시장보고서
상품코드
1835516

모바일 로봇 시장 : 유형별, 유통 채널별, 용도별, 최종사용자별 - 세계 예측(2025-2032년)

Mobile Robots Market by Type, Distribution Channel, Application, End User - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 193 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

모바일 로봇 시장은 2032년까지 CAGR 18.69%로 1,025억 1,000만 달러로 성장할 것으로 예측됩니다.

주요 시장 통계
기준연도 2024 260억 1,000만 달러
추정연도 2025 309억 4,000만 달러
예측연도 2032 1,025억 1,000만 달러
CAGR(%) 18.69%

진화하는 모바일 로봇의 전망을 전략적으로 전망하고, 핵심 기술 추진력, 전개 역학, 의사결정의 필요성을 밝힙니다.

모바일 로봇 분야는 지각, 자율성, 시스템 통합의 진화에 힘입어 전환기를 맞이하고 있습니다. 물류, 헬스케어, 제조, 소매업 등 각 기관은 실증 실험에서 실제 운영으로 전환하고 있으며, 이러한 전환은 기술 역량, 운영 적합성, 벤더 생태계에 대한 미묘한 관점을 필요로 합니다. 지난 수년간 센서의 성능과 비용 효율성이 향상되고, 계산 밀도가 가장자리에 가까워지고, 내비게이션 및 차량 오케스트레이션을 위한 소프트웨어 툴체인이 성숙해지면서 더욱 풍부한 배포 패턴을 만들어냈습니다.

기업이 모바일 로봇을 평가할 때 기존 자동화와의 상호운용성, 안전 및 규정 준수 프레임워크, 몇년단위의 총 운영 비용 등을 고려해야 합니다. 경쟁 환경은 레거시 자동화 공급업체, 로봇 전문 기업, 소프트웨어 우선 프로바이더로 확대되고 있으며, 각기 다른 스택 레이어를 소유하려고 노력하고 있습니다. 이러한 다양성으로 인해 명확한 선택 기준과 운영의 민첩성을 유지하면서 기술 도입의 위험을 피할 수 있는 단계적 도입 계획의 중요성이 커지고 있습니다.

앞으로 이 분야의 모멘텀은 현실적인 통합 전략, 숙련된 인재 양성, 적응형 조달 모델에 달려 있습니다. 기술적 검증과 현실적인 운영 파일럿을 결합하는 리더가 모바일 로봇이 가져다주는 생산성과 유연성을 활용하는 데 가장 유리한 위치를 차지할 것으로 보입니다.

센싱, 오케스트레이션, 통합의 발전이 기업용 자율 시스템의 이동성, 안전성, 확장성을 재정의하기 위해 어떻게 수렴하고 있는가?

모바일 로봇 전망의 변화는 몇 가지 상호보완적인 축을 따라 전개되고 있으며, 기업의 자동화 접근 방식을 재구성하고 있습니다. 첫째, 인지 시스템과 내비게이션 방식은 단일 센서 의존에서 멀티모달 아키텍처로 전환하여 인간과 로봇이 혼합된 환경에서 보다 안전하고 적응력 있는 작동을 가능하게 하고 있습니다. 동시에, 특히 차량 관리 및 오케스트레이션 분야에서 소프트웨어의 성숙으로 인해 단일 파일럿에서 여러 단위의 운영으로 확장하는 데 있으며, 마찰이 줄어들었습니다.

엣지 컴퓨팅과 미들웨어의 표준화는 통합의 역학을 변화시켜 이기종 시스템 및 타사 시스템이 보다 효과적으로 상호 운용될 수 있도록 했습니다. 이러한 상호운용성은 모바일 로봇이 보다 광범위한 디지털 공급망에서 모듈식 컴포넌트가 되는 구성 가능한 자동화 전략을 촉진하고 있습니다. 사이버 보안과 기능 안전에 대한 투자는 커넥티드 플릿의 운영 위험과 공공 및 사적 공간에 대한 규제 감시를 반영하여 동시에 증가하고 있습니다.

마지막으로 공급망 복원력과 현지 생산이 설계 및 조달 선택에 영향을 미치고 있으며, 기업은 점진적인 업그레이드를 지원하는 적응성이 높은 플랫폼을 선호하고 있습니다. 이러한 변화를 종합하면 모바일 로봇 시장은 더욱 다양하고 전략적인 방향으로 발전할 것이며, 기업의 디지털 혁신 구상에 통합될 것입니다.

미국의 최근 관세 조정과 이에 따른 조달, 설계, 공급업체 리스크 관리의 전략적 변화가 업무에 미치는 영향 평가

최근 미국이 2025년에 도입한 관세 조치는 모바일 로봇 생태계의 이해관계자들에게 새로운 비용 벡터와 조달의 복잡성을 가져왔습니다. 특수 센서, 라이더 모듈, 특정 반도체 클래스 등 로봇의 서브시스템에 필수적인 부품은 공급업체의 경제성과 벤더의 조달 전략을 변화시키는 관세 구조의 변화를 보였습니다. 그 결과, 조달팀은 공급의 연속성을 보장하면서 비용 경쟁력을 유지하기 위해 공급업체 인증 기준과 계약 조건을 재검토했습니다.

이러한 무역 정책의 변화는 제조업체와 통합업체들에게 몇 가지 전술적 대응을 촉구했습니다. 일부 공급업체는 대체 지역 공급업체와의 제휴를 확대하여 공급 기반 다변화를 가속화하고, 다른 공급업체는 관세의 영향을 받는 부품을 기능적으로 동등한 대체품으로 대체하기 위해 BOM 설계를 재평가했습니다. 관세로 인해 통합업체들은 배치 일정과 서비스 약속을 유지하기 위한 유연한 조달 조항과 재고 버퍼의 중요성이 더욱 부각되었습니다.

또한 관세로 인한 비용 압박은 국경 간 무역 마찰에 노출될 기회를 줄이기 위해 니어쇼어링과 지역 제조 발자국에 대한 새로운 관심을 불러일으켰습니다. 기업은 보다 탄력적인 공급망이 가져다주는 이점과 경제성의 균형을 맞추기 위해 장기적인 조달 전략을 재조정하고 있습니다. 전반적으로 관세 환경은 최저 비용 조달에서 공급업체 리스크, 물류 민첩성, 토탈 수명주기 지원에 대한 보다 종합적인 평가로 전략적 전환을 강화하고 있습니다.

유형, 유통 경로, 용도 수요, 최종사용자 업종별, 기술 및 서비스 전략이 어떻게 다른지 파악, 심층 세분화 인사이트 제공

인사이트 있는 세분화를 통해 모바일 로봇을 둘러싼 환경에서 기술 선택과 상업적 전략이 어떤 명확한 가치 제안을 창출할 수 있는지를 밝힙니다. 유형별로는 무인운반차와 자율이동로봇이 있습니다. 자동 운반차에는 레이저 가이드, 마그네틱 테이프 가이드, 비전 가이드, 와이어 가이드 시스템이 포함되며, 마그네틱 테이프 가이드 솔루션은 엠보싱 테이프와 표준 테이프로 나뉘며, 와이어 가이드 시스템은 이중 와이어 접근 방식과 단일 와이어 접근 방식으로 나뉩니다. 나뉩니다. 자율 이동 로봇은 레이저 네비게이션, 라이더 네비게이션, 마그네틱 네비게이션, 비전 네비게이션에 걸쳐 있으며, 라이더 네비게이션에서는 2D LiDAR와 3D LiDAR의 양식이 명확하게 구분됩니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 모바일 로봇 시장 : 유형별

  • 무인운반차
    • 레이저 유도
    • 자기테이프 가이드
      • 엠보스 테이프
      • 표준 테이프
    • 비전 가이드
    • 와이어 가이드
      • 듀얼 와이어
      • 단선
  • 자율 이동 로봇
    • 레이저 내비게이션
    • LiDAR 내비게이션
      • 2D 라이더
      • 3D 라이더
    • 자기 항법
    • 비전 내비게이션

제9장 모바일 로봇 시장 : 유통 채널별

  • 오프라인
  • 온라인

제10장 모바일 로봇 시장 : 용도별

  • 클리닝
  • 배송
    • 공장내 배송
    • 라스트 마일 배송
  • 소독
  • 검사
  • 자재관리
    • 빈피킹
    • 카트 운송
    • 팔레트 운송

제11장 모바일 로봇 시장 : 최종사용자별

  • 헬스케어
  • 물류·창고
    • 제조 창고
    • 소매 창고
    • 서드파티 물류
  • 제조업
    • 자동차
    • 일렉트로닉스
    • 식품 및 음료
    • 의약품
  • 소매

제12장 모바일 로봇 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제13장 모바일 로봇 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제14장 모바일 로봇 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제15장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Toyota Industries Corporation
    • KION Group AG
    • Daifuku Co., Ltd.
    • Murata Machinery, Ltd.
    • ABB Ltd.
    • KUKA Aktiengesellschaft
    • Omron Corporation
    • JBT Corporation
    • Honeywell International Inc.
    • iRobot Corporation
KSA 25.10.21

The Mobile Robots Market is projected to grow by USD 102.51 billion at a CAGR of 18.69% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 26.01 billion
Estimated Year [2025] USD 30.94 billion
Forecast Year [2032] USD 102.51 billion
CAGR (%) 18.69%

A strategic orientation to the evolving mobile robots landscape that clarifies core technology drivers, deployment dynamics, and decision-making imperatives

The mobile robots sector is at an inflection point driven by converging advances in perception, autonomy, and systems integration. Institutions across logistics, healthcare, manufacturing, and retail are shifting from proof-of-concept pilots to operational deployments, and this transition demands a nuanced view of technology capabilities, operational fit, and vendor ecosystems. Over the past several years, sensors have become more capable and cost-effective, compute density has moved closer to the edge, and software toolchains for navigation and fleet orchestration have matured, creating a richer palette of deployment patterns.

As organizations evaluate mobile robots, they must weigh interoperability with existing automation, safety and compliance frameworks, and total cost of operations over multi-year horizons. The competitive environment has broadened to include legacy automation suppliers, specialized robotics firms, and software-first providers, each seeking to own different layers of the stack. This diversity amplifies the importance of clear selection criteria and staged implementation plans that de-risk technology adoption while preserving operational agility.

Looking ahead, the sector's momentum is contingent on pragmatic integration strategies, skilled workforce development, and adaptive procurement models. Leaders who combine technical validation with realistic operational pilots will be best positioned to harness the productivity and flexibility that mobile robots can deliver.

How advances in sensing, orchestration, and integration are converging to redefine mobility, safety, and scalability in autonomous systems for enterprises

Transformations in the mobile robotics landscape are unfolding along several mutually reinforcing axes, reshaping how enterprises approach automation. First, perception systems and navigation methods have transitioned from single-sensor reliance to multi-modal architectures, enabling safer and more adaptable operation in mixed human-robot environments. Concurrently, software maturity-especially in fleet management and orchestration-has reduced friction for scaling from one-off pilots to multi-unit operations.

Edge computing and middleware standardization have also altered integration dynamics, allowing heterogeneous fleets and third-party systems to interoperate more effectively. This interoperability is catalyzing composable automation strategies where mobile robots become modular components within broader digital supply chains. Investment in cybersecurity and functional safety is rising in tandem, reflecting the operational risks of connected fleets and the regulatory scrutiny of public and private spaces.

Finally, supply chain resilience and localized manufacturing are influencing design and procurement choices, with organizations favoring adaptable platforms that support incremental upgrades. These shifts collectively make the mobile robots market more diverse, strategic, and integrated into enterprise digital transformation initiatives.

Assessing the operational consequences of recent US tariff adjustments and the resulting strategic shifts in sourcing, design, and supplier risk management

Recent tariff measures introduced by the United States in 2025 have introduced new cost vectors and procurement complexities for stakeholders in the mobile robotics ecosystem. Components critical to robot subsystems, such as specialized sensors, lidar modules, and certain semiconductor classes, have seen changes to duty structures that alter supplier economics and vendor sourcing strategies. As a result, procurement teams have revisited supplier qualification criteria and contract terms to preserve cost competitiveness while ensuring continuity of supply.

These trade policy shifts have prompted several tactical responses among manufacturers and integrators. Some vendors have accelerated diversification of their supply base by expanding partnerships with suppliers in alternative geographies, while others have re-evaluated bill-of-materials designs to substitute tariff-exposed components with functionally equivalent alternatives. For integrators, the tariffs highlighted the importance of flexible sourcing clauses and inventory buffers to maintain deployment schedules and service commitments.

In addition, tariff-driven cost pressure has catalyzed renewed interest in nearshoring and regional manufacturing footprints aimed at reducing exposure to cross-border trade frictions. Enterprises are recalibrating long-term sourcing strategies to balance unit economics against the benefits of a more resilient supply chain. Overall, the tariff environment is reinforcing a strategic shift from lowest-cost sourcing to a more holistic assessment of supplier risk, logistics agility, and total lifecycle support.

Deep segmentation insights revealing how type, distribution pathway, application demands, and end-user verticals dictate divergent technology and service strategies

Insightful segmentation helps clarify where technology choices and commercial strategies create distinct value propositions across the mobile robots landscape. Based on Type, the market includes Automated Guided Vehicles and Autonomous Mobile Robots. Automated Guided Vehicles encompass laser guided, magnetic tape guided, vision guided, and wire guided systems, with magnetic tape guided solutions further divided into embossed tape and standard tape while wire guided systems distinguish between dual wire and single wire approaches. Autonomous Mobile Robots span laser navigation, lidar navigation, magnetic navigation, and vision navigation, and within lidar navigation there are clear distinctions between 2D LiDAR and 3D LiDAR modalities.

Based on Distribution Channel, solutions are delivered through offline and online channels, each channel shaping customer experience, installation services, and aftermarket support differently. Based on Application, deployments address cleaning, delivery, disinfection, inspection, and material handling use cases, where delivery differentiates between in-plant delivery and last-mile delivery, and material handling activities include bin picking, cart transport, and pallet transport tasks that impose unique mechanical and control requirements. Based on End User, adoption spans healthcare, logistics and warehousing, manufacturing, and retail, with logistics and warehousing segment nuances across manufacturing warehouses, retail warehouses, and third-party logistics providers, while manufacturing deployments vary across automotive, electronics, food and beverage, and pharmaceuticals verticals.

This layered segmentation reveals that technical choices such as navigation method, sensor suite, and mechanical payload architecture must be matched to the operational profile and channel expectations of each end-use. Consequently, product roadmaps, sales motions, and service models need to be tailored to address the differentiated needs of these intersecting segments.

Regional dynamics and operational realities across the Americas, Europe Middle East and Africa, and Asia-Pacific that shape deployment choices, sourcing and compliance

Regional dynamics influence technology adoption, supply-chain design, and regulatory compliance in distinctive ways. In the Americas, adoption is being driven by large-scale logistics operations and significant investment in automation to address labor constraints and throughput requirements, and the policy environment emphasizes data protection and safety standards that affect deployment architectures. Europe, Middle East & Africa exhibits a diverse regulatory landscape where harmonization of safety standards and industrial automation incentives vary by country, prompting solution providers to offer modular products that can adapt to local compliance and interoperability requirements.

Asia-Pacific continues to be a hotbed of innovation and volume manufacturing, with strong industrial automation adoption in manufacturing hubs and robust commercial demand in urban logistics and retail. The region's dense supplier base for sensors and core components supports rapid iteration of designs, and local service ecosystems facilitate faster ramp-up of fleet operations. Across regions, differences in labor markets, infrastructure maturity, and regulatory frameworks guide where organizations prioritize investments and choose between domestic suppliers or international vendors.

Understanding these regional contrasts is essential for crafting go-to-market strategies, prioritizing channel investments, and designing after-sales service networks that reflect localized operational realities.

Competitive archetypes and partnership dynamics that determine vendor suitability, integration risk, and long-term operational support for robotics buyers

A focused view of key companies highlights overlapping competitive models and areas of specialization that buyers should consider when evaluating partners. Some firms differentiate through vertically integrated platforms that combine proprietary hardware and fleet orchestration software, emphasizing turnkey deployments and full-service support. Other players adopt a best-of-breed approach, partnering across sensor, actuator, and software ecosystems to deliver modular solutions that can be adapted to specific workflows. There are also software-centric vendors whose strengths lie in navigation algorithms and cloud-based fleet management, enabling hardware-agnostic orchestration across heterogeneous fleets.

Strategic alliances and channel partnerships are increasingly important as vendors seek to extend their reach into industry verticals and regional markets. Service models vary from capital purchase to robotics-as-a-service offerings, giving customers flexibility in procurement and operational accounting. In addition, an expanding aftermarket service industry offers maintenance contracts, spare part logistics, and remote diagnostics that materially affect total lifetime value and uptime guarantees.

For buyers, evaluating companies requires balancing product maturity, customization capability, service footprint, and long-term roadmap compatibility. Suppliers that demonstrate transparent integration pathways, robust safety validation, and a clear path for incremental feature upgrades stand out when organizations plan multi-phase deployments.

Actionable roadmap for executives to pilot, procure, and scale mobile robotics with governance, workforce readiness, and resilient sourcing strategies

Leaders seeking to extract value from mobile robotics should adopt a pragmatic, staged approach that aligns technology selection with operational objectives and organizational capabilities. Begin by defining measurable use-case outcomes and minimum viable performance criteria for navigation, payload, uptime, and safety. Use these criteria to structure controlled pilots that evaluate real-world interaction with existing workflows and facilities, and ensure pilots include metrics for integration effort and maintenance demands.

Next, develop procurement frameworks that emphasize modularity and interoperability to avoid vendor lock-in. Contract terms should address lifecycle support, software updates, liability, and spare parts logistics. Invest in workforce readiness by training frontline staff on new interaction paradigms and establishing clear procedures for exception handling and human-robot collaboration. Simultaneously, create a governance rhythm with cross-functional stakeholders to review pilot outcomes and translate learnings into scale-up decisions.

Finally, prioritize resilience in your supply chain strategy by qualifying multiple suppliers for critical components, assessing nearshoring alternatives, and building inventory buffers where appropriate. Establish performance-based KPIs for service providers to align incentives around uptime and continuous improvement. These steps collectively reduce deployment risk and accelerate the realization of operational benefits.

A transparent and practical research approach blending primary stakeholder interviews, technical validation, and supply-chain analysis to ensure actionable insights

This research synthesizes primary and secondary inputs to develop a robust, practice-oriented analysis of the mobile robots landscape. Primary inputs included structured interviews with procurement leaders, operations managers, and engineering teams across key verticals, along with vendor briefings and technical demonstrations to validate real-world performance claims. Secondary inputs consisted of peer-reviewed technical literature, standards documentation, regulatory guidance, and industry press that together informed assessments of sensing modalities, safety frameworks, and integration practices.

Analytical methods combined qualitative thematic coding of interview transcripts with comparative feature analysis across platforms and solution architectures. Supply chain assessments used component mapping and supplier concentration analysis to identify exposure points and potential mitigation levers. Scenario-based reasoning was applied to evaluate impacts of policy shifts and technology inflection points on procurement and deployment strategies.

Throughout the research process, findings were triangulated across multiple sources to strengthen validity, and areas of uncertainty were explicitly flagged for further investigation. The methodology prioritizes practical insight and deployable recommendations rather than purely theoretical constructs, ensuring relevance for decision-makers focused on operational adoption.

Concluding synthesis on capturing operational value from mobile robotics by aligning technology, procurement resilience, and workforce integration

The trajectory of mobile robotics reflects a broader shift toward flexible, scalable automation that complements human work and enhances throughput across industries. Technological progress in perception, navigation, and fleet orchestration is enabling a wider array of practical use cases, while operational learnings from early deployments are clarifying the prerequisites for reliable scale. Organizations that integrate rigorous pilot design with resilient procurement and workforce planning will achieve faster, lower-risk adoption curves and sustainable productivity improvements.

While headwinds such as trade policy changes and component supply constraints introduce short-term friction, they also incentivize strategic diversification of suppliers and regional manufacturing footprints. Vendors that offer modular architectures, clear integration pathways, and strong aftermarket support will be preferred partners for enterprises seeking phased adoption. Ultimately, a balanced strategy that aligns technical evaluation with operational realities will be the distinguishing factor between successful scale-ups and stalled initiatives.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Integration of advanced LiDAR and 3D vision systems for precise navigation in dynamic environments
  • 5.2. Collaborative mobile robots with AI-driven task allocation and real-time fleet coordination
  • 5.3. Implementation of edge computing capabilities to enable low-latency autonomous decision-making in robots
  • 5.4. Rising adoption of modular robot designs for easy maintenance and customizable industrial automation
  • 5.5. Development of advanced safety and compliance features to meet stringent regulatory standards in healthcare and manufacturing sectors

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Mobile Robots Market, by Type

  • 8.1. Automated Guided Vehicle
    • 8.1.1. Laser Guided
    • 8.1.2. Magnetic Tape Guided
      • 8.1.2.1. Embossed Tape
      • 8.1.2.2. Standard Tape
    • 8.1.3. Vision Guided
    • 8.1.4. Wire Guided
      • 8.1.4.1. Dual Wire
      • 8.1.4.2. Single Wire
  • 8.2. Autonomous Mobile Robot
    • 8.2.1. Laser Navigation
    • 8.2.2. Lidar Navigation
      • 8.2.2.1. 2D LiDAR
      • 8.2.2.2. 3D LiDAR
    • 8.2.3. Magnetic Navigation
    • 8.2.4. Vision Navigation

9. Mobile Robots Market, by Distribution Channel

  • 9.1. Offline
  • 9.2. Online

10. Mobile Robots Market, by Application

  • 10.1. Cleaning
  • 10.2. Delivery
    • 10.2.1. In-Plant Delivery
    • 10.2.2. Last-Mile Delivery
  • 10.3. Disinfection
  • 10.4. Inspection
  • 10.5. Material Handling
    • 10.5.1. Bin Picking
    • 10.5.2. Cart Transport
    • 10.5.3. Pallet Transport

11. Mobile Robots Market, by End User

  • 11.1. Healthcare
  • 11.2. Logistics & Warehousing
    • 11.2.1. Manufacturing Warehouse
    • 11.2.2. Retail Warehouse
    • 11.2.3. Third Party Logistics
  • 11.3. Manufacturing
    • 11.3.1. Automotive
    • 11.3.2. Electronics
    • 11.3.3. Food & Beverage
    • 11.3.4. Pharmaceuticals
  • 11.4. Retail

12. Mobile Robots Market, by Region

  • 12.1. Americas
    • 12.1.1. North America
    • 12.1.2. Latin America
  • 12.2. Europe, Middle East & Africa
    • 12.2.1. Europe
    • 12.2.2. Middle East
    • 12.2.3. Africa
  • 12.3. Asia-Pacific

13. Mobile Robots Market, by Group

  • 13.1. ASEAN
  • 13.2. GCC
  • 13.3. European Union
  • 13.4. BRICS
  • 13.5. G7
  • 13.6. NATO

14. Mobile Robots Market, by Country

  • 14.1. United States
  • 14.2. Canada
  • 14.3. Mexico
  • 14.4. Brazil
  • 14.5. United Kingdom
  • 14.6. Germany
  • 14.7. France
  • 14.8. Russia
  • 14.9. Italy
  • 14.10. Spain
  • 14.11. China
  • 14.12. India
  • 14.13. Japan
  • 14.14. Australia
  • 14.15. South Korea

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2024
  • 15.2. FPNV Positioning Matrix, 2024
  • 15.3. Competitive Analysis
    • 15.3.1. Toyota Industries Corporation
    • 15.3.2. KION Group AG
    • 15.3.3. Daifuku Co., Ltd.
    • 15.3.4. Murata Machinery, Ltd.
    • 15.3.5. ABB Ltd.
    • 15.3.6. KUKA Aktiengesellschaft
    • 15.3.7. Omron Corporation
    • 15.3.8. JBT Corporation
    • 15.3.9. Honeywell International Inc.
    • 15.3.10. iRobot Corporation
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제