시장보고서
상품코드
1856398

약제-디바이스 조합 제품 시장 : 제품 유형, 기술, 제형, 약제 클래스별, 최종사용자별 - 세계 예측(2025-2032년)

Drug-Device Combination Products Market by Product Type, Technology, Dosage Form, Therapeutic Class, End-User - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 184 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

약제-디바이스 조합 제품 시장은 2032년까지 CAGR 8.34%로 2,746억 1,000만 달러로 성장할 것으로 예측됩니다.

주요 시장 통계
기준연도 2024 1,445억 9,000만 달러
추정연도 2025 1,564억 6,000만 달러
예측연도 2032 2,746억 1,000만 달러
CAGR(%) 8.34%

임상적 혁신, 규제적 뉘앙스, 상업화의 필요성을 최신 개발 수명주기에 위치시키는 병용요법에 대한 종합적인 방향성

약리학과 기기 공학의 통합은 의료 혁신과 의료 서비스 제공의 교차점에 위치한 결정적인 분야로 발전해 왔습니다. 약물-디바이스 조합 제품은 의약품 유효성분과 공학적 전달 시스템을 결합하여 치료 효과를 높이고, 순응도를 개선하며, 새로운 치료 방법을 가능하게 합니다. 이 소개서는 과학적 진보, 사용자 중심 디자인, 규제 상황이 융합되어 제조업체, 임상의, 지불자에게 기회와 복잡성을 모두 제공하는 다차원적인 상황을 묘사하고 있습니다.

최근에는 점진적인 기능 강화에서 센서, 연결성, 데이터 분석을 의료 제공 플랫폼에 통합하는 시스템 수준의 솔루션으로 전환하고 있습니다. 그 결과, 개발팀은 제제 과학, 재료공학, 소프트웨어 개발, 인적 요소, 품질 시스템 등의 전문지식을 결집해야 합니다. 동시에 규제 당국도 하이브리드 제품 특성을 고려하도록 적응하고 있으며, 장치와 약물의 두 구성 요소에 걸친 안전성 및 유효성 입증, 그리고 조합에 따른 위험에 대한 시판 후 조사 전략에 중점을 두고 있습니다.

상업화 측면에서 지불자와 조달 채널은 실제 성능과 총 의료 비용에 미치는 영향에 점점 더 중점을 두고 있으며, 임상적 가치와 경제적 가치가 명확하게 입증된 경우 채택을 가속화할 수 있습니다. 따라서 제조업체는 임상 개발, 약사 전략, 시장 진입 계획의 조기 연계가 필수적이라는 것을 깨닫게 됩니다. 이 소개에서는 빠르게 진화하는 이 분야에서 성공하기 위한 변혁적 변화, 관세가 공급망에 미치는 영향, 세분화의 뉘앙스, 지역적 역학, 리더가 취해야 할 실행 가능한 조치에 대해 심층적으로 분석할 수 있는 단계를 설정하고 분석하는 단계를 설정합니다.

융합 기술, 규제 개선, 의료 제공에 대한 기대치 변화, 병용요법의 개발 접근 방식과 상업화 전략이 어떻게 재정의되고 있는가?

기술, 규제, 케어 딜리버리 세력의 결합으로 인해 약물-기기-복합제품의 환경이 재편되고 있으며, 이 세 가지 요소는 모두 변화의 원동력이 되고 있습니다. 내장 센서, 자동 투약 메커니즘, 디지털 모니터링과 같은 스마트 기기 기능의 발전으로 순응도 관리 및 원격 치료 모니터링의 새로운 모델이 가능해졌습니다. 이러한 기술적 강화는 개별 제품 제공에서 기기 및 소프트웨어가 데이터베이스 인사이트를 통해 가치를 창출하는 통합 케어 생태계로의 전환을 촉진합니다.

규제 당국은 하이브리드 제품 평가, 사이버 보안 기대치, 시판 후 데이터 수집에 대한 지침을 개선하여 통합 검증 및 수명주기관리의 수준을 높이고 있습니다. 동시에 제조업체는 규제의 복잡성을 관리하면서 반복을 가속화하기 위해 모듈식 설계 철학과 플랫폼 접근 방식을 추구하고 있습니다. 공급망 탄력성과 제조 유연성은 전략적 우선순위가 되어 혼란을 최소화하고 시장 출시 시간을 단축하기 위해 니어쇼어링, 멀티소싱, 프로세스 자동화에 대한 투자를 촉진하고 있습니다.

임상의와 환자의 기대도 진화하고 있으며, 사용자 중심 설계, 관리 간소화, 환자 결과의 입증 가능한 개선이 채택의 중심이 되고 있습니다. 지불자는 점점 더 비용 효율성 및 실제 유용성에 대한 증거를 요구하고 있으며, 이는 제조업체가 개발 초기에 의료 경제성 및 결과 연구를 도입하도록 동기를 부여하고 있습니다. 그 결과, 가장 성공적인 조직은 R&D, 규제, 상업, 상업, 제조 기능이 데이터에 기반한 가치 제안을 공유하고 확장 가능하고 지속가능한 병용요법 개발을 지원하는 조직입니다.

2025년 무역 및 관세 변화가 조달 전략, 제조 현지화 선택, 병용요법 공급망 탄력성에 미치는 다운스트림 영향을 평가

2025년에 도입된 관세 정책 변경과 무역 조치의 누적된 영향은 배합제 관계자의 조달, 제조, 유통 전략에 중대한 영향을 미쳤습니다. 주요 부품, 원자재, 완제품에 대한 관세 조정으로 세계 밸류체인 전반의 비용 가시성이 높아지면서 기업은 조달 전략과 공급업체와의 계약 조건을 재검토해야 하는 상황에 직면했습니다. 이에 따라 많은 기업이 다각화 노력을 가속화하고, 대체 공급업체를 발굴하고, 단일 원산지에 대한 노출을 줄이고, 공급의 연속성을 유지하기 위해 이중 조달 계약을 체결했습니다.

관세는 직접적인 투입 비용뿐만 아니라 중요한 제조 활동의 지역적 배치, 현지 조립 및 최종 단계 제조에 대한 투자 결정에도 영향을 미칩니다. 이러한 변화는 생산기지 이전이 새로운 등록, 검사, 품질 시스템 의무를 수반할 수 있으므로 관할권 간 규제 준수에 대한 신중한 분석을 수반하는 경우가 많습니다. 따라서 기업은 관세가 비용에 미치는 영향과 새로운 지역에서 규정을 준수하는 제조를 구축하는 데 따르는 규제 복잡성 및 리드타임의 균형을 맞추기 위해 노력해 왔습니다.

중요한 것은 관세로 인한 압력으로 인해 조달, 규제 및 제품 팀 간의 협업을 강화하여 조달 조정이 재료 호환성, 장치 성능 또는 의약품의 안정성을 손상시키지 않도록 하는 동기가 부여되었습니다는 점입니다. 업계의 대응으로는 우발상황 조항을 포함한 공급업체 계약 재협상, 계약상 헤지 전략의 확대, 공급망 가시화 기술에 대한 집중적인 투자 등을 들 수 있습니다. 이러한 대응을 종합하면 변화하는 무역 환경에 적응하면서도 제품의 무결성과 시장 접근성을 유지하기 위한 현실적인 노력을 반영하고 있습니다.

제품 유형, 실현 기술, 제형, 치료 클래스, 최종사용자 환경을 통합한 세분화 관점은 전략적 우선순위를 정하는 데 도움이 될 수 있습니다.

미묘한 세분화 프레임워크는 제품, 기술, 제형, 치료 초점, 최종사용자 배경이 전체 복합제 시장의 전략과 혁신 우선순위를 어떻게 형성하는지 보여줍니다. 제품 유형에 따라 시장은 약제용출 스텐트, 흡입기, 주사기 시스템, 프리필드 시린지 및 펜, 외용제, 경피 흡수 패치, 주사기 시스템 카테고리는 자동 주사기 및 바늘 없는 주사기로 세분화되며, 각기 다른 엔지니어링 및 사용자 인터페이스를 제공합니다. 과제를 제시합니다. 이러한 제품 수준의 차별화는 규제 경로, 포장 요건, 임상의 교육 필요성에 영향을 미치며, 약물의 안정성을 저해하지 않고 기기에 디지털 기능을 어느 정도까지 통합할 수 있는지를 결정합니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 약제-디바이스 조합 제품 시장 : 제품 유형별

  • 약제용출 스텐트
  • 흡입기
  • 주사기 시스템
    • 자동 주사기
    • 무바늘 주사기
  • 프리필드 시린지 & 펜
  • 외용약
  • 경피 흡수 패치

제9장 약제-디바이스 조합 제품 시장 : 기술별

  • 첨단 방출 기술
  • 생분해성 기술
  • 기존형 디바이스-약물 기술
  • 스마트 디바이스 기술
    • 자동 투여
    • 디지털 모니터링

제10장 약제-디바이스 조합 제품 시장 : 제형별

  • 액체제형
  • 반고형제형
    • 크림
    • 연고제
    • 분말
  • 고형제형
    • 캡슐제
    • 태블릿

제11장 약제-디바이스 조합 제품 시장 : 치료 클래스별

  • 심장혈관 약
  • 당뇨병·내분비
  • 호르몬 대체요법
  • 암 치료제
    • 화학요법
    • 참가형 종양학 치료
  • 통증 관리

제12장 약제-디바이스 조합 제품 시장 : 최종사용자별

  • 외래 수술 센터
  • 홈케어 환경
  • 병원 및 진료소
  • 전문 클리닉

제13장 약제-디바이스 조합 제품 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 약제-디바이스 조합 제품 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 약제-디바이스 조합 제품 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁사 분석
    • Abbott Laboratories
    • AbbVie Inc.
    • B. Braun SE
    • Baxter International Inc.
    • Becton, Dickinson and Company
    • BIOTRONIK SE & Co. KG
    • Boston Scientific Corporation
    • Braile Biomedica
    • Cardinal Health, Inc.
    • CODAN Companies
    • Cook Group Incorporated
    • F. Hoffmann-La Roche Ltd.
    • Fresenius Kabi
    • ICU Medical, Inc.
    • InSitu Technologies Inc.
    • JMS North America Corporation
    • Lepu Medical Technology Company
    • Medtronic PLC
    • MicroPort Scientific Corporation
    • Novartis AG
    • Shenzhen Mindray Bio-Medical Electronics Co., Ltd.
    • SOOIL Developments Co., Ltd.
    • Stryker Corporation
    • Teleflex Incorporated
    • Terumo Group
    • Viatris Inc.
    • W. L. Gore & Associates Inc.
KSA 25.11.07

The Drug-Device Combination Products Market is projected to grow by USD 274.61 billion at a CAGR of 8.34% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 144.59 billion
Estimated Year [2025] USD 156.46 billion
Forecast Year [2032] USD 274.61 billion
CAGR (%) 8.34%

A comprehensive orientation to combination therapeutics that situates clinical innovation, regulatory nuance, and commercialization imperatives within a modern development lifecycle

The integration of pharmacology and device engineering has evolved into a defining discipline at the intersection of medical innovation and healthcare delivery. Drug-device combination products bring together active pharmaceutical ingredients and engineered delivery systems to enhance therapeutic performance, improve adherence, and enable new modes of care. This introduction frames a multidimensional landscape in which scientific advances, user-centered design, and regulatory expectations converge to create both opportunity and complexity for manufacturers, clinicians, and payers.

Recent years have seen a shift from incremental enhancements toward systems-level solutions that embed sensors, connectivity, and data analytics into delivery platforms. Consequently, development teams must orchestrate expertise spanning formulation science, materials engineering, software development, human factors, and quality systems. At the same time, regulatory pathways have adapted to account for hybrid product characteristics, emphasizing demonstration of safety and efficacy across both device and drug components, as well as post-market surveillance strategies tailored to combination-specific risks.

From a commercialization perspective, payers and procurement channels are increasingly focused on real-world performance and total cost of care implications, which can accelerate adoption where clinical and economic value are clearly demonstrated. Manufacturers therefore find that early alignment between clinical development, regulatory strategy, and market access planning is essential. This introduction sets the stage for a deeper analysis of transformative shifts, tariff-driven supply chain impacts, segmentation nuances, regional dynamics, and actionable steps leaders can take to succeed in this rapidly evolving domain.

How converging technology, regulatory refinement, and shifting care delivery expectations are redefining development approaches and commercialization strategies in combination therapeutics

The landscape for drug-device combination products is being reshaped by a confluence of technological, regulatory, and care-delivery forces that together are driving transformative change. Advances in smart device capabilities-such as embedded sensors, automatic dosing mechanisms, and digital monitoring-are enabling new models of adherence management and remote therapeutic monitoring. These technological enhancements are fostering a move from discrete product offerings toward integrated care ecosystems in which devices and software generate value through data-driven insights.

Regulatory authorities are responding by refining guidance that addresses hybrid product evaluation, cybersecurity expectations, and post-market data collection, thereby elevating the bar for integrated validation and lifecycle management. Concurrently, manufacturers are pursuing modular design philosophies and platform approaches to accelerate iteration while managing regulatory complexity. Supply chain resilience and manufacturing flexibility have become strategic priorities, prompting investments in nearshoring, multi-sourcing, and process automation to minimize disruption and protect time-to-market.

Clinician and patient expectations are also evolving: user-centric design, simplified administration, and demonstrable improvements in patient outcomes are central to adoption. Payers increasingly demand evidence of cost-effectiveness and real-world utility, which incentivizes manufacturers to incorporate health economics and outcomes research earlier in development. As a result, the most successful organizations are those that align R&D, regulatory, commercial, and manufacturing functions around a shared, data-informed value proposition that supports scalable, sustainable deployment of combination therapies.

Evaluating the downstream consequences of 2025 trade and tariff shifts on sourcing strategies, manufacturing localization choices, and supply chain resilience for combination therapies

The cumulative impact of tariff policy changes and trade measures introduced in 2025 has had meaningful implications for the procurement, manufacturing, and distribution strategies of combination product stakeholders. Tariff adjustments on critical components, raw materials, and finished goods have heightened cost visibility across global value chains, prompting companies to reassess sourcing strategies and contractual terms with suppliers. In response, many organizations accelerated diversification efforts, identifying alternate suppliers and dual-sourcing arrangements to mitigate single-origin exposure and maintain continuity of supply.

Beyond direct input costs, tariffs have influenced decisions around geographic placement of critical manufacturing activities and investment in localized assembly or final-stage manufacturing. These shifts are often accompanied by careful analysis of regulatory compliance across jurisdictions, given that relocating production can entail new registration, inspection, and quality system obligations. Firms have therefore balanced the cost impact of tariffs against the regulatory complexity and lead time associated with establishing compliant manufacturing in new regions.

Importantly, tariff-driven pressures have incentivized tighter collaboration across procurement, regulatory, and product teams to ensure that adjustments in sourcing do not compromise material compatibility, device performance, or drug stability. Industry response has included renegotiated supplier agreements with built-in contingency clauses, expanded use of contractual hedging strategies, and targeted investments in supply chain visibility technologies. Taken together, these responses reflect a pragmatic effort to preserve product integrity and market access while adapting to an altered trade environment.

An integrated segmentation perspective connecting product types, enabling technologies, dosage forms, therapeutic classes, and end-user environments to guide strategic prioritization

A nuanced segmentation framework illuminates how product, technology, dosage form, therapeutic focus, and end-user context shape strategy and innovation priorities across the combination product landscape. Based on Product Type, the market is studied across Drug-Eluting Stents, Inhalers, Injector Systems, Prefilled Syringes & Pens, Topical Medicines, and Transdermal Patches; the Injector Systems category is further examined across Auto-Injectors and Needle-Free Injectors, each presenting different engineering and user-interface challenges. This product-level differentiation influences regulatory pathways, packaging requirements, and clinician training needs, and it also determines the extent to which devices can incorporate digital features without disrupting drug stability.

Based on Technology, the market is studied across Advanced Release Technologies, Biodegradable Technology, Conventional Device-Drug Technology, and Smart Device Technologies; the Smart Device Technologies subgroup is further analyzed for Automatic Dosing and Digital Monitoring capabilities. Adoption of advanced release and biodegradable platforms often hinges on material science innovations and compatibility testing, while smart technologies demand robust software verification, cybersecurity measures, and data interoperability strategies to support clinical workflows and reimbursement claims.

Based on Dosage Form, the market is studied across Liquid Dosage Forms, Semi-Solid Dosage Forms, and Solid Dosage Forms; the Semi-Solid Dosage Forms are further explored through Creams, Ointments, and Powders, and the Solid Dosage Forms are further considered across Capsules and Tablets. Dosage form selection affects stability, device design, and patient administration protocols, and it imposes specific analytical and quality control requirements. Based on Therapeutic Class, the market is studied across Cardiovascular Medications, Diabetes & Endocrinology, Hormonal Replacement Therapy, Oncology Drugs, and Pain Management; the Oncology Drugs subset is further categorized into Chemotherapy and Participatory Oncology Treatment, reflecting divergent safety profiles and monitoring needs. Finally, Based on End-User, the market is studied across Ambulatory Surgical Centers, Homecare Settings, Hospitals and Clinics, and Specialty Clinics, which together define differing operational constraints, training resources, and procurement models. Integrating these segmentation dimensions helps stakeholders prioritize product design trade-offs, regulatory strategy, and market access efforts according to the technical, clinical, and delivery-context nuances that matter most.

How divergent regulatory regimes, procurement behaviors, and manufacturing priorities across major regions shape development and commercialization strategies for combination therapeutics

Regional dynamics continue to exert strong influence over regulatory expectations, manufacturing strategies, and commercial deployment of combination products, with distinct patterns emerging across major geographies. In the Americas, regulatory frameworks are increasingly harmonized around risk-based evaluation and post-market surveillance expectations, while purchaser institutions emphasize clinical evidence and supply chain visibility. These conditions favor solutions that demonstrate measurable improvements in adherence and outcomes, and they support commercial models that pair product deployment with services such as training and remote monitoring.

Across Europe, Middle East & Africa, diverse regulatory regimes and procurement modalities require adaptive market access strategies that account for national reimbursement mechanisms and localized clinical guidelines. In this complex environment, manufacturers often prioritize region-specific regulatory expertise and targeted pilot programs to establish clinical value and payer acceptance. Moreover, the emphasis on sustainability and circular economy principles in parts of this region can influence material selection and end-of-life planning for device components.

The Asia-Pacific region presents a combination of rapid adoption potential and heterogeneity in regulatory maturity. Several markets in this region are expediting approvals for innovative delivery platforms while simultaneously building local manufacturing capability. These dynamics make Asia-Pacific attractive for companies seeking scale and cost efficiencies, but they also demand careful navigation of intellectual property protection, localization requirements, and partnership models with local distributors and contract manufacturers. Taken together, regional insights underscore the importance of tailoring regulatory, manufacturing, and commercial strategies to local realities while maintaining global standards for quality and evidence generation.

How collaborative alliances, platform investments, and capability expansion among manufacturers, suppliers, and service providers are redefining competitive advantage in combination product ecosystems

Competitive behavior among product developers, suppliers, and service providers is characterized by a blend of platform innovation, strategic partnerships, and capability-building investments. Established pharmaceutical firms and device manufacturers are increasingly entering into collaborative arrangements to combine formulation expertise with device engineering, often structuring alliances to align incentives around clinical outcomes and shared commercial goals. At the same time, specialized medtech companies and technology startups focus on niche capabilities-such as sensor integration, injection mechanism miniaturization, or wearable adhesion systems-that can be licensed or acquired to complete broader product portfolios.

Supply chain and manufacturing players are differentiating through investments in scalable, compliant assembly capabilities and quality management systems tailored for combination products. Contract development and manufacturing organizations are expanding service offerings to include integrated testing, stability programs, and human factors engineering support to reduce time-to-market for sponsors. Additionally, software vendors and digital health specialists are forging relationships with device and drug developers to provide data platforms, analytics, and interoperability solutions that support remote monitoring and adherence programs.

Regulatory consultants and clinical research organizations are also adapting, offering end-to-end support for regulatory strategy, clinical validation, and post-market evidence generation specific to hybrid product requirements. Across this ecosystem, successful companies demonstrate a capacity to manage complex multidisciplinary programs, deploy capital selectively to bridge capability gaps, and structure commercial models that highlight demonstrable improvements in patient outcomes and system-level efficiencies.

Practical cross-functional strategies and tactical investments that enable organizations to reduce development risk, strengthen adoption pathways, and sustain competitive differentiation

Industry leaders seeking to translate innovation into sustained market success should pursue a set of coordinated, actionable strategies that align scientific, regulatory, manufacturing, and commercial functions. First, embed cross-functional governance early in development to reconcile formulation requirements with device engineering, human factors, and software validation needs. This integrated governance model reduces rework, enables clearer regulatory submissions, and accelerates alignment on clinical endpoints that matter to payers and clinicians.

Second, prioritize supply chain resilience by diversifying critical component sourcing and investing in visibility tools that track provenance and quality attributes. Where feasible, evaluate nearshoring or flexible manufacturing arrangements for final assembly to shorten lead times and simplify regulatory logistics. Third, incorporate digital features and data strategies that augment therapeutic value while ensuring robust cybersecurity, privacy compliance, and interoperability with existing clinical systems. Early engagement with regulators on digital elements can clarify expectations and reduce downstream uncertainty.

Fourth, adopt value-based evidence generation approaches that combine clinical trials with pragmatic, real-world outcome studies to demonstrate both clinical efficacy and economic impact. Align commercial models accordingly, offering bundled solutions that pair product access with training, support services, and data-driven programs to improve adherence. Finally, cultivate strategic partnerships and targeted M&A to fill capability gaps rather than trying to internalize every technical domain. By focusing on these priorities, leaders can reduce development risk, enhance adoption, and create defensible value propositions in an increasingly integrated therapeutic environment.

A transparent mixed-methods research approach combining expert interviews, targeted secondary analysis, and triangulation to validate insights while acknowledging methodological limitations

The research behind this analysis combines qualitative and quantitative methods designed to surface actionable insights while maintaining methodological rigor. Primary inputs included structured interviews with cross-disciplinary subject-matter experts, including clinical practitioners, regulatory specialists, procurement leaders, and manufacturing engineers, which provided real-world perspectives on operational constraints and adoption drivers. These interviews were supplemented by targeted expert panels to validate emergent themes and test the applicability of strategic recommendations across different product types and regions.

Secondary research drew on peer-reviewed literature, regulatory guidance documents, standards publications, and company disclosures to build a factual baseline around technical capabilities, safety considerations, and policy trends. Data triangulation techniques were applied to reconcile differing viewpoints and to ensure that conclusions reflect convergent evidence rather than isolated observations. Where appropriate, case studies of recent product launches and regulatory decisions were analyzed to extract lessons on go-to-market sequencing, evidence generation, and post-market surveillance.

Quality assurance procedures included independent review by methodological peers, consistency checks across data sources, and sensitivity analysis to identify areas of uncertainty. Limitations of the approach are acknowledged, particularly regarding rapidly evolving technology domains and jurisdiction-specific regulatory actions that may change after the analysis period. To mitigate these limitations, readers are encouraged to supplement the findings with contemporaneous regulatory updates and localized expert input when applying the recommendations to specific program decisions.

A succinct synthesis emphasizing integrated development, supply chain agility, and evidence-based commercialization as the core imperatives for combination therapy success

In conclusion, drug-device combination products occupy a dynamic and strategically important space in modern healthcare, offering the potential to improve therapeutic efficacy, patient adherence, and system-level outcomes. The most consequential shifts are occurring at the intersection of technology integration, regulatory adaptation, and changing care-delivery norms. Success in this environment requires manufacturers to adopt integrated development models, to invest in supply chain flexibility, and to prioritize evidence generation that demonstrates both clinical and economic value.

Stakeholders must also navigate the operational realities introduced by recent trade measures and evolving regional requirements, aligning sourcing and manufacturing choices with regulatory readiness and commercial objectives. Market participants who proactively design for regulatory compliance, user-centered deployment, and robust post-market data collection will be better positioned to secure adoption among clinicians and payers. Collaboration across the ecosystem-linking specialized technology providers, contract manufacturers, clinical networks, and reimbursement experts-remains a central enabler for accelerating innovation while managing risk.

Ultimately, informed decision-making grounded in multidisciplinary evidence and adaptive strategy will determine which organizations translate scientific advances into widely adopted combination therapies. The themes explored in this summary point to a pragmatic path forward: integrate capabilities early, validate value rigorously, and structure commercial models that deliver measurable benefits to patients and healthcare systems alike.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Expansion of wearable drug delivery patches with integrated digital monitoring capabilities
  • 5.2. Rising adoption of connected inhaler devices for remote respiratory therapy adherence tracking
  • 5.3. Regulatory harmonization efforts accelerating approvals for combination product submissions globally
  • 5.4. Integration of artificial intelligence in on-device diagnostics for personalized dosing optimization
  • 5.5. Development of biodegradable implantable drug-eluting microsensors for targeted therapy feedback
  • 5.6. Emergence of user-centered design in smart injection pens to improve patient self-administration
  • 5.7. Collaborative partnerships between biotech firms and device manufacturers to co-develop novel biologic delivery systems

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Drug-Device Combination Products Market, by Product Type

  • 8.1. Drug-Eluting Stents
  • 8.2. Inhalers
  • 8.3. Injector Systems
    • 8.3.1. Auto-Injectors
    • 8.3.2. Needle-Free Injectors
  • 8.4. Prefilled Syringes & Pens
  • 8.5. Topical Medicines
  • 8.6. Transdermal Patches

9. Drug-Device Combination Products Market, by Technology

  • 9.1. Advanced Release Technologies
  • 9.2. Biodegradable Technology
  • 9.3. Conventional Device-Drug Technology
  • 9.4. Smart Device Technologies
    • 9.4.1. Automatic Dosing
    • 9.4.2. Digital Monitoring

10. Drug-Device Combination Products Market, by Dosage Form

  • 10.1. Liquid Dosage Forms
  • 10.2. Semi-Solid Dosage Forms
    • 10.2.1. Creams
    • 10.2.2. Ointments
    • 10.2.3. Powders
  • 10.3. Solid Dosage Forms
    • 10.3.1. Capsules
    • 10.3.2. Tablets

11. Drug-Device Combination Products Market, by Therapeutic Class

  • 11.1. Cardiovascular Medications
  • 11.2. Diabetes & Endocrinology
  • 11.3. Hormonal Replacement Therapy
  • 11.4. Oncology Drugs
    • 11.4.1. Chemotherapy
    • 11.4.2. Participatory Oncology Treatment
  • 11.5. Pain Management

12. Drug-Device Combination Products Market, by End-User

  • 12.1. Ambulatory Surgical Centers
  • 12.2. Homecare Settings
  • 12.3. Hospitals and Clinics
  • 12.4. Specialty Clinics

13. Drug-Device Combination Products Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Drug-Device Combination Products Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Drug-Device Combination Products Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Abbott Laboratories
    • 16.3.2. AbbVie Inc.
    • 16.3.3. B. Braun SE
    • 16.3.4. Baxter International Inc.
    • 16.3.5. Becton, Dickinson and Company
    • 16.3.6. BIOTRONIK SE & Co. KG
    • 16.3.7. Boston Scientific Corporation
    • 16.3.8. Braile Biomedica
    • 16.3.9. Cardinal Health, Inc.
    • 16.3.10. CODAN Companies
    • 16.3.11. Cook Group Incorporated
    • 16.3.12. F. Hoffmann-La Roche Ltd.
    • 16.3.13. Fresenius Kabi
    • 16.3.14. ICU Medical, Inc.
    • 16.3.15. InSitu Technologies Inc.
    • 16.3.16. JMS North America Corporation
    • 16.3.17. Lepu Medical Technology Company
    • 16.3.18. Medtronic PLC
    • 16.3.19. MicroPort Scientific Corporation
    • 16.3.20. Novartis AG
    • 16.3.21. Shenzhen Mindray Bio-Medical Electronics Co., Ltd.
    • 16.3.22. SOOIL Developments Co., Ltd.
    • 16.3.23. Stryker Corporation
    • 16.3.24. Teleflex Incorporated
    • 16.3.25. Terumo Group
    • 16.3.26. Viatris Inc.
    • 16.3.27. W. L. Gore & Associates Inc.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제