시장보고서
상품코드
1870625

유전체 에칭기 시장 : 최종사용자별, 기술별, 장비 유형별, 웨이퍼 사이즈별, 용도별 - 세계 예측(2025-2032년)

Dielectric Etchers Market by End User, Technology, Equipment Type, Wafer Size, Application - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 181 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

유전체 에칭기 시장은 2032년까지 CAGR 8.20%로 30억 7,000만 달러 규모로 성장할 것으로 예측되고 있습니다.

주요 시장 통계
기준연도 2024 16억 3,000만 달러
추정연도 2025 17억 6,000만 달러
예측연도 2032 30억 7,000만 달러
CAGR(%) 8.20%

유전체 에칭기에 대한 권위 있는 입문서로, 현대의 디바이스 제조, 공정 제어 및 공급망 통합에서 중요한 역할을 설명

유전체 에칭기는 재료 과학, 공정 제어 및 장치 구조의 교차점에 위치하고 있으며, 패터닝 공차 축소 및 3차원 집적화의 보급에 따라 그 역할이 점점 더 중요해지고 있습니다. 팹과 첨단 포장 시설이 더 높은 밀도의 상호 연결과 복잡한 디바이스 적층을 추구함에 따라 에칭 장비와 레시피는 수율, 변동성, 그리고 궁극적으로 디바이스 성능을 결정짓는 요소로 점점 더 중요해지고 있습니다. 이 책은 유전체 에칭을 단순한 서브 프로세스가 아닌, 디바이스의 신뢰성 향상, 수율 향상, 공정 윈도우 단축을 통해 경쟁적 차별화를 꾀하는 제조업체에게 매우 중요한 전략적 요소로 자리매김하고 있습니다.

유전체 에칭기 개발, 조달 전략, 협력적 혁신을 재구성하는 주요 기술 및 상업적 혁신에 대한 종합적인 개관

유전체 에칭기의 상황은 기술적, 경제적, 규제적 요인의 수렴으로 인해 혁신적인 변화를 겪고 있습니다. 기술적 측면에서는 원자 수준의 정밀도와 선택적 에칭 화학이 첨단 노드 및 이기종 통합 체계의 기본 요구 사항으로 부상하고 있습니다. 이러한 변화로 인해 장비 공급업체들은 기술 전환시 다운타임을 최소화하고, 신속한 레시피 교체와 인사이트 진단을 지원하는 모듈식 구조를 우선순위에 두어야 합니다.

2025년 관세 조치가 자본설비 생태계 전반의 조달, 공급업체 현지화, 계약상 리스크 관리를 어떻게 재구성했는지에 대한 날카로운 분석

2025년 정책 환경에서는 자본재 조달, 공급업체 리드타임, 조달 전략에 누적 영향을 미치는 일련의 관세 조치가 도입되었습니다. 이러한 조치는 특히 부품의 국경 간 공급과 통합 서비스 계약이 필요한 고부가가치 특수 자본재에 대한 공급망 재평가를 가속화했습니다. 그 결과, 제조업체들은 관세 변동 위험과 관련 물류 마찰에 대한 노출을 줄이기 위해 조달 지역과 계약 구조를 재검토했습니다.

최종 사용 요구사항, 에칭 기술, 장비 아키텍처, 웨이퍼 치수, 용도가 어떻게 다른 조달 선택을 유도하는지를 파악할 수 있는 심층 세분화에 대한 인사이트를 제공

최종사용자 관점에서 시장을 분석하면 장비 요구 사항과 가치 동인이 분기되는 영역이 명확해집니다. MEMS 및 광전자공학을 위해 설계된 유전체 에칭기는 처리량보다 정밀도를 중시하며, 독자적인 아키텍처와 소규모 생산량에 대응합니다. 태양광발전 용도에서는 대면적 균일성과 처리량 경제성이 최우선입니다. 반도체 제조는 파운드리, 로직, 메모리에 걸쳐 있으며, 메모리는 다시 DRAM과 NAND로 세분화됩니다. 각 하위 부문은 서로 다른 우선순위를 부여합니다. 로직에서는 엄격한 임계치수 제어와 프로파일 관리가 필요하고, 메모리 생산에서는 엄격한 불량률과 처리량 요구사항이 요구됩니다.

조달 우선순위, 서비스 기대치, 세계 제조 거점에서 공급업체와 제조업체 간의 공동 개발을 결정하는 지역 시장 시장 역학

지역적 동향은 자본설비 가용성, 서비스 대응력, 공동개발모델에 실질적인 영향을 미칩니다. 미국 대륙에서는 주요 설계 회사와의 근접성과 광범위한 전문 팹 기반이 공정 기술자와 장비 제조업체의 긴밀한 협력을 촉진하여 레시피 개발 및 장비 개선의 신속한 반복을 가능하게 합니다. 북미 고객들은 강력한 현지 서비스 네트워크와 유연한 상업 조건을 우선시하는 경향이 있으며, 신속한 현지 지원과 적응형 계약을 제공할 수 있는 공급업체가 시장을 주도하고 있습니다.

경쟁력과 역량에 초점을 맞춘 분석을 통해 기존 제조업체와 전문 혁신가들이 서비스, 모듈형 플랫폼, 공동 연구개발을 통해 어떻게 차별화를 꾀하고 있는지를 보여줍니다.

유전체 에칭기의 경쟁 환경은 오랜 기간 중 확립된 장비 제조업체와 틈새 공정 전문 지식과 디지털 역량을 갖춘 전문 혁신가들이 혼재되어 있습니다. 시장 선도 기업은 일반적으로 강력한 현장 서비스 네트워크, 풍부한 프로세스 라이브러리, 다양한 웨이퍼 크기와 용도 유형에 대응할 수 있는 모듈식 플랫폼을 결합하고 있습니다. 이러한 기업은 주요 팹 및 재료 공급업체와의 공동 개발 파트너십에 많은 투자를 하고 있으며, 장비 및 화학물질의 공동 최적화를 통해 새로운 디바이스 아키텍처의 도입 기간을 단축하고 있습니다.

제조 리더가 탄력성을 강화하고, 프로세스 이전을 가속화하며, 측정 가능한 성과와 함께 유연한 생산 전략을 실현할 수 있는 실용적인 전략적 권장 사항

업계 리더는 단기적인 운영 탄력성과 장기적인 역량 개발의 균형을 맞추는 다각적인 접근 방식을 채택해야 합니다. 첫째, 종합적인 서비스 생태계, 예측 가능한 예비 부품 공급, 공정 전환에서 입증된 성공 사례를 제공하는 공급업체 관계를 우선시하여 대량 생산 시작 위험을 줄입니다. 조달 일정을 공급업체의 용량 계획과 조정하여 생산 중단을 방지하고, 기술 전환기에 유리한 지원 조건을 보장합니다.

전문가 직접 인터뷰, 기술 문헌의 통합 분석, 비교 툴 평가를 결합한 투명한 조사 방법을 통해 확고한 실용적 결론을 도출

본 조사 접근 방식은 기술 전문가 및 조달 책임자와의 1차 정성 조사, 공개 기술 문헌에 대한 체계적인 2차 분석, 공급업체 사양서 및 독립적인 프로세스 연구를 기반으로 한 비교 툴 성능 평가를 통합했습니다. 공정 엔지니어, 장비 조달 관리자, R&D 책임자를 대상으로 1차 인터뷰를 실시하여 에칭 과제, 서비스 기대치, 기술 도입 장벽에 대한 미묘한 견해를 수집했습니다. 이러한 대화를 통해 벤더와 최종사용자가 일상적으로 직면하는 과제와 역량 격차를 통합적으로 파악할 수 있었습니다.

절연체 에칭의 선택이 전략적으로 중요하며, 제조 우위를 유지하기 위해 기업이 확보해야 할 필수 역량을 지원하는 결정적인 통합 분석

유전체 에칭은 디바이스 제조 전략의 핵심이며, 디바이스 미세화 및 집적화 기술의 다양화에 따라 그 중요성이 커지고 있습니다. 기술 선택, 장비 아키텍처, 서비스 능력의 상호 작용은 수율과 성능 목표를 유지하면서 시제품에서 양산으로 전환하는 속도를 결정합니다. 따라서 이해관계자들은 에칭 전략을 조달, 공정 개발, 설비 투자 계획이 교차하는 기업 차원의 의사결정으로 인식해야 합니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 유전체 에칭기 시장 : 최종사용자별

  • MEMS
  • 광일렉트로닉스
  • 태양광발전
  • 반도체 제조
    • 파운드리
    • 로직
    • 메모리
      • DRAM
      • NAND

제9장 유전체 에칭기 시장 : 기술별

  • 원자층 에칭
  • 극저온 에칭
  • 플라즈마 에칭
    • 전자 사이클로트론 공명 에칭
    • 유도 결합 플라즈마 에칭
    • 반응성 이온 에칭
  • 기상 에칭

제10장 유전체 에칭기 시장 : 기기별

  • 배치식
  • 싱글 웨이퍼

제11장 유전체 에칭기 시장 : 웨이퍼 사이즈별

  • 200mm 초과
  • 200mm 이하

제12장 유전체 에칭기 시장 : 용도별

  • 패턴 에칭
    • 질화물 에칭
    • 산화막에칭
  • 표면 세정
  • 트렌치 에칭
  • 맥주 에칭

제13장 유전체 에칭기 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 유전체 에칭기 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 유전체 에칭기 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Applied Materials, Inc.
    • Lam Research Corporation
    • Tokyo Electron Limited
    • Hitachi High-Tech Corporation
    • KLA Corporation
    • Advanced Micro-Fabrication Equipment Inc. China
    • NAURA Technology Group Co., Ltd.
    • Oxford Instruments plc
    • Nordson Corporation
    • SCREEN Holdings Co., Ltd.
KSA 25.12.02

The Dielectric Etchers Market is projected to grow by USD 3.07 billion at a CAGR of 8.20% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 1.63 billion
Estimated Year [2025] USD 1.76 billion
Forecast Year [2032] USD 3.07 billion
CAGR (%) 8.20%

An authoritative primer on dielectric etchers explaining their crucial role in modern device fabrication, process control, and supply chain integration

Dielectric etchers sit at the intersection of materials science, process control, and device architecture, and their role has grown as patterning tolerances shrink and three-dimensional integration becomes commonplace. As fabs and advanced packaging facilities pursue denser interconnects and more complex device stacks, etch tools and recipes increasingly determine yield, variability, and ultimately device performance. This introduction frames dielectric etching not merely as a subprocess, but as a critical strategic factor for manufacturers seeking competitive differentiation through improved device reliability, higher yields, and tighter process windows.

Over the past decade, device roadmaps have driven demand for finer features, more selective etches, and new chemistries compatible with heterogeneous materials. Simultaneously, the supply chain for capital equipment and critical materials has evolved, placing a premium on supplier partnerships that can support rapid process development and technology transfer. In practice, this means that tool performance metrics such as selectivity, uniformity, etch profile control, and throughput now carry heightened commercial significance. Consequently, engineering teams must balance technical optimization against procurement cadence and lifecycle total cost considerations.

Transitioning from process development to production escalates the need for robust process control, metrology integration, and repeatable tooling. Therefore, stakeholders from R&D to operations must coordinate across wafer size, equipment type, and application-specific recipe sets to achieve consistent outcomes at scale. This section sets the stage for deeper analysis by articulating why dielectric etching is central to contemporary device manufacturing strategies and by outlining the core technical and commercial pressures shaping supplier and end-user decisions.

A comprehensive overview of the key technological and commercial shifts reshaping dielectric etcher development, procurement strategies, and collaborative innovation

The landscape of dielectric etchers is undergoing transformative shifts driven by converging technological, economic, and regulatory forces. On the technology front, atomic-level precision and selective etch chemistries are emerging as baseline expectations for advanced nodes and heterogeneous integration schemes. This shift is prompting equipment suppliers to prioritize modular architectures that support rapid recipe exchange and in situ diagnostics, with an emphasis on minimizing downtime during technology transitions.

Simultaneously, manufacturing strategies are evolving from single-node optimization toward multi-technology ecosystems where foundries, logic fabs, and memory manufacturers must accommodate diverse material stacks. This movement is reinforced by the rise of wafer-level packaging and chiplet integration, which necessitate etch capabilities that are compatible with a wider variety of substrate materials and backside processing steps. As a result, collaborations between equipment vendors and materials suppliers are intensifying, with co-development initiatives aimed at reducing ramp time and improving process stability.

From an operational perspective, capital allocation strategies are changing as companies prioritize tools that deliver flexibility and future-proofing. End users are seeking platforms that can transition across wafer sizes and handle mixed workloads, while also offering strong service and digital support ecosystems for predictive maintenance and remote recipe optimization. Taken together, these transformative shifts create a landscape in which agility, cross-disciplinary engineering, and supply chain resilience determine which suppliers and technologies gain traction.

An incisive analysis of how 2025 tariff measures reshaped procurement, supplier localization, and contractual risk management across capital equipment ecosystems

The policy environment in 2025 introduced a set of tariff measures that produced cumulative effects across capital equipment procurement, supplier lead times, and sourcing strategies. These measures accelerated the reassessment of supply chains, particularly for high-value, specialty capital goods that require cross-border supply of components and integrated service contracts. As a consequence, manufacturers re-evaluated sourcing geographies and contractual structures to mitigate exposure to tariff volatility and associated logistics friction.

In response, procurement teams shifted toward longer lead windows and diversified supplier portfolios to preserve production continuity. This caused increased emphasis on local support networks and regionalized spare parts inventories. Additionally, equipment suppliers adapted by expanding regional manufacturing footprints or by localizing assembly to reduce tariff pass-through and to meet customer demands for shorter delivery times. These adaptations had downstream effects on service models, as enhanced regional presence facilitated faster deployment of field service engineers and improved responsiveness for critical process interventions.

Moreover, the tariffs highlighted the importance of contractual clarity around total cost of ownership and long-term service arrangements. Contract negotiations increasingly incorporated clauses for tariff adjustments, extended warranties, and on-site inventory commitments to shield operations from sudden policy changes. Regulatory uncertainty therefore acted as a catalyst for risk-aware commercial models that prioritize operational continuity and predictable lifecycle support, compelling both end users and suppliers to rethink how they structure multi-year equipment relationships.

Deep segmentation insights that clarify how end-use requirements, etch technologies, equipment architectures, wafer dimensions, and application domains drive divergent procurement choices

Examining the market through end-use lenses clarifies where tool requirements and value drivers diverge. Dielectric etchers designed for MEMS and optoelectronics emphasize precision over throughput, catering to unique architectures and often smaller production volumes. Photovoltaics applications place a premium on large-area uniformity and throughput economics. Semiconductor fabrication spans foundry, logic, and memory, with memory further subdivided into DRAM and NAND; each of these subsegments imposes different priorities, from tight critical dimension control and profile management in logic to stringent defectivity and throughput demands in memory production.

Technology segmentation also reveals distinct development pathways. Atomic layer etching targets atomic-scale control for the smallest feature sizes and highest selectivity, while cryogenic etching addresses unique profile and damage constraints for certain three-dimensional structures. Plasma-based approaches remain versatile, with variants such as electron cyclotron resonance etching, inductively coupled plasma etching, and reactive ion etching each adapted to specific trade-offs between anisotropy, damage, and throughput. Vapor phase etching offers alternative chemistries and selectivity advantages for niche applications. The interplay among these technology choices shapes tool architecture, service requirements, and R&D roadmaps.

Equipment type and wafer size constraints further refine procurement decisions. Batch systems provide different cost and throughput profiles compared to single-wafer platforms, and choices between wafers greater than 200mm and those less than or equal to 200mm affect both capital planning and process scalability. Finally, application-oriented segmentation-pattern etching, surface cleaning, trench etching, and via etching-clarifies recipe design and materials compatibility needs. Pattern etching itself splits into nitride and oxide etching concerns, each with distinct selectivity and endpoint detection priorities. Taken together, these segmentation perspectives enable stakeholders to align tool investments with process objectives and manufacturing roadmaps.

Regional market dynamics that determine procurement priorities, service expectations, and collaborative development between suppliers and manufacturers across global manufacturing hubs

Regional dynamics materially influence capital equipment availability, service responsiveness, and collaborative development models. In the Americas, proximity to leading design houses and a broad base of specialty fabs encourage tight integration between process engineers and equipment manufacturers, fostering rapid iterations on recipe development and tooling enhancements. North American customers often prioritize strong local service networks and flexible commercial terms, which supports a market for suppliers that can provide rapid on-site support and adaptive contracts.

Europe, Middle East & Africa present a landscape where regulatory frameworks, regional industrial policies, and a diverse manufacturing base shape procurement strategies. The area often emphasizes sustainability, energy efficiency, and compliance with stringent environmental standards, prompting demand for tooling that minimizes consumables and reduces environmental footprint. This region's heterogeneous set of end users favors suppliers that can offer tailored solutions and that demonstrate strong local partnerships for maintenance and qualification work.

Asia-Pacific remains a focal point for high-volume semiconductor manufacturing and advanced packaging, with concentrated clusters in multiple countries driving intense demand for high-throughput and highly repeatable etch platforms. In this region, rapid capacity expansions and tight technology roadmaps create pressure for suppliers to deliver scalable systems and robust global supply chains. Across all regions, variations in labor markets, trade policy, and infrastructure capacity continue to influence how manufacturers prioritize local sourcing, factory footprints, and long-term supplier relationships.

Competitive and capability-focused analysis showing how established manufacturers and specialized innovators differentiate through service, modular platforms, and collaborative R&D

The competitive field in dielectric etchers reflects a mix of long-established equipment manufacturers and specialized innovators that bring niche process expertise and digital capabilities. Market leaders typically combine strong field service networks, extensive process libraries, and modular platforms that can be tailored for multiple wafer sizes and application types. Such firms invest significantly in joint development partnerships with major fabs and materials suppliers to co-optimize tooling and chemistry, thereby reducing ramp time for new device architectures.

Smaller, specialized vendors often compete on focused advantages such as atomic-level etching capabilities, novel plasma sources, or differentiated endpoint detection that reduces process variability. These companies frequently collaborate with academic centers and foundry R&D groups to validate novel approaches, and they may offer highly configurable systems that appeal to OEMs and lab-scale adopters. Strategic acquisitions and technology licensing remain common ways for larger players to shore up gaps in capability and to accelerate time-to-market for emerging etch modalities.

Service and digital offerings are increasingly decisive in vendor selection. Providers that offer predictive maintenance, remote diagnostics, and robust spare parts strategies can materially reduce unplanned downtime and extend system availability. As fabs pursue higher equipment uptime, suppliers that demonstrate clear outcomes in lifecycle support and process reproducibility are better positioned to secure long-term relationships. In sum, competitive differentiation is as much about sustained service performance and collaborative R&D as it is about raw tool performance.

Actionable strategic recommendations for manufacturing leaders to enhance resilience, accelerate process transfer, and realize flexible production strategies with measurable outcomes

Industry leaders should adopt a multi-pronged approach that balances near-term operational resilience with long-term capability development. First, prioritize supplier relationships that offer comprehensive service ecosystems, predictable spare parts access, and demonstrable success in process transfer to reduce ramp risk. Align procurement timelines with supplier capacity planning to avoid production interruptions and to secure favorable support terms during technology transitions.

Second, invest in modularity and flexibility on the factory floor by selecting etch platforms that support multiple wafer sizes and that permit rapid recipe interchange. This will enable production teams to respond to shifts in product mix and to integrate new materials with minimal capital disruption. Additionally, embed metrology and in situ diagnostics to tighten process control and accelerate yield learning loops.

Third, pursue collaborative R&D engagements with equipment suppliers and materials partners to co-develop chemistries and hardware optimizations tailored to proprietary device architectures. These partnerships should be structured with clear milestones and shared risk-reward frameworks to ensure alignment. Finally, incorporate regional sourcing strategies and contractual protections that account for policy fluctuations, prioritizing local service capabilities and contractual mechanisms that mitigate tariff and logistics exposure. Taken together, these actions will strengthen operational resilience while positioning organizations to capitalize on emerging device opportunities.

A transparent research methodology combining primary expert interviews, technical literature synthesis, and comparative tool evaluation to ensure robust and actionable conclusions

The research approach combined primary qualitative engagements with technical experts and procurement leaders, structured secondary analysis of publicly available technical literature, and comparative tool performance review based on vendor specifications and independent process studies. Primary interviews were conducted with process engineers, equipment procurement managers, and R&D directors to capture nuanced perspectives on etch challenges, service expectations, and technology adoption barriers. These conversations informed a synthesis of pain points and capability gaps that vendors and end users routinely face.

Secondary analysis focused on peer-reviewed journals, conference proceedings, and manufacturer white papers that describe underlying etch mechanisms, equipment architectures, and materials interactions. In addition, comparative technical evaluation of etch platforms considered metrics such as selectivity behavior, profile control, and integration complexity, while avoiding proprietary numerical claims. Cross-validation between primary insights and secondary sources enabled robust thematic conclusions and grounded the recommendations in practical operational realities. Throughout, care was taken to ensure methodological rigor, transparency of assumptions, and relevance to executive decision-makers.

A conclusive synthesis that reinforces the strategic importance of dielectric etch choices and the essential capabilities firms must secure to sustain manufacturing advantage

Dielectric etching remains a pivotal element of device fabrication strategy, and its importance is amplified as device geometries shrink and integration architectures diversify. The interplay between technology selection, equipment architecture, and service capability defines how quickly manufacturers can move from prototype to volume production while maintaining yield and performance targets. Stakeholders must therefore treat etch strategy as an enterprise-level decision that intersects procurement, process development, and capital planning.

The combined pressures of technological complexity, regional policy dynamics, and evolving manufacturing paradigms require adaptive commercial models and deeper supplier collaboration. Organizations that adopt flexible equipment architectures, invest in diagnostics and metrology, and cultivate regional support networks will be better placed to maintain continuity and to capture performance improvements. In closing, a strategic focus on modularity, predictive service, and collaborative innovation will enable companies to navigate short-term disruptions and to harness long-term opportunities presented by emerging device architectures and materials.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Integration of atomic layer etch processes for sub-nanometer precision in next generation dielectric patterning
  • 5.2. Adoption of in situ plasma monitoring and endpoint detection to optimize dielectric etch uniformity across large wafers
  • 5.3. Development of high throughput dielectric etchers utilizing advanced RF power delivery for 3D NAND manufacturing
  • 5.4. Implementation of environmentally sustainable etch chemistries to reduce global warming potential in semiconductor fabs
  • 5.5. Advancements in cryogenic dielectric etching techniques for improved profile control in advanced logic nodes
  • 5.6. Use of machine learning algorithms to predict and control critical dimension variations during dielectric etch processes
  • 5.7. Emergence of modular dielectric etch platforms enabling rapid tool reconfiguration for diverse wafer sizes

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Dielectric Etchers Market, by End User

  • 8.1. MEMS
  • 8.2. Optoelectronics
  • 8.3. Photovoltaics
  • 8.4. Semiconductor Fabrication
    • 8.4.1. Foundry
    • 8.4.2. Logic
    • 8.4.3. Memory
      • 8.4.3.1. DRAM
      • 8.4.3.2. NAND

9. Dielectric Etchers Market, by Technology

  • 9.1. Atomic Layer Etching
  • 9.2. Cryogenic Etching
  • 9.3. Plasma Etching
    • 9.3.1. Electron Cyclotron Resonance Etching
    • 9.3.2. Inductively Coupled Plasma Etching
    • 9.3.3. Reactive Ion Etching
  • 9.4. Vapor Phase Etching

10. Dielectric Etchers Market, by Equipment Type

  • 10.1. Batch
  • 10.2. Single Wafer

11. Dielectric Etchers Market, by Wafer Size

  • 11.1. Greater Than 200mm
  • 11.2. Less Than Or Equal To 200mm

12. Dielectric Etchers Market, by Application

  • 12.1. Pattern Etching
    • 12.1.1. Nitride Etching
    • 12.1.2. Oxide Etching
  • 12.2. Surface Cleaning
  • 12.3. Trench Etching
  • 12.4. Via Etching

13. Dielectric Etchers Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Dielectric Etchers Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Dielectric Etchers Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Applied Materials, Inc.
    • 16.3.2. Lam Research Corporation
    • 16.3.3. Tokyo Electron Limited
    • 16.3.4. Hitachi High-Tech Corporation
    • 16.3.5. KLA Corporation
    • 16.3.6. Advanced Micro-Fabrication Equipment Inc. China
    • 16.3.7. NAURA Technology Group Co., Ltd.
    • 16.3.8. Oxford Instruments plc
    • 16.3.9. Nordson Corporation
    • 16.3.10. SCREEN Holdings Co., Ltd.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제