½ÃÀ庸°í¼­
»óǰÄÚµå
1803108

¼¶À¯ Æó±â¹°°è °Ç¼³ÀÚÀç ½ÃÀå ¿¹Ãø(-2032³â) : °ø±Þ¿øº°, Æó±â¹° À¯Çüº°, ÀçȰ¿ë ÇÁ·Î¼¼½ºº°, Àç·á À¯Çüº°, ¿ëµµº°, ¼öÁö À¯Çüº°, ¿ëµµº°, Áö¿ªº° ¼¼°è ºÐ¼®

Textile Waste Construction Materials Market Forecasts to 2032 - Global Analysis By Source, Waste Type, Recycling Process, Material Type, Application, Resin Type, Application and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ¼¶À¯ Æó±â¹°°è °Ç¼³ÀÚÀç ½ÃÀåÀº 2025³â¿¡ 2¾ï 8,080¸¸ ´Þ·¯¸¦ Â÷ÁöÇϸç 2032³â¿¡´Â 8¾ï 9,460¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø ±â°£ Áß CAGRÀº18%·Î ¼ºÀåÇÒ Àü¸ÁÀÔ´Ï´Ù.

¼¶À¯Æó±â¹°°è °ÇÃàÀÚÀç´Â ±â´É¼º ±¸Á¶ ºÎǰÀ¸·Î Àç»ç¿ëµÇ´Â Æóõ, ¼¶À¯, ÀÇ·ù Æó±â¹°¿¡¼­ ¾òÀ» ¼ö ÀÖ´Â °ÇÃà ÀÚ¿øÀÔ´Ï´Ù. »ê¾÷°è´Â ¼¶À¯ ÀÜ¿©¹°À» °¡°øÇÏ¿© Áö¼Ó°¡´ÉÇÑ °ÇÃàÀ» À§ÇÑ ´Ü¿­ ÆÐ³Î, º¹ÇÕ º¸µå, º®µ¹, º¸°­À縦 »ý»êÇϰí ÀÖ½À´Ï´Ù. ÀÌ ¼ÒÀçµéÀº ¸Å¸³ Æó±â¹°À» ÁÙÀ̸鼭 ¼¶À¯ÀÇ ³»±¸¼º°ú º¸¿Â¼ºÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ¾÷»çÀÌŬ¸µÀ» ÅëÇØ ¼¶À¯ Æó±â¹°Àº ½ÇÇà °¡´ÉÇÑ °ÇÃàÀÚÀç·Î Àçź»ýÇÏ¿© °ÇÃà°ú Åä¸ñ °øÇÐÀ» ¼øÈ¯ °æÁ¦ÀÇ ¿ø¸®¿Í Àç·á È¿À²¼º¿¡ ºÎÇÕÇϵµ·Ï ÇÕ´Ï´Ù.

¼­Å§·¯ ÀÌÄÚ³ë¹Ì À¯·´(Circular Economy Europe)¿¡ µû¸£¸é ÀçȰ¿ë ¼¶À¯ ±â¹Ý °ÇÃàÀÚÀç´Â ź¼Ò Á߸³°ú Áö¼Ó°¡´ÉÇÑ µµ½Ã ÀÎÇÁ¶ó¸¦ ¸ñÇ¥·Î ÇÏ´Â ÁÖÅà ÇÁ·ÎÁ§Æ®¿¡ ÈûÀÔ¾î Àα⸦ ²ø°í ÀÖ½À´Ï´Ù.

¼øÈ¯ °æÁ¦¿¡ ´ëÇÑ °ü½É Áõ°¡

¼øÈ¯ °æÁ¦ ¿øÄ¢¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ¼¶À¯ Æó±â¹° ±â¹Ý °ÇÃàÀÚÀç ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. Á¤ºÎ, ȯ°æ±â°ü, ¾÷°è ÀÌÇØ°ü°èÀÚµéÀº ¸Å¸³ ºÎ´ãÀ» ÁÙÀ̱â À§ÇØ Æó±â¹°¿¡¼­ ÀÚ¿øÀ¸·Î Àü·«À» ÃßÁøÇϰí ÀÖ½À´Ï´Ù. ¼¶À¯ Æó±â¹°À» °ÇÃà¿ë º¹ÇÕÀç, ´Ü¿­Àç, ÆÐ³Î·Î Àç»ç¿ëÇÏ¿© ÀÌ»êȭź¼Ò ¹èÃâÀ» ÁÙÀ̸鼭 Áö¼Ó°¡´ÉÇÑ ¹ßÀüÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù. ģȯ°æ °ÇÃà ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ÈûÀÔ¾î ¼¶À¯ Æó±â¹° ÅëÇÕÀº ¼¼°è Áö¼Ó°¡´É¼º ¸ñÇ¥¿¡ ºÎÇÕÇϸç, Àü ¼¼°è ÁÖ°Å ¹× »ó¾÷¿ë °ÇÃà ÇÁ·ÎÁ§Æ®¿¡¼­ äÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

°Ç¼³ ºÎ¹®ÀÇ Á¦ÇÑµÈ ÀνÄ

Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ¸ñÇ¥°¡ ÀÖÀ½¿¡µµ ºÒ±¸ÇÏ°í °Ç¼³ ºÎ¹®ÀÇ ÀνÄÀÌ Á¦ÇÑÀûÀ̶ó´Â Á¡ÀÌ Å« °É¸²µ¹·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ¸¹Àº ÀÌÇØ°ü°èÀÚµéÀº ¼¶À¯°è ¼ÒÀçÀÇ ±¸Á¶Àû, ¿­Àû, À½ÇâÀû ¼º´ÉÀÇ °¡´É¼º¿¡ ´ëÇØ ¾ÆÁ÷ Àß ¾ËÁö ¸øÇÕ´Ï´Ù. ÄÜÅ©¸®Æ®, ö°­, ¹öÁø ¼ÒÀç¿¡ ´ëÇÑ ÀüÅëÀûÀÎ ¼±È£°¡ Çõ½ÅÀûÀÎ ´ëü ¼ÒÀçÀÇ ±×´Ã¿¡ °¡·ÁÁ® ÀÖ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ¶ÇÇÑ ³»±¸¼º°ú ¾ÈÀü¼º¿¡ ´ëÇÑ ¿ÀÇØ°¡ °³¹ßÀÚµéÀÇ ÁÖÀú¸¦ ºÒ·¯ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Áö½Ä°ú ¼ö¿ë ż¼ÀÇ ºÎÁ·À¸·Î ÀÎÇØ ´ë±Ô¸ð äÅÃÀÌ Áö¿¬µÇ°í ÀÖÀ¸¸ç, ±³À° Ä·ÆäÀÎ, ½ÇÁõ ÇÁ·ÎÁ§Æ®, Á¤ºÎÀÇ Àμ¾Æ¼ºê°¡ ÇÊ¿äÇÏ´Ù´Â Á¡ÀÌ ºÎ°¢µÇ°í ÀÖ½À´Ï´Ù.

µµ½Ã ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ® ÁøÃâ

µµ½Ã ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ®´Â ¼¶À¯ Æó±â¹° ±â¹Ý °ÇÃàÀÚÀç¿¡ ÀÖÀ¸¸ç, Å« ¼ºÀå ±âȸÀÔ´Ï´Ù. ±Þ¼ÓÇÑ µµ½ÃÈ­¿¡ µû¶ó Àú·ÅÇÑ ÁÖÅÃ, µµ·Î °Ç¼³, °ø°ø½Ã¼³¿¡ Áö¼Ó°¡´ÉÇÑ ¼Ö·ç¼ÇÀ» äÅÃÇÏ´Â µµ½Ã°¡ ´Ã°í ÀÖ½À´Ï´Ù. ¼¶À¯ ±â¹Ý º¹ÇÕÀç·á´Â ºñ¿ë È¿À²ÀÌ ³ô°í, °¡º±°í, ¿­ È¿À²ÀÌ ¶Ù¾î³ª¸ç, ´ë±Ô¸ð »ç¿ë¿¡ ÀûÇÕÇÕ´Ï´Ù. ±×¸° ºôµù ÀÎÁõ°ú Á¤ºÎÀÇ ÀÚ¿ø È¿À²È­ Àǹ«È­¿¡ ÈûÀÔ¾î, ƯÈ÷ Àúź¼Ò ¹× ¼øÈ¯Çü °Ç¼³ Àü·«À» ¿ì¼±½ÃÇÏ´Â Áö¿ª¿¡¼­´Â ÀçȰ¿ë ¼¶À¯ ¼ÒÀ縦 ÁöÀÚü ÇÁ·ÎÁ§Æ®¿¡ ÅëÇÕÇÔÀ¸·Î½á ½ÃÀå ±Ô¸ð°¡ Å©°Ô È®´ëµÉ °¡´É¼ºÀÌ ÀÖ½À´Ï´Ù.

Àç·á ½ÂÀÎÀ» À§ÇÑ ±ÔÁ¦»óÀÇ Àå¾Ö¹°

¼¶À¯ À¯·¡ °Ç¼³ Á¦Ç°ÀÇ ½ÂÀÎÀ» È®º¸Çϱâ À§ÇÑ ±ÔÁ¦Àû Àå¾Ö¹°Àº ¿©ÀüÈ÷ ÁÖ¿ä À§ÇùÀÌ µÇ°í ÀÖ½À´Ï´Ù. ±¹°¡º°·Î °ÇÃ๰ÀÇ ¾ÈÀü, ³»È­, ³»±¸¼º¿¡ ´ëÇÑ ¾ö°ÝÇÑ ±âÁØÀÌ Àû¿ëµÇ¹Ç·Î ÀÎÁõ ÀýÂ÷¿¡ ¸¹Àº ½Ã°£°ú ºñ¿ëÀÌ ¼Ò¿äµË´Ï´Ù. Áö¿ª °£ Ç¥ÁØÈ­µÇÁö ¾ÊÀº Å×½ºÆ® ÇÁ·¹ÀÓ¿öÅ©´Â ¼¼°è »ó¾÷È­ ³ë·ÂÀ» ´õ¿í º¹ÀâÇÏ°Ô ¸¸µé°í ÀÖ½À´Ï´Ù. ±â¾÷Àº »ç¾÷ ±Ô¸ð È®´ë°¡ ´Ê¾îÁö°Å³ª Á¤ºÎ ÅõÀÚ ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ®¿¡¼­ ±âȸ¸¦ ÀÒÀ» ¼ö ÀÖ´Â À§ÇèÀÌ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦´Â ¼¶À¯ Æó±â¹°ÀÌ ÁÖ¿ä °Ç¼³ °ø±Þ¸Á¿¡ ¿øÈ°ÇÏ°Ô ÅëÇյǴ °ÍÀ» Á¦ÇÑÇϰí, Áö¼Ó°¡´É¼º Á᫐ ¼ö¿ä Áõ°¡¿¡µµ ºÒ±¸ÇÏ°í ¼¶À¯ Æó±â¹°ÀÇ ¼ºÀå ÀáÀç·ÂÀ» Á¦ÇÑÇϰí ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ:

COVID-19 ÆÒµ¥¹ÍÀº ¼¶À¯ Æó±â¹° ±â¹Ý °ÇÃàÀÚÀç ½ÃÀå¿¡ ÀÌÁßÀ¸·Î ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ÇÑÆíÀ¸·Î´Â °Ç¼³ °ø»çÀÇ Á¤Ã¼¿Í °ø±Þ¸Á È¥¶õÀ¸·Î ÀÎÇØ ÀçȰ¿ë »ç¾÷°ú ÇÁ·ÎÁ§Æ® °³¹ßÀÌ Á¦ÇѵǾú½À´Ï´Ù. ´Ù¸¥ ÇÑÆíÀ¸·Î, ÆÒµ¥¹ÍÀ¸·Î ÀÎÇØ Áö¼Ó°¡´ÉÇÏ°í °ß°íÇÑ °ÇÃà °üÇà¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö¸é¼­ ¼øÈ¯ °æÁ¦ ¼Ö·ç¼Ç¿¡ ´ëÇÑ °ü½ÉÀÌ °¡¼ÓÈ­µÇ¾ú½À´Ï´Ù. ³ì»ö ÀÎÇÁ¶ó¿¡ ÃÊÁ¡À» ¸ÂÃá °¢±¹ Á¤ºÎÀÇ Àç°Ç °èȹÀº ¼¶À¯ Æó±â¹°À» °Ç¼³¿¡ ÅëÇÕÇÒ ¼ö ÀÖ´Â ±âȸ¸¦ ´õ¿í È®´ëÇß½À´Ï´Ù. »ê¾÷ÀÌ È¸º¹µÊ¿¡ µû¶ó ÆÒµ¥¹Í ÀÌÈÄ ÀÚ¿ø È¿À²¼º¿¡ ´ëÇÑ °­Á¶´Â Àå±âÀûÀ¸·Î äÅÃÀ» °­È­ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¿¹Ãø ±â°£ Áß ¼Òºñ ÈÄ Æó±â¹° ºÎ¹®ÀÌ °¡Àå Ŭ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¿¹Ãø ±â°£ Áß ¼ÒºñÀÚ Æó±â¹° ÈÄó¸® ºÎ¹®ÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ÀÌ´Â µµ½É¿¡ ¹ö·ÁÁö´Â ÀÇ·ù, °¡Á¤¿ë ¼¶À¯ Á¦Ç° ¹× ½Å¹ßÀÇ °¡¿ë¼ºÀÌ Áõ°¡ÇÔ¿¡ µû¶ó Áõ°¡µÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼¶À¯ ¸Å¸³Áö¿¡ ´ëÇÑ ¿ì·Á Áõ°¡¿Í ÀçȰ¿ë ÇÁ·Î±×·¥¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ Âü¿©°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÀÌ ºÐ¾ß¿¡¼­ÀÇ ¿ìÀ§¸¦ ´õ¿í °­È­Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ °Ç¼³ ¾÷°è¿¡¼­´Â ´Ü¿­Àç, º¹ÇÕÀç, ÆÇ³Ú µî¿¡ ¼ÒºñÀÚ Æó±â¹°¿¡¼­ Àç»ýµÈ ¼¶À¯¸¦ äÅÃÇÏ´Â »ç·Ê°¡ ´Ã°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ç³ºÎÇÑ °ø±Þ·®°ú ¼øÈ¯ °æÁ¦¿¡ ´ëÇÑ ³ë·Â°ú ÇÔ²² ÀÌ ºÐ¾ßÀÇ ¸ÅÃâ âÃâ ÁÖµµ±ÇÀº È®½Ç½ÃµÇ°í ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ Áß È¥ÇÕ ¼¶À¯ ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¿¹Ãø ±â°£ Áß ¸é°ú Æú¸®¿¡½ºÅ׸£ ¹× ±âŸ È¥ÇÕ ¼ÒÀçÀÇ ÀçȰ¿ëÀÇ º¹À⼺¿¡ ¿µÇâÀ» ¹Þ¾Æ È¥ÇÕ Á÷¹° ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼¶À¯ ºÐ¸® ±â¼úÀÇ Çõ½ÅÀ¸·Î È¥ÇÕ ¼¶À¯ÀÇ È¿À²ÀûÀΠȸ¼ö ¹× °Ç¼³¿ë º¹ÇÕÀç·ÎÀÇ Àç»ç¿ëÀÌ °¡´ÉÇØÁö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Ä£È¯°æ °ÇÃ๰¿¡ ÀÖÀ¸¸ç, ºñ¿ë È¿À²ÀûÀÌ°í ³»±¸¼ºÀÌ ¶Ù¾î³­ ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ´Â Á¡µµ äÅÃÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. Á¤ºÎ°¡ ¼¶À¯ÀÇ ¼øÈ¯¼º°ú Áö¼Ó°¡´ÉÇÑ Æó±â¹° °ü¸®¿¡ ´ëÇÑ Á߿伺À» °­Á¶ÇÔ¿¡ µû¶ó È¥¹æ ¼¶À¯ Ä«Å×°í¸®´Â ½ÃÀå¿¡¼­ °¡Àå ºü¸£°Ô ¼ºÀåÇÏ´Â ÇÏÀ§ ºÎ¹®À¸·Î ºÎ»óÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª:

¿¹Ãø ±â°£ Áß ¾Æ½Ã¾ÆÅÂÆò¾çÀº Áß±¹, Àεµ, µ¿³²¾Æ½Ã¾ÆÀÇ ´ë±Ô¸ð ¼¶À¯ »ý»ê ±âÁö¿Í ³ôÀº Æó±â¹° ¹ß»ý·®¿¡ ÈûÀÔ¾î °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀçȰ¿ëÀ» Àå·ÁÇÏ´Â °­·ÂÇÑ Á¤Ã¥ ÇÁ·¹ÀÓ¿öÅ©°¡ ±Þ¼ÓÇÑ µµ½ÃÈ­ ¹× ÀÎÇÁ¶ó °³¹ß°ú ÇÔ²² ¼¶À¯ À¯·¡ °ÇÃàÀÚÀçÀÇ »ç¿ëÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¼¶À¯ Æó±â¹°ÀÇ ¿ø·á¸¦ dzºÎÇÏ°Ô ¾òÀ» ¼ö ÀÖÀ¸¹Ç·Î Á¦Á¶¾÷üÀÇ ºñ¿ë È¿À²¼ºÀÌ ³ô½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

¿¹Ãø ±â°£ Áß ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â Áö¼Ó°¡´ÉÇÑ °Ç¼³¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö°í ¼øÈ¯ °æÁ¦ ¿øÄ¢À» °­·ÂÇÏ°Ô Ã¤ÅÃÇ߱⠶§¹®ÀÔ´Ï´Ù. ¼¶À¯ ÀçȰ¿ë¾÷ü¿Í °ÇÃàÀÚÀç Á¦Á¶¾÷üÀÇ Çù·Â °ü°è°¡ °­È­µÇ¸é¼­ ´Ü¿­Àç, ÆÐ³Î º¸µå, º¸°­Àç ¿ëµµÀÇ ±â¼ú Çõ½ÅÀÌ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¸Å¸³Áö »ç¿ëÀ» ¾ïÁ¦Çϱâ À§ÇÑ ¾ö°ÝÇÑ ±ÔÁ¦·Î ÀÎÇØ ÀçȰ¿ë ¼¶À¯ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ģȯ°æ ÀÎÇÁ¶ó¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼±È£µµ°¡ ³ôÀº ºÏ¹Ì´Â ¼¶À¯Æó±â¹° ±â¹Ý °Ç¼³ÀÚÀçÀÇ ±Þ¼ºÀå ½ÃÀåÀÌ µÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ ¼­ºñ½º

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷¼Ò°³
    • Ãß°¡ ±â¾÷ Á¾ÇÕ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3»ç)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(ÃÖ´ë 3»ç)
  • Áö¿ª ±¸ºÐ
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¶ó ´Ù¸§)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¿ªÀû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå °³¿ä

Á¦2Àå ¼­·Ð

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • ºÐ¼® ¹üÀ§
  • ºÐ¼® ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • ºÐ¼® ¾îÇÁ·ÎÄ¡
  • ºÐ¼® ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ½ÃÀå ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • ½ÅÇü Äڷγª¹ÙÀÌ·¯½º(COVID-19)ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ¾÷üÀÇ ±³¼··Â
  • ¹ÙÀ̾îÀÇ ±³¼··Â
  • ´ëü Á¦Ç°ÀÇ À§Çù
  • ½Å±Ô Âü¿© ±â¾÷ÀÇ À§Çù
  • ±â¾÷°£ °æÀï

Á¦5Àå ¼¼°èÀÇ ¼¶À¯ Æó±â¹°°è °Ç¼³ÀÚÀç ½ÃÀå : °ø±Þ¿øº°

  • Pre-Consumer Waste
  • Post-Consumer Waste
  • »ê¾÷¿ë ¼¶À¯ Æó±â¹°

Á¦6Àå ¼¼°èÀÇ ¼¶À¯ Æó±â¹°°è °Ç¼³ÀÚÀç ½ÃÀå : Æó±â¹° À¯Çüº°

  • õ¿¬ ¼¶À¯
  • ÇÕ¼º ¼¶À¯
  • È¥¹æ ÆÐºê¸¯
  • À§Çè¹°/¿À¿° ¼¶À¯
  • ¿¡³ÊÁö ȸ¼ö
  • ¸Å¸³/¾ß¿Ü Åõ±â

Á¦7Àå ¼¼°èÀÇ ¼¶À¯ Æó±â¹°°è °Ç¼³ÀÚÀç ½ÃÀå : ÀçȰ¿ë ÇÁ·Î¼¼½ºº°

  • ±â°èÀû ÀçȰ¿ë
  • È­ÇÐ/È¿¼Ò ÀçȰ¿ë

Á¦8Àå ¼¼°èÀÇ ¼¶À¯ Æó±â¹°°è °Ç¼³ÀÚÀç ½ÃÀå : Àç·á À¯Çüº°

  • ´Ü¿­ ÆÐ³Î¡¤¸ÅÆ®
  • ÄÜÅ©¸®Æ® º¸°­ ¼¶À¯
  • ÁöºØÀ硤¹æ¼öÀç
  • À½Ç⡤¹æÀ½ ÆÐ³Î
  • Áö¿ÀÅØ½ºÅ¸ÀÏ¡¤Åä¾ç ¾ÈÁ¤Á¦

Á¦9Àå ¼¼°èÀÇ ¼¶À¯ Æó±â¹°°è °Ç¼³ÀÚÀç ½ÃÀå : ¿ëµµº°

  • ÁÖÅà °Ç¼³
  • »ó¾÷ °Ç¼³
  • Á¶°æ¡¤¾ß¿Ü ±¸Á¶¹°
  • ±âŸ ¿ëµµ

Á¦10Àå ¼¼°èÀÇ ¼¶À¯ Æó±â¹°°è °Ç¼³ÀÚÀç ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ÁÖ¿ä µ¿Çâ

  • °è¾à, »ç¾÷ Á¦ÈÞ¡¤Çù·Â, ÇÕº´»ç¾÷
  • ±â¾÷ÀμöÇÕº´(M&A)
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®Àå
  • ±âŸ ÁÖ¿ä Àü·«

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Lenzing AG
  • Birla Cellulose
  • HYOSUNG TNC
  • Unifi, Inc.
  • Renewcell
  • Patagonia, Inc.
  • Leigh Fibres
  • Martex Fibre
  • The Woolmark Company
  • Pure Waste Textiles
  • Retex Textiles Inc.
  • Anandi Enterprises
  • Boer Group Recycling Solutions
  • Greenful
  • FabBRICK
  • MASC Inc.
  • Procotex Corporation
KSA

According to Stratistics MRC, the Global Textile Waste Construction Materials Market is accounted for $280.8 million in 2025 and is expected to reach $894.6 million by 2032 growing at a CAGR of 18% during the forecast period. Textile Waste Construction Materials are building resources derived from discarded fabrics, fibers, and apparel waste that are repurposed into functional structural components. By processing textile residues, industries create insulation panels, composite boards, bricks, and reinforcement elements for sustainable construction. These materials leverage the durability and thermal qualities of fabrics while reducing landfill waste. Through upcycling, textile waste is transformed into viable construction inputs, aligning architecture and civil engineering with circular economy principles and material efficiency.

According to Circular Economy Europe, recycled textile-based construction materials are gaining traction, driven by housing projects targeting carbon neutrality and sustainable urban infrastructure.

Market Dynamics:

Driver:

Growing focus on circular economy

The rising emphasis on circular economy principles is driving the textile waste construction materials market. Governments, environmental agencies, and industry stakeholders are increasingly promoting waste-to-resource strategies to reduce landfill burden. Repurposing textile waste into construction composites, insulation, and panels supports sustainable development while lowering carbon footprints. Fueled by growing demand for eco-friendly building solutions, the integration of textile waste aligns with global sustainability targets, creating momentum for adoption across both residential and commercial construction projects worldwide.

Restraint:

Limited awareness in construction sector

Despite sustainability goals, limited awareness within the construction sector poses a significant restraint. Many stakeholders remain unfamiliar with the structural, thermal, and acoustic performance potential of textile-based materials. Conventional preferences for concrete, steel, and virgin materials often overshadow innovative alternatives. Additionally, misconceptions regarding durability and safety create hesitancy among developers. This lack of knowledge and acceptance slows down large-scale adoption, highlighting the need for educational campaigns, demonstration projects, and government incentives to promote wider market penetration.

Opportunity:

Expansion into urban infrastructure projects

Urban infrastructure projects represent a significant growth opportunity for textile waste construction materials. With rapid urbanization, cities are increasingly adopting sustainable solutions for affordable housing, road construction, and public facilities. Textile-based composites offer cost-effective, lightweight, and thermally efficient alternatives suited for large-scale use. Spurred by green building certifications and government mandates for resource efficiency, the integration of recycled textile materials into municipal projects can significantly expand market scope, especially in regions prioritizing low-carbon and circular construction strategies.

Threat:

Regulatory hurdles for material approvals

Regulatory hurdles in securing approvals for textile-derived construction products remain a key threat. Different countries impose stringent standards for building safety, fire resistance, and durability, making certification processes lengthy and costly. Non-standardized testing frameworks across regions further complicate global commercialization efforts. Companies risk delays in scaling operations or losing opportunities in government-funded infrastructure projects. These challenges restrict the smooth integration of textile waste materials into mainstream construction supply chains, limiting their growth potential despite increasing sustainability-driven demand.

Covid-19 Impact:

The COVID-19 pandemic had a dual impact on the textile waste construction materials market. On one hand, construction slowdowns and disrupted supply chains restricted recycling operations and project deployments. On the other, the pandemic heightened awareness of sustainable and resilient building practices, accelerating interest in circular economy solutions. Governments' recovery plans focusing on green infrastructure further boosted opportunities for integrating textile waste in construction. As industries rebound, the post-pandemic emphasis on resource efficiency is expected to strengthen long-term adoption.

The post-consumer waste segment is expected to be the largest during the forecast period

The post-consumer waste segment is expected to account for the largest market share during the forecast period, propelled by the rising availability of discarded clothing, home textiles, and footwear in urban centers. Growing concerns over textile landfills and heightened consumer participation in recycling programs further strengthen its dominance. Moreover, construction industries are increasingly adopting recycled fabrics from post-consumer waste for insulation, composites, and paneling. This abundance of supply combined with circular economy initiatives ensures the segment's leadership in revenue generation.

The blended fabrics segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the blended fabrics segment is predicted to witness the highest growth rate, influenced by the complexity of recycling cotton-polyester and other mixed materials. Growing innovation in fiber separation technologies is enabling efficient recovery and reuse of blended textiles for construction composites. Additionally, rising demand for cost-effective yet durable materials in eco-friendly buildings accelerates adoption. With governments emphasizing textile circularity and sustainable waste management, the blended fabrics category is expected to emerge as the fastest-growing sub-segment in the market.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, fueled by its massive textile production hubs and high waste generation across China, India, and Southeast Asia. Strong policy frameworks encouraging recycling, alongside rapid urbanization and infrastructure development, drive uptake of textile-derived construction materials. Furthermore, abundant access to raw textile waste supplies ensures cost efficiency for manufacturers.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, driven by growing awareness of sustainable construction and strong adoption of circular economy principles. Increasing collaborations between textile recyclers and construction material producers foster innovation in insulation, panel boards, and reinforcement applications. Moreover, stringent regulations to curb landfill use enhance demand for recycled textile solutions. With high consumer preference for eco-friendly infrastructure, North America is set to become the fastest-growing market for textile waste construction materials.

Key players in the market

Some of the key players in Textile Waste Construction Materials Market include Lenzing AG, Birla Cellulose, HYOSUNG TNC, Unifi, Inc., Renewcell, Patagonia, Inc., Leigh Fibres, Martex Fibre, The Woolmark Company, Pure Waste Textiles, Retex Textiles Inc., Anandi Enterprises, Boer Group Recycling Solutions, Greenful, FabBRICK, MASC Inc., and Procotex Corporation.

Key Developments:

In August 2025, Lenzing AG and Greenful are expanding textile-to-panel recycling, converting waste into construction materials to support Europe's stringent sustainability standards and green building certifications for new developments.

In July 2025, Birla Cellulose and Unifi, Inc. are piloting new technology to transform blended fabric waste into durable construction composites for use in infrastructure projects, promoting material circularity.

In June 2025, Renewcell, with Patagonia and Leigh Fibres, is providing Circulose(R) fibers for manufacturing sustainable building products like eco-bricks and insulation, specifically for the North American housing market.

Sources Covered:

  • Pre-Consumer Waste
  • Post-Consumer Waste
  • Industrial Textile Waste

Waste Types Covered:

  • Natural Fibers
  • Synthetic Fibers
  • Blended Fabrics
  • Hazardous / Contaminated Textiles
  • Energy Recovery
  • Landfilling / Open Dumping

Recycling Processes Covered:

  • Mechanical Recycling
  • Chemical / Enzymatic Recycling

Material Types Covered:

  • Insulation Panels & Mats
  • Concrete Reinforcement Fibers
  • Roofing & Waterproofing Materials
  • Acoustic & Soundproofing Panels
  • Geotextiles & Soil Stabilizers

Applications Covered:

  • Residential Construction
  • Commercial Construction
  • Landscaping & Outdoor Structures
  • Other Applications

End Users Covered:

  • Municipal Water Utilities
  • Industrial Facilities
  • Marine
  • Environmental Agencies

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Textile Waste Construction Materials Market, By Source

  • 5.1 Introduction
  • 5.2 Pre-Consumer Waste
  • 5.3 Post-Consumer Waste
  • 5.4 Industrial Textile Waste

6 Global Textile Waste Construction Materials Market, By Waste Type

  • 6.1 Introduction
  • 6.2 Natural Fibers
  • 6.3 Synthetic Fibers
  • 6.4 Blended Fabrics
  • 6.5 Hazardous / Contaminated Textiles
  • 6.6 Energy Recovery
  • 6.7 Landfilling / Open Dumping

7 Global Textile Waste Construction Materials Market, By Recycling Process

  • 7.1 Introduction
  • 7.2 Mechanical Recycling
  • 7.3 Chemical / Enzymatic Recycling

8 Global Textile Waste Construction Materials Market, By Material Type

  • 8.1 Introduction
  • 8.2 Insulation Panels & Mats
  • 8.3 Concrete Reinforcement Fibers
  • 8.4 Roofing & Waterproofing Materials
  • 8.5 Acoustic & Soundproofing Panels
  • 8.6 Geotextiles & Soil Stabilizers

9 Global Textile Waste Construction Materials Market, By Application

  • 9.1 Introduction
  • 9.2 Residential Construction
  • 9.3 Commercial Construction
  • 9.4 Landscaping & Outdoor Structures
  • 9.5 Other Applications

10 Global Textile Waste Construction Materials Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Lenzing AG
  • 12.2 Birla Cellulose
  • 12.3 HYOSUNG TNC
  • 12.4 Unifi, Inc.
  • 12.5 Renewcell
  • 12.6 Patagonia, Inc.
  • 12.7 Leigh Fibres
  • 12.8 Martex Fibre
  • 12.9 The Woolmark Company
  • 12.10 Pure Waste Textiles
  • 12.11 Retex Textiles Inc.
  • 12.12 Anandi Enterprises
  • 12.13 Boer Group Recycling Solutions
  • 12.14 Greenful
  • 12.15 FabBRICK
  • 12.16 MASC Inc.
  • 12.17 Procotex Corporation
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦