시장보고서
상품코드
1914246

섬유 재활용 장비 시장 : 설비 유형별, 기술별, 소재 유형별, 용도별, 최종사용자별, 유통 채널별 - 세계 예측(2026-2032년)

Textile Recycling Equipment Market by Equipment Type, Technology, Material Type, Application, End User, Distribution Channel - Global Forecast 2026-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 193 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

섬유 재활용 장비 시장은 2025년에 47억 4,000만 달러로 평가되었으며, 2026년에는 49억 6,000만 달러로 성장하여 CAGR 4.71%를 기록하며 2032년까지 65억 5,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2025년 47억 4,000만 달러
추정 연도 2026년 49억 6,000만 달러
예측 연도 2032년 65억 5,000만 달러
CAGR(%) 4.71%

섬유 재활용 장비의 시장 환경은 규제 압력, 변화하는 소비자 기대치, 재료 처리 기술의 발전에 힘입어 급속한 성숙기에 접어들었습니다. 벤더부터 폐기물 처리업체에 이르기까지 업계 이해관계자들은 순환성이 더 이상 이상이 아닌 핵심 운영 요건이 된 현실을 직시하고 있습니다. 그 결과, 과거에는 틈새 사용 사례에 머물렀던 기술이 현재는 재료 회수 시설이나 섬유 제조 공정에서 기존 기계와 함께 주류 도입이 검토되는 단계에 이르렀습니다.

직선형에서 순환형 공급망으로의 전환은 기계에 대한 자본 투자뿐만 아니라 선별, 세척, 섬유 회수, 재료 재구성 등 모든 단계의 통합을 필요로 합니다. 여기에는 재활용 섬유가 재사용 품질 기준을 충족할 수 있도록 공급 관계, 처리 능력, 최종 제품 사양에 대한 재검토가 포함됩니다. 도입 곡선은 생산자책임재활용제도(EPR)의 인센티브와 섬유 원료의 추적성 및 환경 인증을 요구하는 바이어들의 영향을 받고 있습니다.

또한, 화학적, 기계적, 열적 처리 경로가 교차하면서 원료 구성과 최종 용도 목표에 따라 설비 선택이 이루어지는 하이브리드화된 가치사슬이 형성되고 있습니다. 따라서 조달 결정에 있어서는 운영상의 유연성, 에너지 강도, 다운스트림 공정의 순도 달성도, 그리고 변동하는 원료 구성에 대응하는 확장성 등을 종합적으로 평가해야 합니다. 본 도입부에서는 후속 섹션에서 분석될 기술적, 정책적, 시장 역학에 대한 인사이트를 통해 설비 도입자 및 공급자에게 전략적 기회와 도입 시 유의사항을 제시하여 보다 폭넓은 논의의 틀을 제공합니다.

최근 규제, 기술, 운영 측면의 변화, 섬유 재활용 시설의 도입과 업계의 우선순위를 재구성하는 구조

최근 몇 년 동안 섬유 폐기물의 수집, 처리 및 공급망에 재통합하는 방법을 재정의하는 혁신적인 변화가 일어나고 있습니다. 제품 관리 책임과 폐기물 전환 목표 의무화 등 규제가 강화됨에 따라 브랜드 기업과 지자체는 물류 재설계와 업스트림 분리 시스템에 투자해야 하는 상황에 직면해 있습니다. 동시에 공급망 투명성 요건과 소비자의 환경 주장에 대한 감시가 강화되면서 검증 가능한 재활용 경로에 대한 수요가 증가하고 추적 기술 및 인증된 처리 흐름에 대한 투자가 촉진되고 있습니다.

최근 무역 정책의 변화가 설비 조달의 공급망 의사결정, 제조 현지화, 조달 동향에 어떤 영향을 미치는지 평가합니다.

관세 정책과 무역 조치는 기계, 부품, 재생 소재의 세계 공급망을 크게 재편하고, 조달 전략과 현지 제조의 경제성에 영향을 미칠 수 있습니다. 최근 미국에서 시행된 관세 조정을 배경으로 장비 공급업체와 최종사용자는 조달 모델, 공급업체 다변화, 주요 제조 공정의 현지화를 재검토해야 했습니다. 이러한 정책 변화로 인해 서비스 제공 비용 분석, 총 착륙 비용 고려 및 비상시 조달 체계의 필요성이 더욱 중요해졌습니다.

다양한 원료와 최종사용자의 요구사항, 설비 선택, 가공 기술, 유통 모델, 심층 세분화에 기반한 인사이트에 부합하는 설비 선택, 가공 기술, 유통 모델

재활용 생태계 내에서 정보에 입각한 설비 선택과 전략적 포지셔닝을 위해서는 세분화에 대한 이해가 필수적입니다. 장비를 유형별로 분류하면, 압축기, 정제기, 파쇄기, 선별 장비의 선택은 각각 재료 회수 체인의 각기 다른 단계를 반영합니다. 압축기는 수송 밀도를 최적화하고, 정제기는 오염물질 제거 및 섬유 품질을 개선하며, 파쇄기는 크기 축소 및 섬유 방출을 가능하게 하고, 선별 설비는 다운스트림 공정의 원료 균질성을 높입니다. 각 장비 등급은 자본, 운영 및 유지보수 요구사항이 다르며, 이는 시설의 레이아웃 및 처리 능력 프로필과 일치해야 합니다.

전 세계 재활용 회랑의 설비 우선순위, 도입 모델, 투자 전략을 결정하는 지역 간 비교 트렌드

지역별 동향은 섬유 재활용 시설에 대한 투자 우선순위와 각기 다른 운영 환경에서의 기술 도입 방법을 결정하는 데 있어 매우 중요한 역할을 합니다. 아메리카에서는 규제 프레임워크와 기업의 지속가능성에 대한 노력이 수집 인프라와 지역 처리 능력에 대한 투자를 촉진하고 있습니다. 특정 지역에서는 주요 의류 제조업체와의 공급망 근접성이 기존 생산 기지에 통합할 수 있는 모듈식 및 고처리 용량 시설에 대한 투자를 촉진하고 있으며, 지방 자치 단체와의 협력은 지역 규모의 솔루션을 육성하고 있습니다.

업계 전반의 혁신, 서비스 모델, 전략적 파트너십 추진, 장비 제공업체 간의 경쟁 및 협력 역학

장비 공급업체 간 경쟁 구도는 기존 기계 제조업체들이 재활용 전용 제품 라인으로 진출하는 움직임과 까다로운 원료에 대한 전문 솔루션을 제공하는 신규 진입자들이 혼재되어 있는 것이 특징입니다. 시장 선도업체들은 설치, 교육, 예비 부품 관리, 성능 보증을 포괄하는 통합 서비스로 차별화를 꾀하는 반면, 혁신적인 업체들은 첨단 광학 선별 알고리즘이나 자체 개발한 화학 처리 촉매와 같은 틈새 분야에서 차별화를 꾀하고 있습니다.

운용사가 도입 리스크를 줄이고, 회수 성과를 개선하며, 확장 가능한 순환형 운영을 가속화하기 위해 취할 수 있는 전략적 조치들

업계 리더들은 운영 리스크를 관리하면서 도입을 가속화할 수 있는 실용적인 로드맵을 채택해야 합니다. 먼저, 예상 섬유 혼합 비율, 오염 수준, 계절적 변화를 고려한 명확한 원료 전략에 따라 설비 조달을 조정하여 자본 투자가 현실적인 처리량과 품질 목표에 부합하도록 합니다. 다음으로, 단계적 용량 확장을 가능하게 하고, 유지보수 물류를 간소화하며, 처리 요구사항의 변화에 따른 시스템 교체 필요성을 줄여주는 모듈식 및 상호 운용 가능한 장비 아키텍처를 우선시합니다.

전략적 의사결정을 지원하기 위해 주요 이해관계자 인터뷰, 기술검토, 정책분석을 결합한 투명하고 체계적인 조사 방법을 채택하고 있습니다.

본 분석의 기반이 되는 조사는 견고성과 관련성을 확보하기 위해 여러 가지 방법을 통합한 접근 방식을 채택했습니다. 주요 활동으로 설비 제조업체, 소재 가공업체, 시설 운영자, 물류 사업자와의 구조화된 인터뷰 및 협의를 통해 운영 실태, 도입 장벽, 새로운 사용 사례 등을 파악하였습니다. 이러한 정성적 지식은 설비 사양서, 공정 흐름도, 재료 회수 및 고분자 화학 관련 문헌에 대한 기술 검토를 통해 보완되어 기술 평가의 근거를 확립하고 있습니다.

섬유 재활용 시스템의 실현 가능성과 확장성을 종합적으로 결정하는 기술적, 운영적, 정책적 요인에 대한 통합적 인사이트

요약하면, 섬유 재활용 장비 분야는 정책 추진력, 기술 성숙도, 상업적 수요가 교차하면서 순환 경제를 향한 지속가능한 기회를 창출하는 전환점에 서 있습니다. 향상된 선별 기술, 혁신적인 화학적 및 열적 처리 옵션, 모듈식 장비 설계가 결합되어 다양한 원료 프로파일의 섬유 소재를 보다 확실하게 회수할 수 있습니다. 이러한 발전은 조달 로직을 재구성하고, 기술 역량과 시장 수요를 일치시키는 협업을 촉진하고 있습니다.

자주 묻는 질문

  • 섬유 재활용 장비 시장의 2025년 시장 규모는 얼마인가요?
  • 섬유 재활용 장비 시장의 2032년 예측 규모는 어떻게 되나요?
  • 섬유 재활용 장비 시장의 2026년 시장 규모는 얼마로 예상되나요?
  • 섬유 재활용 장비 시장의 CAGR은 얼마인가요?
  • 섬유 재활용 장비 시장의 최근 변화는 무엇인가요?
  • 섬유 재활용 장비의 도입에 있어 고려해야 할 요소는 무엇인가요?
  • 섬유 재활용 시설의 도입을 위한 전략적 조치는 무엇인가요?
  • 섬유 재활용 장비 시장의 경쟁 구도는 어떻게 형성되고 있나요?

목차

제1장 서문

제2장 조사 방법

  • 조사 설계
  • 조사 프레임워크
  • 시장 규모 예측
  • 데이터 삼각측량
  • 조사 결과
  • 조사 가정
  • 조사의 제약

제3장 주요 요약

  • CXO 관점
  • 시장 규모와 성장 동향
  • 시장 점유율 분석, 2025
  • FPNV 포지셔닝 매트릭스, 2025
  • 새로운 수익 기회
  • 차세대 비즈니스 모델
  • 업계 로드맵

제4장 시장 개요

  • 업계 생태계와 밸류체인 분석
  • Porter's Five Forces 분석
  • PESTEL 분석
  • 시장 전망
  • GTM 전략

제5장 시장 인사이트

  • 소비자 인사이트와 최종사용자 관점
  • 소비자 경험 벤치마크
  • 기회 매핑
  • 유통 채널 분석
  • 가격 동향 분석
  • 규제 준수와 표준 프레임워크
  • ESG와 지속가능성 분석
  • 디스럽션과 리스크 시나리오
  • ROI와 CBA

제6장 미국 관세의 누적 영향, 2025

제7장 AI의 누적 영향, 2025

제8장 섬유 재활용 장비 시장 : 장비별

  • 포장 기
  • 정제기
  • 슈레더
  • 선별 장비

제9장 섬유 재활용 장비 시장 : 기술별

  • 화학적 처리
  • 기계식
  • 열처리

제10장 섬유 재활용 장비 시장 : 소재 유형별

  • 혼방 섬유
  • 천연섬유
  • 합성섬유

제11장 섬유 재활용 장비 시장 : 용도별

  • 사용 후 제품
  • 생산전

제12장 섬유 재활용 장비 시장 : 최종사용자별

  • 재활용 시설
  • 섬유 제조업체
  • 폐기물 관리 회사

제13장 섬유 재활용 장비 시장 : 유통 채널별

  • 직접 판매
  • 판매대리점
  • 온라인

제14장 섬유 재활용 장비 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제15장 섬유 재활용 장비 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제16장 섬유 재활용 장비 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제17장 미국 섬유 재활용 장비 시장

제18장 중국 섬유 재활용 장비 시장

제19장 경쟁 구도

  • 시장 집중도 분석, 2025
    • 집중 비율(CR)
    • 허핀달-허쉬만 지수(HHI)
  • 최근 동향과 영향 분석, 2025
  • 제품 포트폴리오 분석, 2025
  • 벤치마킹 분석, 2025
  • Cumberland Engineering Company Limited
  • Herbold Meckesheim GmbH
  • HSM GmbH+Co. KG
  • Kusters Zeta Inc.
  • Lindner-Recyclingtech GmbH
  • PELLENC ST S.A.S.
  • SANTEX S.p.A.
  • Saurer Technology AG
  • Tomra Systems ASA
  • Vecoplan AG
KSM 26.02.03

The Textile Recycling Equipment Market was valued at USD 4.74 billion in 2025 and is projected to grow to USD 4.96 billion in 2026, with a CAGR of 4.71%, reaching USD 6.55 billion by 2032.

KEY MARKET STATISTICS
Base Year [2025] USD 4.74 billion
Estimated Year [2026] USD 4.96 billion
Forecast Year [2032] USD 6.55 billion
CAGR (%) 4.71%

The textile recycling equipment landscape is undergoing a period of accelerated maturation driven by regulatory pressure, evolving consumer expectations, and advances in material processing technologies. Industry stakeholders from equipment vendors to waste handlers are confronting a reality in which circularity is no longer aspirational but a core operational imperative. As a result, technologies that once occupied niche use cases are now being evaluated for mainstream deployment alongside legacy machinery in materials recovery facilities and textile manufacturing operations.

Transitioning from linear to circular supply chains requires not only capital investment in machinery but also integration across sorting, cleaning, fiber recovery, and material reconstitution stages. This involves reconsidering supply relationships, throughput assumptions, and end-product specifications to ensure recycled fibers meet quality thresholds for reuse. The adoption curve is being influenced by incentives for extended producer responsibility and by buyers who demand traceability and environmental credentials from their textile inputs.

Moreover, the intersection of chemical, mechanical, and thermal processing routes is creating hybridized value chains where the choice of equipment is informed by feedstock composition and end-use goals. Consequently, procurement decisions must weigh operational flexibility, energy intensity, downstream purity outcomes, and the ability to scale with shifting input mixes. This introduction frames the broader narrative examined in the following sections, where technological, policy, and market dynamics are analyzed to highlight strategic opportunities and implementation considerations for equipment adopters and providers.

How recent regulatory, technological, and operational shifts are reshaping textile recycling equipment deployment and industry priorities

Recent years have seen transformative shifts that are redefining how textile waste is collected, processed, and reincorporated into the supply chain. Regulatory developments, including mandates for product stewardship and waste diversion targets, have compelled brands and municipalities to redesign logistics and invest in upstream separation systems. At the same time, supply-chain transparency requirements and consumer scrutiny of environmental claims have increased demand for verifiable recycling pathways, stimulating investments in tracking technologies and certified processing streams.

Technological advances are playing an equally pivotal role. Improvements in automated sorting and optical identification enable higher purity in separated streams, reducing contamination that has historically impeded fiber recovery. Concurrently, innovations in chemical recycling are maturing to address blended textiles that mechanical routes struggle to process. These chemical pathways are increasingly complemented by thermal and enzymatic solutions that target specific polymer chemistries or enable depolymerization for higher-value feedstocks.

Operationally, the industry is witnessing a shift toward modular, scalable equipment architectures that permit phased upgrades and capacity expansion without wholesale replacement. This evolution lowers the barrier to entry for smaller operators and accelerates deployment in regions with emerging recycling infrastructures. As stakeholders reassess asset strategies, a pragmatic focus on throughput variability, energy efficiency, and integration with downstream reprocessing will determine which technologies achieve widespread adoption.

Assessing how recent changes in trade policy are influencing supply chain decisions, manufacturing localization, and procurement dynamics in equipment sourcing

Tariff policies and trade measures can meaningfully reshape global supply chains for machinery, components, and recovered materials, with implications for procurement strategies and local manufacturing economics. In the context of recent tariff adjustments implemented in the United States, equipment vendors and end users have had to reconsider sourcing models, supplier diversification, and the localization of key manufacturing processes. These policy changes have amplified the importance of cost-to-serve analysis, total landed cost considerations, and the need for contingency sourcing arrangements.

Practically, higher import duties on certain categories of machinery and components have incentivized equipment manufacturers to explore nearshoring and to strengthen domestic assembly capabilities. This has led to collaborative arrangements between international OEMs and local partners to maintain price competitiveness while ensuring compliance with regulatory requirements. For buyers, the shift imposes a greater emphasis on evaluating the trade-offs between upfront capex, lead times, and lifecycle service models.

Furthermore, tariff-driven adjustments have reinforced the value of standardized, modular platforms that can be produced and serviced locally with limited redesign. Procurement teams are increasingly prioritizing suppliers that can demonstrate supply chain resilience, guaranteed spare-part availability, and predictable service-level agreements. In parallel, manufacturers are accelerating investments in digital tools and remote diagnostics to offset potential limitations in cross-border technical support, thereby preserving uptime and optimizing asset utilization under new trade conditions.

Deep segmentation-driven insights that align equipment selection, processing technology, and distribution models to diverse feedstock and end-user requirements

Understanding segmentation is essential for informed equipment selection and strategic positioning within the recycling ecosystem. When equipment is classified by type, choices among balers, purifiers, shredding machines, and sorting equipment reflect distinct points in the material recovery chain, with balers optimizing transport density, purifiers enhancing contaminant removal and fiber quality, shredders enabling size reduction and fiber liberation, and sorting equipment increasing feedstock homogeneity for downstream processes. Each equipment class imposes different capital, operational, and maintenance requirements, which must be reconciled with facility layout and throughput profiles.

Technology pathways-chemical, mechanical, and thermal-offer divergent performance characteristics and product outcomes. Chemical processes can enable depolymerization and recovery of constituent monomers from blended or complex textiles, while mechanical methods typically favor fiber reclamation from single-fiber streams, and thermal approaches can be employed for energy recovery or selective polymer breakdown. Matching chosen technologies to feedstock composition is therefore foundational to achieving desired purity and end-product specifications.

Material type segmentation into blended fibers, natural fibers, and synthetic fibers further complicates equipment strategy, as each fiber class responds differently to processing stresses and yields varying levels of degradation. Application context, whether post-consumer or pre-consumer, influences contamination profiles and expected feedstock consistency, shaping equipment throughput and cleaning needs. End users, such as recycling facilities, textile manufacturers, and waste management companies, bring distinct procurement priorities and operational constraints that affect adoption timelines and service expectations. Finally, distribution channels including direct sales, distributors, and online offerings determine procurement friction, after-sales support structures, and pricing transparency, all of which influence long-term ownership costs and supplier relationships.

Comparative regional dynamics that dictate equipment priorities, deployment models, and investment strategies across global recycling corridors

Regional dynamics play a pivotal role in shaping where investments in textile recycling equipment are prioritized and how technologies are deployed across different operating contexts. In the Americas, regulatory frameworks and corporate sustainability commitments are driving investments in both collection infrastructure and local processing capacity. Supply-chain proximity to major apparel manufacturers in select geographies has encouraged investments in modular, high-throughput equipment that can be integrated with existing manufacturing footprints, while municipal partnerships are fostering community-scale solutions.

Europe, Middle East & Africa present a heterogeneous landscape where Western European jurisdictions emphasize extended producer responsibility schemes and stringent waste diversion targets, creating commercial incentives for sophisticated sorting and advanced recycling technologies. Meanwhile, in parts of the Middle East and Africa, infrastructure constraints are catalyzing interest in scalable, lower-footprint equipment and decentralized processing models that can operate with intermittent utilities and variable feedstock streams.

Asia-Pacific remains a central axis for both textile production and recycling innovation, with substantial industrial capacity and rapidly evolving regulatory approaches. Several regional markets are experimenting with public-private partnerships to consolidate post-consumer collection systems and to deploy both mechanical and chemical recycling pilots near textile manufacturing clusters. Across these regions, investors and operators must consider local energy costs, labor availability, and logistics networks when selecting equipment and defining deployment strategies, as these factors materially influence operational efficiency and total cost of ownership.

Competitive and collaborative dynamics among equipment providers that drive innovation, service models, and strategic partnerships across the industry

The competitive landscape among equipment providers is characterized by a mix of established machinery manufacturers expanding into recycling-specific product lines and newer entrants offering specialized solutions for challenging feedstocks. Market leaders often distinguish themselves through integrated service offerings that encompass installation, training, spare parts management, and performance guarantees, while innovative vendors focus on niche differentiation such as enhanced optical sorting algorithms or proprietary chemical processing catalysts.

Strategic partnerships between equipment suppliers and material processors are becoming more common, enabling co-development of modular systems that reduce integration risk and accelerate time-to-operation. These collaborations frequently extend to after-sales arrangements where predictive maintenance and remote monitoring substantially reduce downtime. Additionally, some vendors are adopting outcome-based commercial models that align pricing with throughput or recovered fiber quality, thereby shifting shared risk between suppliers and operators.

Intellectual property around process chemistry and sensor technologies remains a critical competitive advantage, and companies that invest in R&D to improve energy efficiency and material recovery yields tend to secure contracts with brand owners seeking measurable sustainability outcomes. For procurement teams, evaluating vendor track records on total cost of ownership, upgrade pathways, and responsiveness to feedstock variability is essential when navigating a market that balances proven reliability with the promise of innovation.

Actionable strategic measures that operators can implement to de-risk deployments, improve recovery outcomes, and accelerate scalable circular operations

Industry leaders should adopt a pragmatic roadmap that accelerates adoption while managing operational risk. First, align equipment procurement with a clear feedstock strategy that accounts for expected fiber mixes, contamination levels, and seasonal variability, thereby ensuring that capital investments are matched to realistic throughput and quality objectives. Next, prioritize modular and interoperable equipment architectures that enable incremental capacity expansion and simplify maintenance logistics, reducing the need for disruptive system replacements as processing requirements evolve.

Leaders should also invest in digital enablement, including remote diagnostics, real-time process monitoring, and analytics that link equipment performance to material quality outcomes. This will enhance uptime and provide data-driven insights for continuous improvement. Concurrently, building collaborative relationships with technology partners, research institutions, and brand owners can accelerate validation cycles for new recycling routes and create pathways for offtake agreements on recovered fibers.

Lastly, incorporate lifecycle and energy-efficiency metrics into procurement criteria to minimize operational costs and to meet sustainability reporting requirements. By combining careful feedstock alignment, modular hardware choices, digital capabilities, and collaborative validation, industry leaders can de-risk deployments, improve recovery rates, and create differentiated value propositions for downstream customers and brand partners.

Transparent and methodical research approach combining primary stakeholder interviews, technical reviews, and policy analysis to inform strategic decision-making

The research underpinning this analysis integrates a multi-method approach to ensure robustness and relevance. Primary engagement included structured interviews and consultations with equipment manufacturers, material processors, facility operators, and logistics providers to capture operational realities, adoption barriers, and emerging use cases. These qualitative inputs were complemented by technical reviews of equipment specifications, process flow diagrams, and peer-reviewed literature on material recovery and polymer chemistry to ground technological assessments.

Secondary materials included industry association guidance, government policy documents, and technical white papers that elucidated regulatory trajectories and standards relevant to textile recycling. Comparative analysis of case studies from diverse geographic contexts provided practical evidence of deployment models, while trade and customs documentation informed considerations related to supply chain and sourcing strategies. Careful triangulation of sources allowed for cross-validation of claims and reduced reliance on single-source assertions.

Methodologically, the analysis emphasizes operational parameters, energy intensity, and integration complexity rather than quantitative market sizing. Wherever possible, the study surfaced leading indicators and qualitative trends that can inform strategic decisions, and uncertainties were explicitly identified to guide scenario planning. The research process prioritized transparency in assumptions and technical rigor in interpreting advances across mechanical, chemical, and thermal processing domains.

Concluding synthesis of technological, operational, and policy drivers that collectively determine the readiness and scalability of textile recycling systems

In summary, the textile recycling equipment sector stands at an inflection point where policy momentum, technological maturation, and commercial demand are intersecting to create durable opportunities for circularity. The convergence of improved sorting, innovative chemical and thermal processing options, and modular equipment design is enabling more reliable recovery of textile materials across diverse feedstock profiles. These developments are reshaping procurement logic and encouraging collaborations that align technical capabilities with market needs.

However, realizing the potential of recycled textiles requires careful alignment of equipment selection with feedstock realities, attention to supply chain resilience in light of trade policy shifts, and investments in digital tools that enhance operational uptime and product traceability. Regional contexts vary widely, and successful deployments will hinge on adapting technology choices to local infrastructure, labor markets, and regulatory environments. Stakeholders that integrate technological flexibility, service-oriented vendor relationships, and data-driven performance management will be best positioned to capture value and meet evolving sustainability requirements.

Ultimately, the path to scaling textile recycling is both technical and collaborative. By combining rigorous operational planning with targeted partnerships and a focus on measurable material outcomes, organizations can move from pilot projects to repeatable, high-performing systems that contribute to a more circular textile economy.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Definition
  • 1.3. Market Segmentation & Coverage
  • 1.4. Years Considered for the Study
  • 1.5. Currency Considered for the Study
  • 1.6. Language Considered for the Study
  • 1.7. Key Stakeholders

2. Research Methodology

  • 2.1. Introduction
  • 2.2. Research Design
    • 2.2.1. Primary Research
    • 2.2.2. Secondary Research
  • 2.3. Research Framework
    • 2.3.1. Qualitative Analysis
    • 2.3.2. Quantitative Analysis
  • 2.4. Market Size Estimation
    • 2.4.1. Top-Down Approach
    • 2.4.2. Bottom-Up Approach
  • 2.5. Data Triangulation
  • 2.6. Research Outcomes
  • 2.7. Research Assumptions
  • 2.8. Research Limitations

3. Executive Summary

  • 3.1. Introduction
  • 3.2. CXO Perspective
  • 3.3. Market Size & Growth Trends
  • 3.4. Market Share Analysis, 2025
  • 3.5. FPNV Positioning Matrix, 2025
  • 3.6. New Revenue Opportunities
  • 3.7. Next-Generation Business Models
  • 3.8. Industry Roadmap

4. Market Overview

  • 4.1. Introduction
  • 4.2. Industry Ecosystem & Value Chain Analysis
    • 4.2.1. Supply-Side Analysis
    • 4.2.2. Demand-Side Analysis
    • 4.2.3. Stakeholder Analysis
  • 4.3. Porter's Five Forces Analysis
  • 4.4. PESTLE Analysis
  • 4.5. Market Outlook
    • 4.5.1. Near-Term Market Outlook (0-2 Years)
    • 4.5.2. Medium-Term Market Outlook (3-5 Years)
    • 4.5.3. Long-Term Market Outlook (5-10 Years)
  • 4.6. Go-to-Market Strategy

5. Market Insights

  • 5.1. Consumer Insights & End-User Perspective
  • 5.2. Consumer Experience Benchmarking
  • 5.3. Opportunity Mapping
  • 5.4. Distribution Channel Analysis
  • 5.5. Pricing Trend Analysis
  • 5.6. Regulatory Compliance & Standards Framework
  • 5.7. ESG & Sustainability Analysis
  • 5.8. Disruption & Risk Scenarios
  • 5.9. Return on Investment & Cost-Benefit Analysis

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Textile Recycling Equipment Market, by Equipment Type

  • 8.1. Balers
  • 8.2. Purifiers
  • 8.3. Shredding Machines
  • 8.4. Sorting Equipment

9. Textile Recycling Equipment Market, by Technology

  • 9.1. Chemical
  • 9.2. Mechanical
  • 9.3. Thermal

10. Textile Recycling Equipment Market, by Material Type

  • 10.1. Blended Fibers
  • 10.2. Natural Fibers
  • 10.3. Synthetic Fibers

11. Textile Recycling Equipment Market, by Application

  • 11.1. Post-consumer
  • 11.2. Pre-consumer

12. Textile Recycling Equipment Market, by End User

  • 12.1. Recycling Facilities
  • 12.2. Textile Manufacturers
  • 12.3. Waste Management Companies

13. Textile Recycling Equipment Market, by Distribution Channel

  • 13.1. Direct Sales
  • 13.2. Distributors
  • 13.3. Online

14. Textile Recycling Equipment Market, by Region

  • 14.1. Americas
    • 14.1.1. North America
    • 14.1.2. Latin America
  • 14.2. Europe, Middle East & Africa
    • 14.2.1. Europe
    • 14.2.2. Middle East
    • 14.2.3. Africa
  • 14.3. Asia-Pacific

15. Textile Recycling Equipment Market, by Group

  • 15.1. ASEAN
  • 15.2. GCC
  • 15.3. European Union
  • 15.4. BRICS
  • 15.5. G7
  • 15.6. NATO

16. Textile Recycling Equipment Market, by Country

  • 16.1. United States
  • 16.2. Canada
  • 16.3. Mexico
  • 16.4. Brazil
  • 16.5. United Kingdom
  • 16.6. Germany
  • 16.7. France
  • 16.8. Russia
  • 16.9. Italy
  • 16.10. Spain
  • 16.11. China
  • 16.12. India
  • 16.13. Japan
  • 16.14. Australia
  • 16.15. South Korea

17. United States Textile Recycling Equipment Market

18. China Textile Recycling Equipment Market

19. Competitive Landscape

  • 19.1. Market Concentration Analysis, 2025
    • 19.1.1. Concentration Ratio (CR)
    • 19.1.2. Herfindahl Hirschman Index (HHI)
  • 19.2. Recent Developments & Impact Analysis, 2025
  • 19.3. Product Portfolio Analysis, 2025
  • 19.4. Benchmarking Analysis, 2025
  • 19.5. Cumberland Engineering Company Limited
  • 19.6. Herbold Meckesheim GmbH
  • 19.7. HSM GmbH + Co. KG
  • 19.8. Kusters Zeta Inc.
  • 19.9. Lindner-Recyclingtech GmbH
  • 19.10. PELLENC ST S.A.S.
  • 19.11. SANTEX S.p.A.
  • 19.12. Saurer Technology AG
  • 19.13. Tomra Systems ASA
  • 19.14. Vecoplan AG
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제