시장보고서
상품코드
1864555

폴리에틸렌 시장 : 제품 유형별, 재활용 프로세스별, 용도별, 최종사용자별 - 세계 예측(2025-2032년)

Polyethylene Market by Product Type, Recycling Process, Application, End User - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 196 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

폴리에틸렌 시장은 2032년까지 CAGR 5.07%로 2,267억 2,000만 달러 규모로 성장할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 1,525억 8,000만 달러
추정 연도 2025년 1,599억 7,000만 달러
예측 연도 2032 2,267억 2,000만 달러
CAGR(%) 5.07%

현재 폴리에틸렌 환경에 대한 간략한 개요 : 산업 궤도를 형성하는 혁신 압력, 규제 요인, 전략적 선택에 초점을 맞춥니다.

폴리에틸렌 산업은 기술 혁신, 규제 압력 및 진화하는 최종사용자 수요가 교차하여 공급망과 제품 수명주기를 재구성하는 중요한 분기점에 서 있습니다. 본 도입부에서는 시장 현황을 분석하고, 경쟁력을 유지하기 위해 의사결정권자가 해결해야 할 전략적 과제를 제시합니다. 포장 효율화, 자동차용 경량화, 농업용 필름의 내구성과 같은 수요 요인이 순환성, 탄소 강도 감소, 강력한 조달과 같은 새로운 요구와 교차하고 있다는 점을 강조합니다. 그 결과, 업계는 공정 혁신, 고급 폴리머 등급, 통합 재활용 경로로 점점 더 많은 방향을 전환하고 있으며, 이는 전체 공급망에서 가치 획득의 역학을 변화시키고 있습니다.

이러한 배경을 바탕으로 본 도입부에서는 제조, 유통, 하공정 각 단계의 이해관계자들에게 실질적인 시사점을 개괄적으로 제시하고자 합니다. 비용, 성능, 지속가능성 간의 균형을 맞출 때 기업이 직면하는 운영상의 트레이드오프를 명확히 하고, 이후 세부 분석의 프레임워크를 제시합니다. 본 보고서에서는 부문 간 협력과 데이터 기반 의사결정의 필요성을 강조하고, 정책 변화, 원자재 가격 변동, 재활용 기술 성숙 속도를 고려한 적응형 전략을 채택할 것을 리더들에게 촉구합니다. 마지막으로, 이 소개는 독자들이 폴리에틸렌 생태계 내에서 강력한 위치를 정의하고, 단기적인 전술적 조치와 장기적인 전략적 투자를 모두 평가할 수 있도록 준비할 수 있도록 돕습니다.

기술 혁신, 규제 모멘텀, 순환성에 대한 기대감이 경쟁우위를 재구축하고 가치사슬 전반의 투자 우선순위를 재편하고 있는 상황

폴리에틸렌 산업은 기술적 혁신, 정책적 개입, 고객 기대치의 변화가 복합적으로 작용하여 경쟁 우위를 재구축하는 변화의 물결에 직면해 있습니다. 예를 들어, 화학적 재활용 기술의 발전으로 기존에는 수익성이 낮았던 혼합 및 오염된 원료의 가치 회수가 가능해져 사용 가능한 원료의 선택지가 넓어지고, 신규 탄화수소 원료에 대한 의존도가 낮아지고 있습니다. 동시에 촉매 설계 및 공정 강화에 대한 투자를 통해 중량 대비 성능이 향상된 수지 등급이 탄생했습니다. 이를 통해 제조업체들은 포장재 및 자동차 분야에서 경량화 정책을 추진할 수 있게 되었습니다.

순환 경제와 제품 책임 관리를 위한 정책적 모멘텀은 비용 구조와 조달 기준을 변화시키고 있으며, OEM 제조업체와 대형 브랜드 소유자 모두 재활용 재료 함량과 공급망 추적성을 우선시하도록 유도하고 있습니다. 이러한 규제 압력으로 인해 오프 테이크 계약, 기술 라이선스 제공, 회수 및 원료 전처리 전문 합작 투자 등 밸류체인 전반에 걸친 파트너십이 가속화되고 있습니다. 동시에 디지털화를 통해 운영의 투명성을 높이고, 원료 입고부터 압출, 성형, 마무리 공정에 이르기까지 예측 가능한 품질 관리를 가능하게 합니다. 이러한 요인들이 결합되어 경쟁의 기반이 순수 투입비용 중심에서 재활용, 성능 차별화, 지속가능성 보고를 통합하는 능력으로 옮겨가고 있으며, 기업들은 투자 우선순위와 시장 진입 전략을 재검토해야 하는 상황에 직면해 있습니다.

2025년 미국 관세 조정을 계기로 세계 공급망 전체에 파급되는 운영 및 계약 측면의 대응책, 조달 및 구매 프레임워크 재구축을 통한 세계 공급망 전반의 대응 방안

2025년 미국에서 도입된 관세는 최종 사용 제품에 대한 근본적인 수요를 바꾸지 않고 조달 결정, 지역 간 무역 흐름, 계약 구조에 영향을 미쳐 전 세계 폴리에틸렌 공급망 전체에 파급 효과를 가져왔습니다. 수입 관세로 인해 일부 바이어들은 공급처 다변화를 가속화하고, 증가분을 지역 생산자로 전환하는 한편, 장기적인 조달 전략을 재평가하고 있습니다. 기업들은 관세 리스크를 줄이기 위해 공급 연속성 확보와 관세 관련 지연 리스크를 줄이기 위해 지역 밀착형 또는 니어쇼어링 파트너와의 장기 계약을 점점 더 중요시하는 경향이 있습니다.

조달 및 상업적 측면에서 구매자와 판매자는 가격 책정 메커니즘과 계약 조항을 조정하고 관세 전가, 불가항력, 공급 대체에 관한 조항을 포함시켜 거래 관계를 안정화하고 다운스트림의 변동성을 줄이기 위해 노력하고 있습니다. 또한, 관세 환경은 국내 사업의 가치 창출 방안에 대한 투자를 촉진하고 있으며, 전환 효율 향상, 수율 최적화, 제품 재설계 등 수지 소비 단위당 수익률 향상을 위한 노력이 진행되고 있습니다. 이러한 운영상의 대응과 병행하여, 시장 진입 기업들은 재생소재 이용 확대 및 국내 원료 순환 강화를 통해 국제 관세제도에 대한 의존도를 낮추기 위해 대체원료 및 재활용 자원에 대한 노력을 강화하고 있습니다. 이러한 시너지 효과로 인해 물류 우선순위의 재분배가 이루어지고 있으며, 변화하는 무역정책에 대응할 수 있는 유연한 조달 전략에 대한 중요성이 새롭게 부각되고 있습니다.

재료 등급, 재활용 기술, 응용 요구 사항, 최종사용자 요구 사항이 어떻게 다른 상업적 및 기술적 경로를 생성하는지 보여주는 부문 분석에 기반한 상세한 인사이트

부문 수준의 분석은 제품 유형, 재활용 경로, 용도, 최종사용자 카테고리별로 각기 다른 역학을 드러내며, 각 부문은 제조업체와 가공업체에 고유한 전략적 시사점을 제공합니다. 제품 유형별로 보면 고밀도 폴리에틸렌, 선형 저밀도 폴리에틸렌, 저밀도 폴리에틸렌, 초고분자량 폴리에틸렌은 경쟁 상황과 기술 상황이 다릅니다. 각 등급은 각기 다른 가공 요건, 성능 특성, 다운스트림 사용 사례를 가지고 있습니다. 이러한 재료의 차이는 압출 능력, 성형 설비, 품질 보증 프로토콜에 대한 투자를 유도하는 지침이 됩니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 폴리에틸렌 시장 : 제품 유형별

  • 고밀도 폴리에틸렌
  • 선형 저밀도 폴리에틸렌
  • 저밀도 폴리에틸렌
  • 초고분자량 폴리에틸렌

제9장 폴리에틸렌 시장 재활용 프로세스별

  • 화학적 재활용
    • 가스화
    • 열분해
  • 기계적 재활용

제10장 폴리에틸렌 시장 : 용도별

  • 블로우 성형
    • 보틀·용기
    • 연료 탱크
    • 제리 캔·드럼
  • 압출 코팅·라미네이션
  • 필름 및 시트
    • 라미네이트 필름
    • 보호 필름
  • 사출 성형
  • 비가압 파이프
  • 파이프 및 피팅
  • 회전 성형
  • 전선·케이블

제11장 폴리에틸렌 시장 : 최종사용자별

  • 농업
    • 온실용 피복재
    • 평관
  • 자동차
    • 실내장식품
    • 자동차 부품
  • 건축·건설
  • 소비재
    • 가정용품
    • 스포츠 용품
    • 완구·게임
  • 식품 및 음료
  • 헬스케어·의약품
  • 산업 제조
  • 포장
    • 연포장
    • 경질 포장

제12장 폴리에틸렌 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제13장 폴리에틸렌 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제14장 폴리에틸렌 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제15장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • The Dow Chemical Company
    • Exxon Mobil Corporation
    • Alpek S.A. de C.V.
    • Asahi Kasei Corporation
    • BASF SE
    • Braskem SA
    • Celanese Corporation
    • Chevron Phillips Chemical Company LLC
    • China Petrochemical Corporation
    • Formosa Plastics Corporation
    • Haldia Petrochemicals Limited
    • Hanwha Group
    • INEOS AG
    • LG Chem Ltd.
    • LyondellBasell Industries Holdings B.V.
    • Merck KGaA
    • Mitsubishi Chemical Corporation
    • NOVA Chemicals Corporation
    • Reliance Industries Limited
    • Saudi Basic Industries Corporation
    • SCG Chemicals Public Company Limited
    • Shell PLC
    • Thermo Fisher Scientific Inc.
    • TotalEnergies SE.
    • Versalis S.p.A.
KSM 25.11.20

The Polyethylene Market is projected to grow by USD 226.72 billion at a CAGR of 5.07% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 152.58 billion
Estimated Year [2025] USD 159.97 billion
Forecast Year [2032] USD 226.72 billion
CAGR (%) 5.07%

A concise orientation to the current polyethylene environment highlighting innovation pressures, regulatory drivers, and strategic choices shaping industry trajectories

The polyethylene landscape is at a pivotal juncture as technological innovation, regulatory pressures, and evolving end-user demands converge to reshape supply chains and product lifecycles. This introduction distills the market's current state and frames the strategic questions that decision-makers must address to maintain competitiveness. It highlights how demand drivers such as packaging efficiency, lightweighting in automotive applications, and agricultural film durability are intersecting with emergent imperatives including circularity, carbon intensity reduction, and resilient sourcing. As a result, the industry is increasingly oriented toward process innovations, advanced polymer grades, and integrated recycling pathways that alter value-capture dynamics across the chain.

Building on this context, the introduction outlines the practical implications for stakeholders across manufacturing, distribution, and downstream conversion. It clarifies the operational trade-offs companies face when balancing cost, performance, and sustainability, and it sets the analytical lens for the deeper sections that follow. The narrative emphasizes the necessity of cross-functional collaboration and data-driven decision-making, urging leaders to adopt adaptive strategies that account for policy shifts, feedstock volatility, and the pace of recycling technology maturation. Ultimately, this opening segment prepares readers to evaluate both near-term tactical moves and longer-term strategic investments that will define resilient positions within the polyethylene ecosystem.

How technological breakthroughs, regulatory momentum, and circularity expectations are reshaping competitive advantage and reshuffling investment priorities across the value chain

The polyethylene sector is undergoing transformative shifts driven by a combination of technological breakthroughs, policy interventions, and shifting customer expectations that are reconfiguring competitive advantage. Advances in chemical recycling, for example, are enabling recovery of value from mixed and contaminated streams in ways that were previously uneconomic, thereby expanding the set of viable feedstock options and reducing dependence on virgin hydrocarbon supply. Concurrently, investment in catalyst design and process intensification is yielding resin grades with improved performance-to-weight ratios, which in turn enable manufacturers to pursue lightweighting initiatives across packaging and automotive segments.

Policy momentum toward circular economies and product stewardship is altering cost structures and procurement criteria, prompting both OEMs and large brand owners to prioritize recycled content and supply chain traceability. This regulatory pressure is accelerating partnerships across the value chain, including off-take arrangements, technology licensing, and joint ventures focused on collection and feedstock preprocessing. At the same time, digitalization is enhancing operational transparency and enabling predictive quality control from feedstock reception through extrusion and finishing. Taken together, these drivers are shifting the basis of competition from purely input-cost orientation to integrated capabilities around recycling, performance differentiation, and sustainability reporting, requiring companies to rethink investment priorities and go-to-market propositions.

The cascading operational and contractual responses across global supply chains initiated by the 2025 US tariff adjustments reshaping sourcing and procurement frameworks

The introduction of tariffs in the United States during 2025 has created ripple effects across global polyethylene supply chains, influencing sourcing decisions, regional trade flows, and contract structures without altering the fundamental demand for end-use products. Import duties have prompted some buyers to accelerate diversification of supplier bases, shifting incremental volumes toward regional producers and prompting re-evaluation of long-term procurement strategies. As firms seek to mitigate tariff exposure, they increasingly favor longer-term contracts with localized or nearshoring partners to secure supply continuity and reduce tariff-related latency risks.

On the procurement and commercial front, buyers and sellers have adapted pricing mechanics and contractual terms to include clauses that address tariff pass-through, force majeure, and supply substitution, thereby stabilizing transactional relationships and reducing downstream volatility. Moreover, the tariff environment has encouraged investment in value-capture measures within domestic operations, including enhancements to conversion efficiency, yield optimization, and product redesign to extract higher margin per unit of resin consumed. These operational responses coexist with an intensified focus on alternative feedstocks and recycling sources, as market participants seek to reduce exposure to international duty regimes by increasing recovered-material utilization and strengthening domestic feedstock loops. The combined effect is a reallocation of logistical priorities and a renewed emphasis on resilient sourcing strategies that can flex in response to evolving trade policies.

Detailed segmentation-driven insights showing how material grades, recycling technologies, application requirements, and end-user needs create distinct commercial and technical pathways

Segment-level analysis reveals differentiated dynamics across product types, recycling pathways, applications, and end-user categories, each of which presents unique strategic implications for manufacturers and converters. Based on Product Type, the competitive and technical landscape varies between High-Density Polyethylene, Linear Low-Density Polyethylene, Low-Density Polyethylene, and Ultra-High Molecular Weight Polyethylene, with each grade commanding distinct processing requirements, performance attributes, and downstream use cases. These material distinctions guide investments in extrusion capabilities, molding equipment, and quality assurance protocols.

Based on Recycling Process, the market differentiates between Chemical Recycling and Mechanical Recycling, where Chemical Recycling further subdivides into gasification and pyrolysis approaches that target different waste streams and produce distinct feedstock intermediates. Chemical recycling pathways introduce alternative integration models for producers, requiring partnerships with technology providers and reconfiguration of refining or reprocessing facilities, while mechanical recycling emphasizes collection, sorting, and contamination control to maintain polymer properties. Based on Application, the breadth of end-uses spans blow molding, extrusion coating and lamination, films and sheets, injection molding, non-pressure pipes, pipes and fittings, rotational molding, and wire and cable, with blow molding branching into bottles and containers, fuel tanks, and jerry cans and drums, and films and sheets further differentiating into lamination film and protective film. Each application imposes specific specifications for melt index, tensile strength, and barrier properties, which in turn drive resin selection and compounder relationships.

Based on End User, demand patterns and procurement cycles vary across agriculture, automotive, building and construction, consumer goods, food and beverage, healthcare and pharmaceuticals, industrial manufacturing, and packaging, with agriculture further subdivided into greenhouse coverings and lay flat tubing, automotive into upholstery and vehicle components, consumer goods into housewares, sports equipment, and toys and games, and packaging into flexible and rigid formats. These end-user distinctions influence product lifecycle expectations, regulatory compliance needs, and sustainability requirements. Collectively, the segmentation landscape underscores that value creation in polyethylene is not homogeneous; rather, it depends on the interplay of material technology, recycling integration, application-specific performance, and end-user regulatory and sustainability demands.

Geopolitical, feedstock, and regulatory contrasts across the Americas, Europe Middle East & Africa, and Asia-Pacific that dictate divergent strategic responses

Regional dynamics continue to shape competitive positioning and investment logic across the polyethylene value chain, as differences in feedstock access, policy frameworks, and downstream demand structures drive divergent strategic responses. In the Americas, proximity to hydrocarbon feedstocks and sizeable domestic conversion capacity encourage integration strategies focused on logistical optimization, enhanced downstream processing, and initiatives to scale mechanical recycling infrastructure. This region benefits from established industrial clusters that support rapid reconfiguration of capacity and foster public-private collaboration on collection systems and polymer recovery.

In Europe, Middle East & Africa, regulatory intensity around circularity and recycled content has elevated compliance-driven procurement, compelling suppliers to invest in traceability, certification, and low-carbon production technologies. Brand owners in this region are active in sponsoring collection schemes and entering into long-term offtake arrangements that prioritize recyclate quality. The policy landscape often accelerates technology adoption and shapes cross-border flows of both waste and finished goods. In Asia-Pacific, diverse demand trajectories and rapid industrialization generate strong downstream conversion demand across packaging, construction, and consumer goods. The region exhibits a dual dynamic of high-volume commodity resin production alongside growing demand for higher-performance grades and local recycling capacity expansion. Taken together, these regional contours suggest that strategic priorities will vary by geography, with local policy, feedstock economics, and conversion capacity dictating the most effective routes to resilience and growth.

How competitive leaders are integrating recycling, process innovation, and customer-centric product development to secure preferential access and long-term contracts

Leading companies within the polyethylene ecosystem are consolidating capabilities across feedstock management, recycling integration, and product innovation to defend margins and meet evolving customer expectations. Major resin producers are prioritizing partnerships and joint ventures with recyclers and technology providers to secure access to recovered feedstocks and to accelerate deployment of chemical recycling solutions where appropriate. At the same time, converters and compounders are investing in processing equipment capable of handling mixed or high-recycled-content resins, thereby reducing quality-related friction with brand customers and enabling new product propositions that emphasize circularity.

Market leaders are also differentiating through targeted investments in application-specific formulations and performance-enhancing additives that allow for lightweighting and improved barrier properties without sacrificing processability. Strategic moves include selective capacity upgrades, co-located recycling and compounding facilities, and digitization initiatives that enhance traceability and production flexibility. Meanwhile, mid-sized players are carving out niches through service differentiation, rapid custom development, and localized supply agreements that emphasize responsiveness. Across the board, companies that combine operational excellence with demonstrable sustainability credentials and transparent supply chain practices are better positioned to retain blue-chip contracts and to access preferred supplier lists held by major brand owners and institutional buyers.

Actionable strategic moves for executives to secure feedstock flexibility, accelerate recycling integration, and convert sustainability requirements into commercial advantage

Industry leaders should adopt a set of pragmatic, high-impact actions to navigate the shifting polyethylene landscape and to convert market turbulence into durable advantage. First, prioritize feedstock flexibility by establishing contractual access to both virgin and recycled inputs, and by piloting chemical recycling where contamination profiles limit the efficacy of mechanical routes. This dual-track approach mitigates supply shocks and positions companies to meet rising recycled-content mandates. Second, invest in modular conversion and quality-control technologies that allow rapid changeovers between resin grades and that preserve downstream performance when incorporating higher levels of recyclate.

Third, build transparent chain-of-custody and certification systems that meet buyer expectations and simplify compliance with emerging product stewardship requirements; this will reinforce trust with brand owners and procurement teams. Fourth, pursue strategic partnerships across the value chain-ranging from collection and preprocessing to R&D collaborations-to accelerate technology adoption and to share capital intensity. Fifth, align product innovation with specific end-user pain points such as durability in agricultural films or lightweighting in automotive components, thereby enabling premium pricing and differentiated value propositions. Finally, cultivate scenario-based commercial frameworks that explicitly address tariff exposures, feedstock volatility, and policy shifts, ensuring that commercial teams can react quickly while preserving margin and service levels. Together, these measures form a coherent playbook to transform regulatory and operational pressures into competitive strengths.

A rigorous and transparent mixed-methods research approach combining primary interviews, technical verification, and scenario analysis to support replicable strategic conclusions

This research synthesized multiple primary and secondary inputs to form a rigorous, replicable analytical foundation that supports the findings and recommendations. The methodology combined in-depth interviews with polymer producers, converters, recyclers, brand procurement leads, and technical experts to capture real-world operational practices and forward-looking intentions. These qualitative insights were triangulated with plant-level process data, public regulatory frameworks, patent and technology filings, and observational analysis of supply chain configurations to ensure that conclusions reflect both practical constraints and technological trajectories.

Data collection emphasized verification through multiple touchpoints: supplier confirmations, converter equipment specifications, and independent third-party reports on recycling technologies were cross-checked to validate key assertions regarding process capabilities and quality outcomes. Scenario analysis evaluated alternative outcomes under different trade policy and recycling-adoption assumptions, while sensitivity checks tested the robustness of recommended actions to shifts in feedstock availability and regulatory intensity. Throughout, the approach prioritized transparency in assumptions and traceability of data sources, enabling users to assess applicability to their specific operational contexts and to commission follow-on bespoke analyses where deeper granularity is required.

Concluding synthesis that links material innovation, recycling integration, and adaptive sourcing as the pillars of future competitive advantage in polyethylene

In summary, the polyethylene industry is evolving from a commodity-oriented value chain toward an ecosystem where material science, recycling integration, and regulatory compliance collectively determine competitive advantage. This convergence requires companies to rethink vertically integrated models, to pursue partnerships that expand feedstock options, and to invest selectively in conversion capabilities that maintain quality while increasing recycled content. The tariff shifts and regional divergences observed in recent policy cycles underline the importance of adaptable sourcing strategies and contractual frameworks that can withstand trade volatility.

Looking ahead, the companies that will lead are those that align product innovation with demonstrable sustainability outcomes and that execute agile operational changes to capture value from both virgin and reclaimed inputs. By focusing on feedstock flexibility, modular processing, robust chain-of-custody systems, and targeted application-driven innovation, industry participants can both meet regulatory expectations and create differentiated offerings that resonate with end-users. The strategic imperative is clear: treat circularity and resilience not merely as compliance requirements but as central pillars of future business models that unlock new forms of value.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Rising global demand for recycled polyethylene materials in consumer packaging applications
  • 5.2. Advances in catalytic processes enabling production of high-density polyethylene with improved strength
  • 5.3. Growing investment in chemical recycling technologies to convert polyethylene waste into feedstock
  • 5.4. Development of bio-based polyethylene variants derived from renewable biomass sources
  • 5.5. Integration of digital twin simulation for optimizing polyethylene extrusion and blow molding processes
  • 5.6. Increasing regulatory pressure driving adoption of certified circular polyethylene supply chain solutions
  • 5.7. Innovation in polyethylene mulch films to enhance agricultural yield and reduce plastic pollution
  • 5.8. Expansion of high-performance crosslinked polyethylene pipes for industrial and infrastructure projects

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Polyethylene Market, by Product Type

  • 8.1. High-Density Polyethylene
  • 8.2. Linear Low-Density Polyethylene
  • 8.3. Low-Density Polyethylene
  • 8.4. Ultra-High Molecular Weight Polyethylene

9. Polyethylene Market, by Recycling Process

  • 9.1. Chemical Recycling
    • 9.1.1. Gasification
    • 9.1.2. Pyrolysis
  • 9.2. Mechanical Recycling

10. Polyethylene Market, by Application

  • 10.1. Blow Molding
    • 10.1.1. Bottles & Containers
    • 10.1.2. Fuel Tanks
    • 10.1.3. Jerry Cans & Drums
  • 10.2. Extrusion Coating & Lamination
  • 10.3. Films & Sheets
    • 10.3.1. Lamination Film
    • 10.3.2. Protective Film
  • 10.4. Injection Molding
  • 10.5. Non-Pressure Pipes
  • 10.6. Pipes & Fittings
  • 10.7. Rotational Molding
  • 10.8. Wire & Cable

11. Polyethylene Market, by End User

  • 11.1. Agriculture
    • 11.1.1. Greenhouse Coverings
    • 11.1.2. Lay Flat Tubing
  • 11.2. Automotive
    • 11.2.1. Upholstery
    • 11.2.2. Vehicle Components
  • 11.3. Building & Construction
  • 11.4. Consumer Goods
    • 11.4.1. Housewares
    • 11.4.2. Sports Equipment
    • 11.4.3. Toys & Games
  • 11.5. Food & Beverage
  • 11.6. Healthcare & Pharmaceuticals
  • 11.7. Industrial Manufacturing
  • 11.8. Packaging
    • 11.8.1. Flexible Packaging
    • 11.8.2. Rigid Packaging

12. Polyethylene Market, by Region

  • 12.1. Americas
    • 12.1.1. North America
    • 12.1.2. Latin America
  • 12.2. Europe, Middle East & Africa
    • 12.2.1. Europe
    • 12.2.2. Middle East
    • 12.2.3. Africa
  • 12.3. Asia-Pacific

13. Polyethylene Market, by Group

  • 13.1. ASEAN
  • 13.2. GCC
  • 13.3. European Union
  • 13.4. BRICS
  • 13.5. G7
  • 13.6. NATO

14. Polyethylene Market, by Country

  • 14.1. United States
  • 14.2. Canada
  • 14.3. Mexico
  • 14.4. Brazil
  • 14.5. United Kingdom
  • 14.6. Germany
  • 14.7. France
  • 14.8. Russia
  • 14.9. Italy
  • 14.10. Spain
  • 14.11. China
  • 14.12. India
  • 14.13. Japan
  • 14.14. Australia
  • 14.15. South Korea

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2024
  • 15.2. FPNV Positioning Matrix, 2024
  • 15.3. Competitive Analysis
    • 15.3.1. The Dow Chemical Company
    • 15.3.2. Exxon Mobil Corporation
    • 15.3.3. Alpek S.A. de C.V.
    • 15.3.4. Asahi Kasei Corporation
    • 15.3.5. BASF SE
    • 15.3.6. Braskem SA
    • 15.3.7. Celanese Corporation
    • 15.3.8. Chevron Phillips Chemical Company LLC
    • 15.3.9. China Petrochemical Corporation
    • 15.3.10. Formosa Plastics Corporation
    • 15.3.11. Haldia Petrochemicals Limited
    • 15.3.12. Hanwha Group
    • 15.3.13. INEOS AG
    • 15.3.14. LG Chem Ltd.
    • 15.3.15. LyondellBasell Industries Holdings B.V.
    • 15.3.16. Merck KGaA
    • 15.3.17. Mitsubishi Chemical Corporation
    • 15.3.18. NOVA Chemicals Corporation
    • 15.3.19. Reliance Industries Limited
    • 15.3.20. Saudi Basic Industries Corporation
    • 15.3.21. SCG Chemicals Public Company Limited
    • 15.3.22. Shell PLC
    • 15.3.23. Thermo Fisher Scientific Inc.
    • 15.3.24. TotalEnergies SE.
    • 15.3.25. Versalis S.p.A.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제