시장보고서
상품코드
1867163

용광로 시장 : 강종별, 기술별, 최종 이용 산업별, 용광로 사이즈별, 용도별 - 세계 예측(2025-2032년)

Blast Furnaces Market by Steel Grade, Technology, End Use Industry, Furnace Size, Application - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 181 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

용광로 시장은 2032년까지 CAGR 5.02%로 61억 5,000만 달러 규모로 성장할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 41억 5,000만 달러
추정 연도 2025년 43억 6,000만 달러
예측 연도 2032 61억 5,000만 달러
CAGR(%) 5.02%

용광로 운영을 제철소 운영의 탄력성, 탈탄소화 요구, 철강 제조의 장기적 경쟁력의 핵심으로 자리매김하는 전략적 프레임 워크

용광로 부문은 전통적인 산업 역량과 효율성 향상, 배출량 감소, 변화하는 무역 체제에 대한 적응을 요구하는 현대적 압력이 교차하는 지점에 위치하고 있습니다. 사업자들은 원자재 가격 변동, 환경 기준 강화, 진화하는 최종 시장 수요에 따라 변화하는 운영 환경을 헤쳐나가면서 자본 집약도와 에너지 소비의 경제성 사이에서 균형을 유지해야 합니다. 따라서 의사결정자들은 단기적인 운영 최적화와 기술 현대화 및 탈탄소화 경로에 대한 장기적인 전략을 조화시켜야 합니다.

규제 압력, 공정 혁신, 수요 구조의 변화가 철강 가치사슬 전반에 걸쳐 용광로 운영과 전략적 우선순위를 재구성하는 메커니즘

용광로 사업 환경은 규제 압력, 공정 기술 혁신, 최종 산업 수요 패턴의 변화로 인해 변혁적 전환기를 맞이하고 있습니다. 첫째, 규제 프레임워크는 배출 기준을 강화하고 연료 효율과 탄소 저감 대책에 대한 투자를 촉진하고 있으며, 사업자는 공정 제어 및 보조 시스템을 재평가해야 합니다. 둘째, 개선된 주입 시스템 및 현대화된 제어 아키텍처와 같은 기술 발전으로 생산성을 향상시키고 단위 에너지 소비를 줄이면서 단계적인 탈탄소를 실현할 수 있게 되었습니다.

미국의 누적적인 무역 조치가 용광로 사업자의 조달 전략, 투자 결정, 공급망 복원력을 어떻게 재구축했는지에 대한 분석

관련 규제 기간에 발효된 미국의 관세 조치는 전 세계 철강 공급망에 누적된 무역 왜곡과 전략적 대응을 초래했으며, 특히 용광로 사업자에게 중요한 영향을 미쳤습니다. 가장 최근의 영향으로는 무역 흐름의 변화, 조달팀이 조달 전략을 재검토하고, 투입 비용의 변동성을 관리하고, 재량 관세에 대한 노출을 줄여야 하는 필요성 등이 있습니다. 시간이 지남에 따라 이러한 조치는 공급업체와의 관계 재구축에 기여했고, 바이어는 안정적인 원료 공급을 위해 공급처 다변화 및 장기 계약 체결을 모색하게 되었습니다.

강종, 다양한 용광로 기술, 최종 시장 요구사항, 용광로 규모, 핵심 용도를 운영 우선순위 및 투자 초점과 연계한 상세한 부문 분석

부문별 동향은 강종, 공정 기술, 최종 용도 시장, 용광로 규모, 용도에 따라 각기 다른 압력과 기회가 존재하며, 각 부문에 적합한 전략이 요구됩니다. 강종별로는 합금강 수요는 야금학적 정밀도와 화학조성의 일관성을 중요시하기 때문에 고품질 선철을 안정적으로 공급하고 2차 제련 공정과 긴밀하게 연계할 수 있는 용광로 조업이 유리합니다. 한편, 탄소강 수요는 대량 생산성과 비용 효율성에 중점을 두고 있으며, 처리 능력의 최적화와 원료 수율에 대한 관심이 높아지고 있습니다.

주요 세계 시장에서의 조달, 탈탄소화 경로, 기술 도입에 영향을 미치는 지역별 경쟁 역학 및 정책 환경

지역별 차이는 아메리카, 유럽, 중동 및 아프리카, 아시아태평양 용광로 사업자들의 경쟁력 구조와 전략적 우선순위를 형성하고 있습니다. 아메리카에서 기업들은 탄력성과 비용 관리를 우선순위에 두고 기존 자산 관리와 에너지 효율성 향상 및 진화하는 배출 기준 충족을 위한 중점 투자 사이에서 균형을 맞추는 경우가 많습니다. 스크랩 시장에 대한 접근성 및 주요 최종 사용 산업과의 근접성은 조달 선택 및 제품 믹스 전략에 영향을 미칩니다.

경쟁력 프로필 및 파트너십 전략 : 주요 기업들이 디지털 최적화, 야금학적 차별화, 협업 투자를 통해 어떻게 성과를 유지하고 있는지 살펴봅니다.

용광로 생태계의 주요 기업들은 운영상의 우수성, 집중적인 투자, 전략적 파트너십을 통해 경쟁력을 유지하기 위한 다양한 접근 방식을 보여주고 있습니다. 기존 기업 중 일부는 용광로 제어 최적화, 예지보전, 공정 안정화를 통한 디지털화 이니셔티브에 집중하여 효율성을 점진적으로 개선하고 비계획적인 가동 중단 시간을 줄이는 경우가 있습니다. 반면, 야금 기술과 제품 차별화를 우선시하고, 고수익 합금 부문이나 특수한 최종 시장에 대응하기 위해 2차 제련 능력에 투자하는 기업도 볼 수 있습니다.

측정 가능한 성과 향상을 촉진하기 위해 업무 최적화, 조달 탄력성 대책, 자본 우선순위 결정, 협업 시범사업을 단계적으로 실행하는 실질적인 로드맵

리더는 리스크 관리와 새로운 가치 창출을 동시에 달성하기 위해 즉각적인 업무 개선과 전략적 투자의 균형을 맞춘 실행 가능한 계획을 수립해야 합니다. 먼저, 에너지 관리, 전처리 공정, 자재 취급에서 저비용 고효율의 개선 방안을 파악하기 위해 엄격한 프로세스 감사를 실시하여 에너지 소비 효율을 줄이고 일관성을 향상시킵니다. 동시에, 연료 효율과 운영 예측 가능성을 측정할 수 있는 연료 효율과 작업 예측 가능성을 개선하기 위해 주입 기술 및 용광로 모니터링 시스템 업그레이드를 우선시합니다.

전문가 인터뷰, 기술 통합, 비교 사례 분석을 결합한 강력한 혼합 방법론 연구 접근 방식을 통해 사업 운영자를 위한 실용적이고 검증 가능한 결과를 도출합니다.

본 Executive Summary를 뒷받침하는 분석은 주요 이해관계자와의 대화, 기술 문헌의 통합, 비교 사례 분석을 결합한 체계적인 조사 방법을 바탕으로 확고한 신뢰성과 관련성을 확보하고 있습니다. 주요 입력 정보로 플랜트 야금 기술자, 운영 책임자, 조달 책임자, 기술 제공자와의 인터뷰를 통해 현재의 관행, 단기 투자 우선순위, 현대화에 대한 인식된 장벽을 파악했습니다. 이러한 정량적 결과는 배출 기준, 공정 혁신, 무역 정책 동향에 관한 업계 문헌과 삼각 검증을 통해 관찰된 경향을 검증하고 있습니다.

운영상의 필수 요소와 전략적 방향의 통합은 규율에 따른 최적화, 조달의 탄력성, 협업에 의한 혁신이 경쟁 우위를 유지하는 데 필수적이라는 것을 보여주었습니다.

용광로 이해관계자들에게는 제한된 기회 속에서 규율 있는 행동과 전략적 선견지명이 보상을 받을 수 있는 상황을 보여주고 있습니다. 운영 최적화는 에너지 효율과 공정 안정화를 통해 즉각적인 이익을 가져다 주며, 첨단 주입 시스템 및 공정 제어 개선과 같은 타겟 기술 업그레이드는 연료 의존도와 변동성을 지속적으로 감소시킬 수 있습니다. 동시에 무역 조치, 지역 정책의 변화, 최종 시장 사양의 변화 등 외부 요인으로 인해 기업들은 조달 탄력성을 강화하고 계획 수립에 정책 민감성을 반영해야 합니다.

자주 묻는 질문

  • 용광로 시장 규모는 어떻게 예측되나요?
  • 용광로 운영에 영향을 미치는 주요 요인은 무엇인가요?
  • 미국의 무역 조치가 용광로 사업자에게 미친 영향은 무엇인가요?
  • 용광로 시장에서 강종별로 어떤 차별화된 전략이 필요한가요?
  • 용광로 사업자들이 경쟁력을 유지하기 위해 어떤 전략을 사용하고 있나요?

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 용광로 시장 : 강종별

  • 합금강
  • 탄소강

제9장 용광로 시장 : 기술별

  • 코크스 연소
  • 천연가스 분사
  • 미분탄 분사

제10장 용광로 시장 : 최종 이용 산업별

  • 자동차
    • 상용차
    • 승용차
  • 건설
    • 상업 건축
    • 인프라
    • 주택 건설
  • 기계
    • 농업기계
    • 산업기계
  • 조선

제11장 용광로 시장 : 용광로 사이즈별

  • 대형
  • 중형
  • 소형

제12장 용광로 시장 : 용도별

  • 제철
  • 제강

제13장 용광로 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 용광로 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 용광로 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Danieli & C. Officine Meccaniche S.p.A.
    • SMS group GmbH
    • Primetals Technologies Limited
    • Tenova S.p.A.
    • Fives S.A.
    • JFE Engineering Corporation
    • Mitsubishi Heavy Industries, Ltd.
    • China First Heavy Industries Co., Ltd.
    • Hitachi Zosen Corporation
KSM 25.11.27

The Blast Furnaces Market is projected to grow by USD 6.15 billion at a CAGR of 5.02% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 4.15 billion
Estimated Year [2025] USD 4.36 billion
Forecast Year [2032] USD 6.15 billion
CAGR (%) 5.02%

A strategic framing that positions blast furnace operations at the nexus of operational resilience, decarbonization imperatives, and long term competitiveness in steelmaking

The blast furnace sector sits at the intersection of legacy industrial capability and contemporary pressures to improve efficiency, reduce emissions, and adapt to shifting trade regimes. Operators continue to balance the economics of capital intensity and energy consumption while navigating an operating environment shaped by raw material volatility, tightening environmental standards, and evolving end-market demands. Consequently, decision-makers must reconcile short-term operational optimization with long-term strategies for technological modernization and decarbonization pathways.

In practice, this means prioritizing operational resilience, investing in process controls, and aligning procurement with reliable suppliers of coke, iron ore, and auxiliary fuels. At the same time, firms are exploring incremental technology integrations that yield measurable reductions in energy intensity and emissions while preserving throughput and metallurgical quality. As a result, senior leaders increasingly view blast furnace performance as both a cost lever and a competitive differentiator, with implications for product mix, contractual obligations with downstream mills, and capital allocation across decarbonization projects.

Moving forward, a pragmatic approach combines immediate operational improvements, mid-term retrofits to enhance efficiency, and a strategic roadmap for potential transitions to alternative ironmaking technologies. This layered strategy enables stakeholders to maintain supply security, meet regulatory requirements, and position their asset base to capture value as market dynamics evolve.

How converging regulatory pressures, process innovations, and shifting demand profiles are reshaping furnace operations and strategic priorities across the steel value chain

The landscape for blast furnaces is undergoing transformative shifts driven by regulatory pressure, innovation in process technology, and changing demand patterns across end industries. First, regulatory frameworks are tightening emissions thresholds and incentivizing investments in fuel efficiency and carbon reduction measures, prompting operators to reassess process controls and auxiliary systems. Second, technological advances such as enhanced injection systems and modernized control architectures are enabling incremental decarbonization while improving productivity and reducing specific energy consumption.

Concurrently, value chain adjustments are changing material flows; suppliers and consumers are increasingly seeking transparency and lower carbon intensity in upstream products, which influences procurement choices for coke and iron ore. Moreover, demand-side shifts-especially evolving requirements in automotive manufacturing and construction-are prompting refinements in steel grade specifications and production flexibility. Taken together, these trends accelerate the transition from purely cost-focused operations to performance-oriented, sustainability-driven strategies.

In response, organizations are integrating cross-functional teams that combine metallurgical expertise, operational engineering, and commercial strategy to identify high-impact interventions. As such, the most successful operators will be those that adopt a phased modernization approach: optimize current assets through targeted upgrades, evaluate alternative ironmaking pathways, and build partnerships across the supply chain to derisk implementation and secure long-term competitiveness.

Analysis of how cumulative trade measures implemented by the United States have reshaped procurement strategies, investment decisions, and supply chain resilience for blast furnace operators

United States tariff actions effective in the relevant regulatory window have produced a cumulative set of trade distortions and strategic responses across global steel supply chains, with specific implications for blast furnace operators. The immediate consequences included altered trade flows and a need for procurement teams to reassess sourcing strategies to manage input cost variability and mitigate exposure to discretionary duties. Over time, these measures contributed to a reorientation of supplier relationships, where buyers sought diversified sources and longer-contract arrangements to stabilize feedstock availability.

Moreover, tariffs affected investment calculus by changing the relative competitiveness of domestic production versus imports, influencing maintenance scheduling, capacity utilization decisions, and the timing of capital projects. Compliance burdens and administrative costs increased for firms engaged in cross-border transactions, prompting many to strengthen customs expertise and legal oversight within procurement functions. Trade measures also incentivized vertical integration and nearshoring in certain value chains, as stakeholders pursued resilience and predictability over the potential cost advantages of more distant suppliers.

Importantly, tariffs accelerated strategic shifts rather than creating isolated disruptions. Operators adjusted product portfolios and commercial strategies to preserve margins and maintain customer relationships. In parallel, governments and industry associations intensified dialogue on safeguard measures and adjustment supports to ease the transition for affected facilities. Looking ahead, firms must continue to incorporate trade policy sensitivity into scenario planning, adapting procurement, hedging, and contractual structures to sustain operations in an environment where policy shifts remain a material risk.

Granular segmentation insights that connect steel grades, diverse furnace technologies, end market requirements, furnace scale, and core applications to operational priorities and investment focus

Segment-level dynamics reveal differentiated pressures and opportunities that require tailored strategies across steel grade, process technology, end-use markets, furnace scale, and application. In the steel grade dimension, Alloy Steel demand emphasizes metallurgical precision and consistent chemistry, which favors blast furnace operations that can reliably supply high-quality hot metal and coordinate closely with secondary refining processes; Carbon Steel demand focuses more on volume production and cost efficiency, prompting attention to throughput optimization and raw material yield.

Regarding technology, Coke-Fired systems remain foundational for many established plants due to their well-understood metallurgical performance and supply ecosystems, while Natural Gas Injection offers a pathway to reduced coke consumption and lower direct emissions when integrated with modern furnace controls. Pulverized Coal Injection presents another retrofit-friendly option that can lower dependence on metallurgical coke and provide operational flexibility, though it requires careful management of slag and emission profiles. These technological choices directly influence capital planning and operating models.

End-use variations-spanning automotive requirements for tight tolerances in commercial vehicles and passenger vehicles, construction demand across commercial construction, infrastructure, and residential construction, and machinery needs across agricultural machinery and industrial machinery, as well as shipbuilding-drive product mix considerations, alloying practices, and delivery cadence. Furnace size, whether large, medium, or small, mediates economies of scale, responsiveness to demand variability, and the feasibility of expensive retrofits. Finally, the primary application split between iron-making and steelmaking defines where value is created and where investments in process integration can unlock margin improvements. Taken together, these segmentation insights underscore the need for managers to align technology choices, product portfolios, and capital plans with the specific demands of their served segments.

Regional competitive dynamics and policy environments that influence procurement, decarbonization pathways, and technology adoption across major global markets

Regional distinctions continue to shape competitive dynamics and strategic priorities for blast furnace operators across the Americas, Europe, Middle East & Africa, and Asia-Pacific. In the Americas, firms often prioritize resilience and cost control, balancing legacy asset management with targeted investments to improve energy efficiency and comply with evolving emissions standards. Access to scrap markets and proximity to key end-use industries influence procurement choices and product mix strategies.

In contrast, Europe, Middle East & Africa features a complex regulatory landscape with aggressive decarbonization goals that incentivize both operational optimization and exploratory deployments of low-carbon ironmaking technologies. Policy frameworks and carbon pricing mechanisms play a decisive role in capital allocation decisions and in shaping partnerships between industry, research institutions, and governments. Across much of the region, there is a strong push toward circularity and higher-value steel products.

Asia-Pacific remains highly diverse, with jurisdictions varying from mature, efficiency-focused operations to rapidly expanding capacity hubs. Demand from construction, infrastructure, and manufacturing continues to drive volume, while technological adoption rates differ according to capital availability and local fuel economics. Transitional strategies in the region often emphasize staged retrofits and fuel substitution measures to balance competitiveness with emerging environmental commitments. Overall, regional strategies must reconcile local regulatory environments, feedstock availability, and end-market exposures to remain effective.

Competitive profiles and partnership strategies that reveal how leading firms leverage digital optimization, metallurgical differentiation, and collaborative investments to sustain performance

Leading firms in the blast furnace ecosystem demonstrate varied approaches to sustaining competitiveness through operational excellence, targeted investments, and strategic partnerships. Some incumbents focus on digitalization initiatives that optimize blast furnace controls, predictive maintenance, and process stability to extract incremental efficiency gains and reduce unplanned downtime. Others prioritize metallurgy and product differentiation, investing in secondary refining capabilities to serve higher-margin alloy segments and specialized end markets.

Collaboration between equipment suppliers, engineering firms, and plant operators has become more commonplace, facilitating pilot projects for advanced injection systems, alternative reducing agents, and emissions monitoring technologies. Strategic alliances and co-investments enable risk sharing for expensive retrofits while accelerating learning curves. In parallel, several companies have strengthened in-house capability in procurement and regulatory compliance to better manage input cost volatility and trade complexities.

Across the competitive set, performance leadership often derives from the ability to integrate operational, commercial, and sustainability objectives into cohesive roadmaps. Companies that demonstrate governance structures capable of prioritizing projects based on quantifiable return on operations, environmental impact, and risk mitigation stand out as most prepared to navigate near-term disruptions and seize medium-term opportunities.

A pragmatic implementation roadmap that sequences operational optimizations, procurement resilience measures, capital prioritization, and collaborative pilots to drive measurable performance

Leaders should adopt an actionable agenda that balances immediate operational gains with strategic investments to manage risk and capture emerging value. Start by instituting rigorous process audits to identify low-cost, high-impact interventions in energy management, burden preparation, and raw material handling that can reduce energy intensity and improve consistency. Simultaneously, prioritize upgrades to injection technologies and furnace monitoring systems that yield measurable improvements in fuel efficiency and operational predictability.

Next, develop procurement strategies that diversify feedstock sources and enhance contractual flexibility to navigate trade policy shifts and raw material volatility. Enter into longer-term supply partnerships where appropriate to secure quality inputs for alloy and carbon segments and to support joint optimization efforts. In parallel, embed emissions performance into capital approval criteria so that retrofit and replacement projects are evaluated on both economic and environmental returns.

Finally, pursue collaborative pilots with equipment suppliers and research institutions to test promising low-carbon pathways and scale successful demonstrations. Complement these efforts with workforce training programs that build operator competencies in advanced process control and environmental compliance. By sequencing these actions-optimize, secure, evaluate, and collaborate-organizations can move decisively while preserving optionality for disruptive transitions.

A robust mixed-methods research approach combining expert interviews, technical synthesis, and comparative case analysis to derive practical and verifiable insights for operators

The analysis underpinning this executive summary draws on a structured methodology that combines primary stakeholder engagement, technical literature synthesis, and comparative case analysis to ensure robustness and relevance. Primary inputs included interviews with plant metallurgists, operations leaders, procurement heads, and technology providers to capture current practice, near-term investment priorities, and perceived barriers to modernization. These qualitative insights were triangulated with sector literature on emissions standards, process innovations, and trade policy developments to validate observed patterns.

Comparative case analysis of retrofit programs and technology pilots provided practical context on implementation timelines, integration challenges, and operational outcomes. The methodology emphasized transparency in source attribution and conservative interpretation of anecdotal evidence, favoring corroborated trends over isolated observations. Sensitivity assessments examined how variations in feedstock availability, regulatory stringency, and capital access could influence strategic choices, helping to surface actionable levers for managers.

This approach balances depth and practicality: it privileges conversations with practitioners and technical experts, cross-checks findings against peer-reviewed and industry-accepted technical sources, and frames conclusions to support decision-making without relying on speculative projections or proprietary market sizing.

Synthesis of operational imperatives and strategic directions indicating that disciplined optimization, procurement resilience, and collaborative innovation are essential to sustain competitiveness

The cumulative picture for blast furnace stakeholders is one of constrained opportunity that rewards disciplined action and strategic foresight. Operational optimization offers immediate gains through energy efficiency and process stabilization, while targeted technology upgrades-such as advanced injection systems and improved process controls-can deliver durable reductions in fuel dependence and variability. At the same time, external forces including trade measures, regional policy shifts, and evolving end-market specifications require companies to strengthen procurement resilience and incorporate policy sensitivity into planning.

Firms that integrate operational excellence, procurement diversification, and collaborative innovation will be best positioned to manage near-term disruptions and to pursue longer-term transitions. Importantly, leadership requires clear governance that aligns capital allocation with environmental performance and commercial returns, ensuring that investments deliver both operational improvement and strategic optionality. By adopting a phased, data-driven approach, operators can maintain competitiveness while preparing for a lower-carbon future without jeopardizing reliability or customer commitments.

Ultimately, success will depend on the ability to translate insights into executable programs that combine technical rigor, commercial acumen, and stakeholder engagement, thereby converting research findings into measurable operational and strategic outcomes.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Adoption of hydrogen injection technology to decarbonize blast furnace operations
  • 5.2. Integration of advanced digital twin simulations for real-time furnace performance monitoring
  • 5.3. Transition to low-carbon reducing agents such as biochar in traditional blast furnace processes
  • 5.4. Implementation of waste heat recovery systems to improve energy efficiency in blast furnaces
  • 5.5. Growing investment in carbon capture and storage solutions tailored for blast furnace emissions
  • 5.6. Increasing use of AI-driven predictive maintenance to minimize unplanned furnace downtime
  • 5.7. Development of electric boosted furnace processes to partially replace coke-based reduction

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Blast Furnaces Market, by Steel Grade

  • 8.1. Alloy Steel
  • 8.2. Carbon Steel

9. Blast Furnaces Market, by Technology

  • 9.1. Coke-Fired
  • 9.2. Natural Gas Injection
  • 9.3. Pulverized Coal Injection

10. Blast Furnaces Market, by End Use Industry

  • 10.1. Automotive
    • 10.1.1. Commercial Vehicles
    • 10.1.2. Passenger Vehicles
  • 10.2. Construction
    • 10.2.1. Commercial Construction
    • 10.2.2. Infrastructure
    • 10.2.3. Residential Construction
  • 10.3. Machinery
    • 10.3.1. Agricultural Machinery
    • 10.3.2. Industrial Machinery
  • 10.4. Shipbuilding

11. Blast Furnaces Market, by Furnace Size

  • 11.1. Large
  • 11.2. Medium
  • 11.3. Small

12. Blast Furnaces Market, by Application

  • 12.1. Iron-Making
  • 12.2. Steelmaking

13. Blast Furnaces Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Blast Furnaces Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Blast Furnaces Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Danieli & C. Officine Meccaniche S.p.A.
    • 16.3.2. SMS group GmbH
    • 16.3.3. Primetals Technologies Limited
    • 16.3.4. Tenova S.p.A.
    • 16.3.5. Fives S.A.
    • 16.3.6. JFE Engineering Corporation
    • 16.3.7. Mitsubishi Heavy Industries, Ltd.
    • 16.3.8. China First Heavy Industries Co., Ltd.
    • 16.3.9. Hitachi Zosen Corporation
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제