합을 가속화하고 있습니다. 이러한 변화를 종합하면 TSN의 기술적 잠재력이 통합, 지원, 장기적인 유지보수성 등 현실적인 고려사항과 점점 더 충돌하고 있으며, 이는 시장이 성숙해지고 있다는 것을 보여줍니다.

무역 정책의 변화로 인해 부품 노출이 증가하고 결정론적 네트워킹의 배포 일정이 제한되는 가운데, 조달 위험과 공급망 복원력을 탐색

관세 및 무역 조치의 도입은 네트워크 장비 및 반도체 의존 장치공급망 계획, 부품 조달 전략, 조달 주기에 영향을 미칩니다. 해당 기간 중 미국이 부과한 관세의 누적된 영향은 결정론적 네트워킹을 지원하는 하드웨어 집약적 부문공급망 취약성을 증폭시키고 있습니다. 그 결과, TSN(Time-Sensitive Networking) 솔루션을 평가하는 기업은 업그레이드 및 롤아웃 프로그램을 설계할 때 잠재적인 비용 변동, 리드 타임의 장기화, 부품 조달 결정의 전략적 의미를 고려해야만 합니다.

제조업체와 시스템 통합사업자들은 조달처 다변화, 중요 조립 작업의 선택적 온쇼어화, 관세가 부과되는 부품에 대한 의존도를 줄이기 위한 재설계 노력을 통해 이러한 환경에 대응하고 있습니다. 이러한 전략적 대응으로 단기적인 혼란은 완화될 수 있지만, 제품 버전 관리, 인증 요건, 재고 관리 등에 복잡성이 발생할 수 있습니다. 이와 병행하여, 조달 부문은 단가 비교에만 의존하지 않고 총소유비용(Total Cost of Ownership)과 공급업체의 회복력 지표를 중시하게 되었습니다.

도입 측면에서는 관세로 인해 조달 주기가 길어질 수 있고, 구성 요소의 가용성이나 관세 노출이 변경될 경우 단계적 업그레이드가 가능한 모듈형 아키텍처를 선호할 수 있는 인센티브가 생깁니다. 네트워크 설계자들은 현장에서 소프트웨어 업그레이드를 가능하게 하는 동시에 광범위한 IEEE TSN 기능을 지원하는 유연한 하드웨어 플랫폼을 지정하고 있으며, 이를 통해 관세에 따라 달라지는 하드웨어 변경으로부터 기능의 일부 요소를 분리할 수 있습니다. 기능의 일부 요소를 분리할 수 있습니다. 지역적으로 분산된 운영을 하는 조직의 경우, 지역적 조달 전략과 재고 버퍼는 배포 일정을 유지하고 서비스 수준 약속을 충족하는 데 필수적입니다.

특정 IEEE 표준, 하드웨어, 서비스, 소프트웨어 컴포넌트, 용도 업종을 종합적인 세분화 통합을 통해 배포 트레이드오프 및 통합 경로로 연결

세분화를 이해하는 것은 시간 민감 네트워킹 구상의 기술적 적합성, 공급업체 선택 및 배포 전략을 평가하는 데 있으며, 매우 중요합니다. 유형에 따라 표준화된 랜드스케이프에는 명확한 역할을 하는 개별 IEEE 사양이 포함되어 있습니다. IEEE 802.1 QBU는 프레임 선점 메커니즘을 제공하고, IEEE 802.1 QBV는 결정론적 전송을 보장하기 위해 시간 고려 스케줄링을 도입하고, IEEE 802.1 QCC는 대역폭과 품질을 관리하기 위해 스트림 예약 및 입학 제어를 제공합니다. IEEE 802.1 QCC는 대역폭과 품질을 관리하기 위한 스트림 예약 및 어드미션 컨트롤을 제공합니다. 각 표준은 특정 결정론적 특성을 제공해야 하며, 대상 용도의 지연, 지터 및 중복성 요구 사항을 충족해야 합니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 TSN(Time-Sensitive Networking) 시장 : 유형별

  • IEEE 802.1 AS
  • IEEE 802.1 CB
  • IEEE 802.1 QBU
  • IEEE 802.1 QBV
  • IEEE 802.1 QCC

제9장 TSN(Time-Sensitive Networking) 시장 : 컴포넌트별

  • 하드웨어
    • 산업용 라우터
    • 네트워크 인터페이스 카드
    • 스위치
  • 서비스
    • 컨설팅
    • 통합
    • 지원
  • 소프트웨어
    • 관리 소프트웨어
    • 프로토콜 스택

제10장 TSN(Time-Sensitive Networking) 시장 : 용도별

  • 항공우주 및 방위
    • 엔진 감시
    • 비행 제어 시스템
    • 기내 엔터테인먼트
  • 자동차
    • ADAS 통합
    • 차량내 이더넷
    • 인포테인먼트 시스템
  • 에너지
    • 재생에너지 통합
    • 스마트 그리드
    • 변전소 자동화
  • 산업 자동화
    • 공장 자동화
    • 프로세스 자동화
    • 로봇 공학
  • 통신
    • 5G 트랜스포트 네트워크
    • 백홀
    • 프론트홀

제11장 TSN(Time-Sensitive Networking) 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제12장 TSN(Time-Sensitive Networking) 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제13장 TSN(Time-Sensitive Networking) 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제14장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • ABB Ltd.
    • Advanced Micro Devices, Inc.
    • Analog Devices, Inc.
    • Belden Inc.
    • Broadcom Inc.
    • Calnex Solutions PLC
    • Cisco Systems, Inc.
    • General Electric Company
    • Intel Corporation
    • Marvell Technology, Inc.
    • Microchip Technology Inc.
    • Nokia Corporation
    • NXP Semiconductors N.V.
    • Renesas Electronics Corporation
    • Rockwell Automation, Inc.
    • Schneider Electric SE
    • Siemens AG
    • Synopsys, Inc.
    • TTTech Computertechnik AG
    • WAGO GmbH & Co. KG
    • Spirent Communications PLC
    • HMS Networks
    • Keysight Technologies
    • Moxa Inc.
    • NetTimeLogic GmbH
    • Texas Instruments Incorporated
    • TenAsys Corporation
    • Advantech Co., Ltd.
    • Telefonaktiebolaget LM Ericsson
KSA 25.10.28

The Time-Sensitive Networking Market is projected to grow by USD 39.33 billion at a CAGR of 50.18% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 1.51 billion
Estimated Year [2025] USD 2.29 billion
Forecast Year [2032] USD 39.33 billion
CAGR (%) 50.18%

A strategic primer on Time-Sensitive Networking essentials and executive priorities for aligning deterministic network capabilities with business and operational goals

Time-Sensitive Networking (TSN) has transitioned from a niche set of deterministic Ethernet standards into a strategic infrastructure consideration for sectors where latency, reliability, and synchronized timing are business-critical. In recent years, the convergence of industrial automation, automotive in-vehicle networks, and telecom transport requirements has elevated TSN from laboratory demonstrations to real-world deployment pilots and initial commercial rollouts. This introduction sets the stage for executives who must evaluate the operational, architectural, and procurement implications of TSN adoption across heterogeneous networks.

As organizations move to modernize networks for deterministic performance, they face a series of practical trade-offs: integration of new IEEE TSN standards alongside legacy protocols; selection of hardware that supports low-latency forwarding and time-aware scheduling; and adoption of software stacks and management tools that enable observability and policy-driven configuration. Early decisions about standards, components, and target applications will materially affect interoperability, upgrade cycles, and supplier selection. Therefore, decision-makers require a clear framing of what TSN delivers, how it maps to enterprise and industrial objectives, and the sequence of steps that minimize disruption while maximizing operational value.

This section provides a concise orientation on the core technical mechanisms underlying TSN and the strategic rationale for its adoption. It emphasizes why executives should prioritize cross-functional coordination among network engineering, OT/IT convergence teams, product development, and procurement in order to translate deterministic networking potential into measurable outcomes for latency-sensitive use cases.

How evolving semiconductor integration, standards interoperability initiatives, and converged OT IT requirements are collectively reshaping the Time-Sensitive Networking adoption landscape

The landscape for Time-Sensitive Networking is undergoing a series of transformative shifts driven by interdependent technological and market dynamics. Advances in semiconductor integration and the maturation of switch silicon are making IEEE TSN feature sets more accessible to a broader range of devices, which in turn accelerates the transition from bespoke implementations to standardized interoperable deployments. Simultaneously, the expansion of high-bandwidth, low-latency transport systems in telecommunications and the push for deterministic Ethernet in automotive architectures are creating recurring patterns of demand that influence both product roadmaps and standards evolution.

Ecosystem collaboration is evolving as vendors, system integrators, and standards bodies converge on interoperability testbeds and certification pathways. This collaborative movement reduces integration risk and shortens time to deployment for adopters, while also raising the expectations for vendor support, software tooling, and lifecycle management. Moreover, as enterprises pursue converged OT/IT strategies, integration challenges are reframed as cross-domain program risks rather than pure engineering problems, requiring governance, security, and operational playbooks that reflect hybrid environments.

Finally, the adoption curve is being shaped by regulatory and industry-specific drivers that prioritize determinism for safety and reliability. These forces are creating pockets of concentrated investment and pilot projects that serve as reference architectures, thereby shaping procurement preferences and accelerating supplier consolidation in some segments. Taken together, these shifts signify a maturing market where the technical promise of TSN is increasingly confronted by pragmatic considerations of integration, support, and long-term maintainability.

Navigating procurement risk and supply chain resilience as trade policy shifts increase component exposure and constrain timelines for deterministic networking deployments

The introduction of tariffs and trade measures influences supply chain planning, component sourcing strategies, and procurement cycles for network equipment and semiconductor-dependent devices. The cumulative impact of tariffs implemented by the United States in the relevant period has been to amplify supply chain fragility for hardware-intensive segments that underpin deterministic networking deployments. As a result, organizations evaluating Time-Sensitive Networking solutions must account for potential cost volatility, longer lead times, and the strategic implications of component sourcing decisions when designing upgrade or rollout programs.

Manufacturers and system integrators have responded to this environment through diversified sourcing, selective onshoring of critical assembly tasks, and redesign efforts that reduce dependence on tariff-exposed components. These strategic responses mitigate near-term disruption but can introduce complexity in product versioning, certification requirements, and inventory management. In parallel, procurement functions are placing greater emphasis on total cost of ownership considerations and supplier resilience metrics, rather than relying solely on unit price comparisons.

From a deployment perspective, tariffs can lengthen procurement cycles and create an incentive to favor modular architectures that allow phased upgrades as components become available or tariff exposures change. Network architects are increasingly specifying flexible hardware platforms that support a broad set of IEEE TSN features while enabling in-field software upgrades, thereby decoupling some elements of functionality from tariff-sensitive hardware changes. For organizations with geographically distributed operations, regional sourcing strategies and inventory buffers are now integral to maintaining deployment schedules and meeting service level commitments.

A comprehensive segmentation synthesis linking specific IEEE standards, hardware services software components, and application verticals to deployment trade-offs and integration pathways

Understanding segmentation is central to evaluating technical fit, supplier selection, and deployment strategy for Time-Sensitive Networking initiatives. Based on type, the standards landscape includes discrete IEEE specifications that play distinct roles: IEEE 802.1 AS governs time synchronization across the network; IEEE 802.1 CB addresses frame replication and elimination for redundancy; IEEE 802.1 QBU provides frame preemption mechanisms; IEEE 802.1 QBV introduces time-aware scheduling to ensure deterministic forwarding; and IEEE 802.1 QCC supplies stream reservation and admission control to manage bandwidth and quality. Each standard contributes specific deterministic properties and must be matched to the latency, jitter, and redundancy requirements of target applications.

Based on components, TSN solutions span hardware, services, and software. Hardware encompasses devices such as industrial routers, network interface cards, and switches that embed TSN-capable silicon and support time-aware features at the forwarding plane. Services cover consulting to assess architecture fit, integration to align OT and IT stacks, and ongoing support to maintain deterministic performance in production. Software includes management platforms for policy-driven orchestration and protocol stacks that implement TSN functions, enabling interoperability across vendors and simplifying lifecycle upgrades. The interplay between these component categories determines the level of customization required, the operational overhead, and the roadmap for incremental deployment.

Based on applications, TSN is finding traction across a range of verticals with distinct functional drivers. In aerospace and defense, use cases such as engine monitoring, flight control systems, and in-flight entertainment demand synchronization and high reliability. Automotive applications, including ADAS integration, in-vehicle Ethernet architectures, and infotainment systems, require deterministic behavior for safety-critical and latency-sensitive features. Energy sector implementations focus on renewable integration, smart grid coordination, and substation automation where precise timing and redundancy are essential. Industrial automation deployments cover factory automation, process control, and robotics, each with stringent cycle time and jitter tolerances. Telecommunications leverages TSN for 5G transport networks, backhaul, and fronthaul to manage quality of service and support new service classes. Mapping standards and components to these applications enables clearer trade-off analysis and more targeted roadmap development.

Regional dynamics shaping Time-Sensitive Networking adoption driven by industrial priorities regulatory frameworks and distinct supplier ecosystems across global markets

Regional dynamics are shaping the pace and character of Time-Sensitive Networking adoption, driven by differing industrial priorities, regulatory environments, and supplier ecosystems. In the Americas, innovation centers and large industrial manufacturers are advancing pilots that integrate TSN with legacy automation systems and telecom transport, supported by an active supplier base and a willingness to invest in modernization programs. This results in a pragmatic, pilot-first approach where interoperability testing and vendor partnerships are emphasized to reduce integration risk.

In Europe, Middle East & Africa, regulatory focus on industrial safety standards, strong automotive and manufacturing clusters, and coordinated research initiatives are accelerating formalized TSN adoption pathways. The presence of established standards bodies and collaborative testbeds in parts of the region is fostering consortia-based approaches that emphasize certification, cross-vendor compatibility, and long-term support commitments from suppliers. Meanwhile, the diversity within the region creates differentiated pockets of demand and localized supplier ecosystems.

Asia-Pacific is characterized by large-scale industrial modernization programs, significant automotive and telecom manufacturing capacity, and strong government-backed initiatives to upgrade critical infrastructure. This environment encourages rapid integration of TSN into production lines, vehicle architectures, and telecommunications equipment, with a parallel focus on volume-driven cost optimization and supply chain localization. Across all regions, local regulatory requirements, ecosystem maturity, and supply chain considerations will determine the dominant deployment models and vendor selection criteria.

An overview of the vendor ecosystem emphasizing semiconductor integration network equipment differentiation software orchestration strengths and the role of systems integrators

The competitive landscape for TSN spans semiconductor vendors, network equipment manufacturers, software providers, and systems integrators that offer varying combinations of silicon capabilities, endpoint implementations, and lifecycle services. Semiconductor suppliers are central because their integration of time-aware features into switches and network interface designs determines the feasibility of cost-effective TSN deployment across device classes. Network equipment manufacturers compete on the maturity of their TSN feature sets, interoperability testing, and partner certification programs, while software providers differentiate on management tooling, orchestration capabilities, and protocol stack support that reduce integration friction.

Systems integrators and professional services firms play a critical role by bridging OT and IT domains, validating deterministic behavior in real operational conditions, and delivering bespoke solutions for vertical applications. Their strength lies in deep domain knowledge, testbed facilities, and the ability to marshal multi-vendor ecosystems. Across all categories, a premium is being placed on demonstrable interoperability and on documented case studies that show successful deployments in safety-critical or production environments. Strategic partnerships, reference architectures, and certification programs are therefore prominent mechanisms by which companies establish credibility and accelerate adoption among enterprise buyers.

Actionable and pragmatic steps for executives to validate deterministic use cases secure resilient supply chains and accelerate interoperable Time-Sensitive Networking deployments

Industry leaders seeking to convert TSN potential into operational advantage must adopt a sequence of pragmatic actions that balance technical rigor with business agility. Begin by conducting cross-functional assessments that align use case requirements with specific IEEE standards and component capabilities, ensuring that latency, jitter, and redundancy targets are translated into procurement specifications. Parallel to technical assessment, establish supplier resilience criteria that incorporate sourcing flexibility and the ability to support in-field updates, which together mitigate exposure to trade policy volatility and component lead time fluctuations.

Next, prioritize interoperability through staged pilots that include multi-vendor setups and realistic traffic models. Use these pilots to validate management tooling, synchronization accuracy, and redundancy mechanisms under production-like conditions. Invest in training and change management to prepare operations and network teams for new monitoring paradigms and incident response workflows. From a procurement standpoint, favor modular hardware and software architectures that decouple feature delivery from full hardware refreshes and allow phased investments tied to verified performance milestones. Finally, engage early with systems integrators and standards consortia to leverage shared testbeds and certification pathways, thereby reducing integration risk and accelerating time to operational stability.

A rigorous multi-method research approach combining primary technical stakeholder interviews standards analysis and supply chain scenario validation to ground conclusions

The research approach combines primary engagement with technical stakeholders, structured analysis of standards and published specifications, and targeted review of supplier product documentation to validate functional claims. Primary interviews with network architects, systems integrators, and equipment vendors provided qualitative insights into deployment challenges, interoperability priorities, and support expectations. These interviews were complemented by secondary source analysis of standards publications, vendor technical briefs, conference proceedings, and independent interoperability test reports to triangulate technical capabilities and maturity levels.

In addition, scenario-based supply chain analysis examined the resilience implications of tariff-driven disruptions and component sourcing strategies. Technical validation exercises incorporated review of protocol stack implementations, timing synchronization behavior, and switch silicon feature sets to confirm alignment between claimed standards support and practical deployment considerations. Finally, findings were synthesized through an iterative review process with domain experts to ensure that recommendations are actionable, reflect industry best practices, and remain grounded in observed field behavior and reproducible test criteria.

Concluding synthesis on why measured integration planning interoperability validation and supplier resilience are decisive factors for successful TSN adoption

Time-Sensitive Networking represents a pivotal inflection point for organizations that require deterministic performance across increasingly converged network environments. The path from pilot to production is governed less by a single technology choice and more by a sequence of integration, certification, and operational readiness activities that collectively determine success. Decision-makers must therefore adopt a systems view that aligns standards selection, component sourcing, and application requirements with resilient procurement strategies and clear governance frameworks.

As deployments scale, the ability to demonstrate interoperability, maintain synchronized timing at scale, and operate deterministic networks with predictable maintenance windows will distinguish successful initiatives from those that struggle with fragmentation and vendor-specific lock-in. Organizations that combine rigorous pilot validation, modular architectural choices, and strong supplier partnerships will be best positioned to capture the operational benefits of TSN while containing risk. The conclusion underscores that TSN is not a one-off upgrade but a strategic capability requiring sustained cross-functional investment and a focus on measurable operational outcomes.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Automotive Ethernet TSN integration for synchronized sensor fusion in autonomous vehicles
  • 5.2. Industrial automation networks leveraging TSN for deterministic communication in smart factories
  • 5.3. Converged 5G and TSN architectures enabling ultra-reliable low-latency connectivity for mobile applications
  • 5.4. Standardization and interoperability challenges in cross-vendor TSN implementations for multi-domain networks
  • 5.5. Implementation of time synchronization protocols in large-scale TSN deployments for precision control systems
  • 5.6. Integration of cybersecurity frameworks within TSN to ensure secure deterministic data delivery in critical infrastructure
  • 5.7. Emergence of software-defined TSN orchestration platforms for dynamic management in Industry 4.0 environments
  • 5.8. Development of open-source TSN software stacks to accelerate adoption in industrial edge computing environments

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Time-Sensitive Networking Market, by Type

  • 8.1. IEEE 802.1 AS
  • 8.2. IEEE 802.1 CB
  • 8.3. IEEE 802.1 QBU
  • 8.4. IEEE 802.1 QBV
  • 8.5. IEEE 802.1 QCC

9. Time-Sensitive Networking Market, by Components

  • 9.1. Hardware
    • 9.1.1. Industrial Routers
    • 9.1.2. Network Interface Cards
    • 9.1.3. Switches
  • 9.2. Services
    • 9.2.1. Consulting
    • 9.2.2. Integration
    • 9.2.3. Support
  • 9.3. Software
    • 9.3.1. Management Software
    • 9.3.2. Protocol Stacks

10. Time-Sensitive Networking Market, by Applications

  • 10.1. Aerospace And Defense
    • 10.1.1. Engine Monitoring
    • 10.1.2. Flight Control Systems
    • 10.1.3. In Flight Entertainment
  • 10.2. Automotive
    • 10.2.1. Adas Integration
    • 10.2.2. In Vehicle Ethernet
    • 10.2.3. Infotainment Systems
  • 10.3. Energy
    • 10.3.1. Renewable Integration
    • 10.3.2. Smart Grid
    • 10.3.3. Substation Automation
  • 10.4. Industrial Automation
    • 10.4.1. Factory Automation
    • 10.4.2. Process Automation
    • 10.4.3. Robotics
  • 10.5. Telecommunications
    • 10.5.1. 5G Transport Networks
    • 10.5.2. Backhaul
    • 10.5.3. Fronthaul

11. Time-Sensitive Networking Market, by Region

  • 11.1. Americas
    • 11.1.1. North America
    • 11.1.2. Latin America
  • 11.2. Europe, Middle East & Africa
    • 11.2.1. Europe
    • 11.2.2. Middle East
    • 11.2.3. Africa
  • 11.3. Asia-Pacific

12. Time-Sensitive Networking Market, by Group

  • 12.1. ASEAN
  • 12.2. GCC
  • 12.3. European Union
  • 12.4. BRICS
  • 12.5. G7
  • 12.6. NATO

13. Time-Sensitive Networking Market, by Country

  • 13.1. United States
  • 13.2. Canada
  • 13.3. Mexico
  • 13.4. Brazil
  • 13.5. United Kingdom
  • 13.6. Germany
  • 13.7. France
  • 13.8. Russia
  • 13.9. Italy
  • 13.10. Spain
  • 13.11. China
  • 13.12. India
  • 13.13. Japan
  • 13.14. Australia
  • 13.15. South Korea

14. Competitive Landscape

  • 14.1. Market Share Analysis, 2024
  • 14.2. FPNV Positioning Matrix, 2024
  • 14.3. Competitive Analysis
    • 14.3.1. ABB Ltd.
    • 14.3.2. Advanced Micro Devices, Inc.
    • 14.3.3. Analog Devices, Inc.
    • 14.3.4. Belden Inc.
    • 14.3.5. Broadcom Inc.
    • 14.3.6. Calnex Solutions PLC
    • 14.3.7. Cisco Systems, Inc.
    • 14.3.8. General Electric Company
    • 14.3.9. Intel Corporation
    • 14.3.10. Marvell Technology, Inc.
    • 14.3.11. Microchip Technology Inc.
    • 14.3.12. Nokia Corporation
    • 14.3.13. NXP Semiconductors N.V.
    • 14.3.14. Renesas Electronics Corporation
    • 14.3.15. Rockwell Automation, Inc.
    • 14.3.16. Schneider Electric SE
    • 14.3.17. Siemens AG
    • 14.3.18. Synopsys, Inc.
    • 14.3.19. TTTech Computertechnik AG
    • 14.3.20. WAGO GmbH & Co. KG
    • 14.3.21. Spirent Communications PLC
    • 14.3.22. HMS Networks
    • 14.3.23. Keysight Technologies
    • 14.3.24. Moxa Inc.
    • 14.3.25. NetTimeLogic GmbH
    • 14.3.26. Texas Instruments Incorporated
    • 14.3.27. TenAsys Corporation
    • 14.3.28. Advantech Co., Ltd.
    • 14.3.29. Telefonaktiebolaget LM Ericsson
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제