½ÃÀ庸°í¼­
»óǰÄÚµå
1457065

¼¼°èÀÇ ¼ÛÁøÈ­ÇÐ ½ÃÀå ¿¹Ãø(2024-2029³â)

Pine-Derived Chemicals Market - Forecasts from 2024 to 2029

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Knowledge Sourcing Intelligence | ÆäÀÌÁö Á¤º¸: ¿µ¹® 122 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼ÛÁøÈ­ÇÐ ½ÃÀåÀº 2022³â¿¡´Â 105¾ï 3,900¸¸ ´Þ·¯·Î Æò°¡µÇ¾úÀ¸¸ç, CAGR 4.65%·Î ¼ºÀåÇÏ¿© 2029³â¿¡´Â 152¾ï 7,800¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼ÛÁøÈ­ÇÐÀº ¼Ò³ª¹«¿¡¼­ ¾òÀº ¹ÙÀÌ¿À Àç»ý °¡´É È­ÇÐ ¹°ÁúÀÔ´Ï´Ù. ¸ñÀçÀÇ ÅºÈ­¿Í ¿Ã·¹¿À·¹ÁøÀÇ Áõ·ù´Â ÀÌ·¯ÇÑ È­ÇÕ¹°À» Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ Áõ·ùǰÀÇ ´ëºÎºÐÀº ±×·çÅͱâ, ²­, Ȳ»ê ÆÞÇÁ Á¦Ç°º°, Å볪¹«·Î ¸¸µé¾îÁý´Ï´Ù.

¼ÛÁøÈ­ÇÐÀº ÆÞÇÁÈ­ °øÁ¤ÀÇ Á¦Ç°º°·Î Á¦Áö °øÁ¤¿¡¼­ Á¶È²»êÅ¸ÆæÅ¸ÀÎÀ̳ª Á¶ÅçÀ¯ÀÇ ÇüÅ·Π¾òÀ» ¼ö ÀÖ½À´Ï´Ù. ¸ñÀçÀÇ ÅºÈ­ °øÁ¤¿¡¼­´Â Ŭ·¹¿À¼ÒÆ®, ¸ñź, ¸Þź¿Ã, Á¤À¯, ź´Ñ, Æä³î, ÀǾàǰ µîÀÇ Á¦Ç°ÀÌ »ý»êµË´Ï´Ù. ¶ÇÇÑ Á¢ÂøÁ¦, ¼öÁö, Ç¥¸é ÄÚÆÃÁ¦, Àμâ À×Å©, ºñ´© ¼¼Á¦, °¡¼ÒÁ¦, ¹æÇâ È­ÇÕ¹° µî¿¡µµ ¼Ò³ª¹« À¯·¡ÀÇ ¹°ÁúÀÌ Æ÷ÇԵǾî ÀÖ½À´Ï´Ù.

½ÃÀå µ¿Çâ :

¸î °¡Áö Áß¿äÇÑ ¿ä¼Ò´Â ¼ÛÁøÈ­ÇÐ »ê¾÷ÀÇ ¼ºÀå°ú ¹ßÀüÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. Áß¿äÇÑ ¿äÀÎ Áß Çϳª´Â ȯ°æ ģȭÀûÀ̰í Áö¼Ó °¡´ÉÇÑ Á¦Ç°¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä Áõ°¡À̸ç, ¼®À¯¿¡¼­ ¾òÀº È­ÇÐ ¹°ÁúÀ» ´ëüÇÏ´Â ¹ÙÀÌ¿À ´ëü ¹°Áú¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ¼Ò³ª¹«´Â ¼¼°è¿¡ ³Î¸® ºÐÆ÷µÇ¾î ÀÖÀ¸¸ç Å׸£Ææ, ·ÎÁø, ÅçÀ¯ À¯µµÃ¼ µîÀ» »ý»êÇϱâÀ§ÇÑ Áö¼Ó °¡´ÉÇϰí ȯ°æ ģȭÀû ÀÎ °ø±Þ¿øÀÔ´Ï´Ù. ¼Ò³ª¹«·Î ¸¸µç ÀÌ·¯ÇÑ È­ÇÕ¹°Àº Á¢ÂøÁ¦, Çâ·á, Çâ±â, ÆäÀÎÆ®, ÄÚÆÃÁ¦, ÀǾàǰ µî ´Ù¾çÇÑ ºÎ¹®¿¡¼­ »ç¿ëµË´Ï´Ù.

¶ÇÇÑ, ÃßÃâ, Á¤Á¦, °¡°ø ÀýÂ÷¿¡ À־ÀÇ ±â¼úÀûÀΠȹ±âÀûÀÎ ´öºÐ¿¡, ¼øµµ¿Í ¼º´É Ư¼ºÀÌ Çâ»óµÈ ¿ì¼öÇÑ ¼Ò³ª¹« À¯·¡ È­ÇÕ¹°ÀÇ Ã¢ÃâÀÌ °¡´ÉÇØÁö°í ÀÖ½À´Ï´Ù. ¼ö¸¹Àº Áß¿äÇÑ ¿äÀεéÀÌ ¼Ò³ª¹«¿¡¼­ »ý»êµÇ´Â È­ÇÐ »ê¾÷ÀÇ È®´ë¿Í ¹ßÀüÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. Áö¼Ó°¡´ÉÇϰí ȯ°æÄ£È­ÀûÀÎ Á¦Ç°¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¼®À¯ ±â¹Ý È­Çй°ÁúÀ» ´ëüÇÏ´Â ¹ÙÀÌ¿À±â¹Ý È­Çй°Áú¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.

¼Ò³ª¹«´Â ¼¼°è¿¡ ÀÖÀ¸¸ç Å׸£Ææ, ·ÎÁø, ÅçÀ¯ À¯µµÃ¼¿Í °°Àº È­ÇÐ ¹°ÁúÀ» »ý»êÇÏ´Â Áö¼Ó °¡´ÉÇϰí ȯ°æ¿¡ À¯ÀÍÇÑ ¹æ¹ýÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ¼ÛÁøÈ­ÇÐÀº Á¢ÂøÁ¦, Çâ·á, Çâ·á, ÆäÀÎÆ®, ÄÚÆÃÁ¦, ÀǾàǰ µî ´Ù¾çÇÑ »ê¾÷¿¡¼­ »ç¿ëµË´Ï´Ù. °Ô´Ù°¡, ÃßÃâ, Á¤Á¦, °¡°ø ÀýÂ÷¿¡ À־ÀÇ ±â¼úÀû ºê·¹ÀÌÅ© ½º·ç¿¡ ÀÇÇØ ¼øµµ³ª ¼º´É Ư¼ºÀÌ Çâ»óÇÑ ¶Ù¾î³­ ¼Ò³ª¹« À¯·¡ È­ÇÕ¹°ÀÇ Ã¢ÃâÀÌ °¡´ÉÇØÁö°í ÀÖ½À´Ï´Ù.

½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ:

  • ¾÷°è Àüü¿¡¼­ ¼Ò³ª¹« È­Çй°ÁúÀÇ ¿ëµµ Áõ°¡°¡ ½ÃÀåÀ» °ßÀÎÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼ÛÁøÈ­ÇÐ ½ÃÀåÀº Á¢ÂøÁ¦, ÆäÀÎÆ® ¹× ÄÚÆÃ, °ÇÃà, ÀÇ·á »ê¾÷¿¡ À־ÀÇ Á¦Ç° ¼ö¿äÀÇ °íÁ¶°¡ Å« ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀÌ´Â ÀÚ¿¬ÀûÀ̰í ģȯ°æÀûÀÎ Á¦Ç°¿¡ ´ëÇÑ °ü½É Áõ°¡´Â Á¦Ç° ¼ö¿ä¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ÅçÀ¯ ·ÎÁøÀº °ÇÃà ºÎ¹®¿¡¼­ ±¤¹üÀ§ÇÑ ¿ëµµ°¡ ÀÖ½À´Ï´Ù. ÅçÀ¯ ·ÎÁøÀº ³»±¸¼ºÀÌ ÀÖ°í, ¸¶¸ð, ¾ÐÃà, ³¯¾¾¿¡ °­Çϱ⠶§¹®¿¡ ½Ã¸àÆ®, Æ÷ÀåÀç, ±âŸ ´Ù¾çÇÑ ¿ëµµÀÇ ¹ÙÀδõ·Î¼­ ÀÌ¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌÅ»¸®¾Æ °Ç¼³Çùȸ Associazione Nazionale Costruttori EdilI(ANCE)¿¡ µû¸£¸é °Ç¼³ ¾÷°è¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç ½ÃÀåÀ» ´õ¿í Ȱ¼ºÈ­½Ãŵ´Ï´Ù.

  • õ¿¬°¡½º¿¡¼­ ¹èÃâµÇ´Â CO2 Áõ°¡´Â ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ ¼ö ÀÖ½À´Ï´Ù.

õ¿¬°¡½º ¹× ¿øÀ¯·ÎºÎÅÍÀÇ CO2 ¹èÃâ·® Áõ°¡¿Í ȯ°æ±ÔÁ¦ÀÇ °­È­´Â ±â¾÷¿¡ Áö¼Ó°¡´ÉÇÑ °áÁ¤À» Ã˱¸ÇÏ°í ³ª¾Æ°¡ ½ÃÀåÀ» Ȱ¼ºÈ­½ÃŰ´Â ¿øÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. 2020³â 'Journal of Cleaner Production' ÀâÁö¿¡ Pine Chemicals°¡ ¹ßÇ¥ÇÑ'The Crude Tall Oil Value Chain: Global Availability and the Influence of Regional Energy Policies,'¿¡ µû¸£¸é Á¶»ç ¸ðµç ¿ëµµ¿¡ »ç¿ëÇÒ ¼ö ÀÖ´Â °ÅÄ£ Å丣À¯(CTO)ÀÇ ¼¼°è °ø±Þ·ÂÀÌ 8% ºÎÁ·ÇÒ °ÍÀ¸·Î ¿¹ÃøÇß½À´Ï´Ù. ÀÌ ºÎÁ·Àº ¿î¼Û °ü·Ã ¹ÙÀÌ¿À¿¬·á CTO ¼ö¿ä Áõ°¡·Î ÀÎÇÑ °ÍÀÔ´Ï´Ù. ±× °á°ú ¼Ò³ª¹« À¯·¡ÀÇ ¹ÙÀÌ¿À È­ÇÕ¹°ÀÇ »ý»êÀÌ Áõ°¡ÇÕ´Ï´Ù.

¶ÇÇÑ, ³ª¹«ÀÇ ¿Ã·¹¿À·¹ÁøÀ¸·Î ¸¸µé¾îÁø °Ë ·ÎÁøÀº °¡¼Ò¼º, Á¢Âø Á¡µµ ¹× °­µµ¸¦ Çâ»ó½ÃŰ´Â µ¥ »ç¿ëµË´Ï´Ù. µû¶ó¼­ ÀÌ·¯ÇÑ ¿äÀεé·Î ÀÎÇØ ¼ÛÁøÈ­ÇÐÀÇ ¼Òºñ°¡ Áõ°¡ÇÏ°í ¿¹Ãø±â°£À» ÅëÇØ ½ÃÀå È®´ë°¡ ÃËÁøµÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ:

  • ¾ö°ÝÇÑ Á¤ºÎ ±ÔÁ¦´Â ¼ÛÁøÈ­ÇÐ ½ÃÀåÀ» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

¾ö°ÝÇÑ Á¤ºÎ ±ÔÁ¤Àº ¼Ò³ª¹«¿¡¼­ »ý»êµÇ´Â È­ÇÐ ½ÃÀå¿¡ Å« Àå¾Ö¹°ÀÌ¸ç °ø±Þ¸Á, ½ÃÀå Á¢±Ù ¹× ¿©·¯ »ê¾÷ °øÁ¤¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. È­Çй°Áú ÃßÃâÀ» À§ÇÑ ¼Ò³ª¹« ¿ø·á °ø±Þ°ú Áö¼Ó°¡´É¼ºÀº ÀÓ¾÷°ü¸®, ȯ°æº¸È£, È­Çй°Áú ¾ÈÀü¿¡ °üÇÑ ¹ý·ü¿¡ ÀÇÇØ ¿µÇâÀ» ¹ÞÀ» ¼ö ÀÖ½À´Ï´Ù.

ÀÚ¿¬ »ýŰ踦 º¸È£Çϰí Áö¼Ó °¡´ÉÇÑ »ê¸² °ü¸®¸¦ Àå·ÁÇÏ´Â ÀÓ¾÷¹ý¿¡¼­´Â ¼Ò³ª¹« ¹úä¿¡ Á¦ÇÑÀÌ ºÎ°ú µÉ ¼ö ÀÖÀ¸¸ç ¼Ò³ª¹«¿¡¼­ ÆÄ»ýµÇ´Â È­ÇÐ ¹°ÁúÀÇ Á¦Á¶¿¡ ÇÊ¿äÇÑ ¿ø·áÀÇ ÀÌ¿ë °¡´É¼º °¡ ¶³¾îÁý´Ï´Ù. ¶ÇÇÑ ¼Ò³ª¹«¿¡¼­ »ý»êµÇ´Â È­Çй°ÁúÀÇ »ý»êÀÚ´Â ¹èÃâ¹°, Æó±â¹° °ü¸®, ´ë±â ¹× ¼öÁúÀ» °ü¸®Çϴ ȯ°æ ±ÔÄ¢À» ÁؼöÇϱâ À§ÇØ ´õ ¸¹Àº ºñ¿ëÀ» ÁöºÒÇØ¾ß ÇÒ ¼öµµ ÀÖ½À´Ï´Ù.

ºÏ¹Ì´Â ¼ÛÁøÈ­ÇÐ ½ÃÀå¿¡¼­ Å« Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼ÛÁøÈ­ÇÐ ½ÃÀåÀº ºÏ¹Ì¿¡¼­ ±Þ¼ºÀåÀÌ ¿¹»óµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Áõ°¡´Â Á¢ÂøÁ¦ ¹× ½Ç¶õÆ® ¿ëµµÀÇ Á¦Ç° ¼ö¿ä Áõ°¡·Î ÀÎÇÑ °ÍÀÔ´Ï´Ù. ÀÌ Áö¿ªÀÇ ±¤´ëÇÑ ¼Ò³ª¹« ½£Àº Å׸£Ææ, ÅÚ·¹ºñÀü ¿ÀÀÏ, Å丣 ¿ÀÀÏ, ·ÎÁø°ú °°Àº ¼Ò³ª¹« À¯·¡ È­ÇÕ¹°À» »ý»êÇϱâÀ§ÇÑ Ç³ºÎÇϰí Áö¼Ó °¡´ÉÇÑ ¿ø·á °ø±ÞÀ» Á¦°øÇÕ´Ï´Ù. ¿ø·áÀÇ ÀÔ¼ö°¡ ¿ëÀÌÇϱ⠶§¹®¿¡ ¼Ò³ª¹«¿¡¼­ »ý»êµÇ´Â È­ÇÐÁ¦Ç° Á¦Á¶¾÷ü´Â ¾ÈÁ¤ÀûÀÎ °ø±Þ¸ÁÀ» °¡Áö¸ç »ê¾÷ È®´ë¸¦ ÃËÁøÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¶ÇÇÑ, Àμâ À×Å©¿¡¼­ ½ºÅ׷Ѱú °Ë ·ÎÁøÀÇ »ç¿ë Áõ°¡´Â ¾Æ½Ã¾ÆÅÂÆò¾ç ½ÃÀåÀ» °ßÀÎÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÆäÀÎÆ® ¹× ÄÚÆÃ ¿ëµµ¿¡¼­ È­ÇоàǰÀÇ »ç¿ë·®ÀÌ Áõ°¡Çϰí ÀÖ´Â °ÍÀº À¯·´¿¡¼­ ½ÃÀå È®´ë¸¦ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«¿¡¼­´Â °è¸éȰ¼ºÁ¦ ÀÀ¿ë ºÐ¾ß¿¡¼­ ÅçÀ¯ ·ÎÁøÀ» »ç¿ëÇÏ¿© »ó´çÇÑ ¹ßÀüÀÌ ¿¹»óµË´Ï´Ù.

½ÃÀå °³Ã´:

  • 2024³â 1¿ù, 3,500¸¸ ´Þ·¯ÀÇ ÅõÀÚ ¿Ï·á¿¡ µû¶ó, ¼Ò³ª¹«ÀÇ ÆÞÇÁÈ­ Á¦Ç°º°·ÎºÎÅÍ ¾ò¾îÁö´Â Ư¼ö Æú¸®¸Ó¿Í °íºÎ°¡°¡Ä¡ÀÇ ¹ÙÀÌ¿À º£À̽º Á¦Ç°À» Á¦Á¶ÇÏ´Â ¼¼°è À¯¼öÀÇ Áö¼Ó °¡´ÉÇÑ Á¦Á¶¾÷üÀÎ Kraton CorporationÀº Ç÷θ®´Ù ÁÖ ÆÄ³ª¸¶ ½ÃƼÀÇ Á¦Á¶ ½Ã¼³¿¡¼­ °ÅÄ£ Å丣 ¿ÀÀÏ(CTO) ¹ÙÀÌ¿À¸®ÆÄÀ̳ʸ® Ÿ¿ö¸¦ ¾÷±×·¹À̵åÇß½À´Ï´Ù.
  • 2023³â 3¿ù, ÀϺ»¿¡¼­´Â Harima°¡ Ä«°í°¡¿Í °øÀåÀÇ Á¦Á¶ ¼¾ÅÍ ºÎÁö ³»¿¡ ¹Ð¼¾ Á¦Á¶ Ç÷£Æ®¸¦ ¼³¸³Çß½À´Ï´Ù. ÇâÀ¯¿Í Çâ¼öÀÇ Áß¿äÇÑ ¼ººÐÀÎ ¹Ì¸£¼¾Àº ¼Ò³ª¹«¿¡¼­ äÃëÇÑ Ãµ¿¬ À¯·¡ÀÇ ÅÍÆæÅ¸ÀÎÀÇ Çdz٠ºÐÀڷκÎÅÍ ¾ò¾îÁý´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­·Ð

  • ½ÃÀå °³¿ä
  • ½ÃÀåÀÇ Á¤ÀÇ
  • Á¶»ç ¹üÀ§
  • ½ÃÀå ¼¼ºÐÈ­
  • ÅëÈ­
  • ÀüÁ¦Á¶°Ç
  • ±âÁسâ°ú ¿¹Ãø³âÀÇ Å¸ÀÓ¶óÀÎ
  • °ü°èÀÚ¿¡°Ô À־ÀÇ ÁÖ¿ä ÀÌÁ¡

Á¦2Àå Á¶»ç ¹æ¹ý

  • Á¶»ç µðÀÚÀÎ
  • Á¶»ç °úÁ¤

Á¦3Àå ÁÖ¿ä ¿ä¾à

  • ÁÖ¿ä Á¶»ç °á°ú
  • ¾Ö³Î¸®½ºÆ® º¸±â

Á¦4Àå ½ÃÀå ¿ªÇÐ

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
  • Porter's Five Forces ºÐ¼®
  • ¾÷°è ¹ë·ùüÀÎ ºÐ¼®
  • ¾Ö³Î¸®½ºÆ® º¸±â

Á¦5Àå ¼ÛÁøÈ­ÇÐ ½ÃÀå : À¯Çüº°

  • ¼Ò°³
  • ÅçÀ¯ ·ÎÁø
  • Å丣¿ÀÀÏ·ÎÁø
  • ½ºÅ×·Ñ
  • ÇÇÄ¡
  • °í¹« ÅÚ·¹ÇÉ
  • °Ë·ÎÁø
  • ±âŸ

Á¦6Àå ¼ÛÁøÈ­ÇÐ ½ÃÀå : °ø±Þ¿øº°

  • ¼Ò°³
  • »ì¾ÆÀÖ´Â ³ª¹«
  • ½Ãµç ¼Ò³ª¹« ±×·çÅͱâ¿Í Å볪¹«
  • Ȳ»ê ÆÞÇÁÈ­ Á¦Ç°

Á¦7Àå ¼ÛÁøÈ­ÇÐ ½ÃÀå : ÇÁ·Î¼¼½ºº°

  • ¼Ò°³
  • ÅÂÇÎ
  • Å©·¡ÇÁÆ®

Á¦8Àå ¼ÛÁøÈ­ÇÐ ½ÃÀå : ¿ëµµº°

  • ¼Ò°³
  • ÆäÀÎÆ® ¹× ÄÚÆÃ
  • Á¢ÂøÁ¦ ¹× ½Ç¶õÆ®
  • Àμâ À×Å©
  • °è¸éȰ¼ºÁ¦
  • ±âŸ

Á¦9Àå ¼ÛÁøÈ­ÇÐ ½ÃÀå :Áö¿ªº°

  • ¼Ò°³
  • ºÏ¹Ì
  • ³²¹Ì
  • À¯·´
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
  • ¾Æ½Ã¾ÆÅÂÆò¾ç

Á¦10Àå °æÀï ȯ°æ°ú ºÐ¼®

  • ÁÖ¿ä ±â¾÷°ú Àü·« ºÐ¼®
  • ½ÃÀå Á¡À¯À² ºÐ¼®
  • ÇÕº´, Àμö, ÇÕÀÇ¿Í Äݶ󺸷¹À̼Ç
  • °æÀï ´ë½Ãº¸µå

Á¦11Àå ±â¾÷ ÇÁ·ÎÆÄÀÏ

  • Harima Chemicals Group, Inc.
  • Arakawa Chemical Industries, Ltd.
  • Ingevity Corporation
  • DRT(Derives Resiniques ET Terpeniques)(Firmenich)
  • Foreverest Resources Ltd.
  • Kraton Corporation(DL Chemical Co. Ltd.)
  • Forchem(Respol Resinas, SA)
JHS 24.04.25

The pine-derived chemicals market is evaluated at US$10.539 billion for the year 2022 and is projected to grow at a CAGR of 4.65% to reach a market size of US$15.278 billion by the year 2029.

Pine-derived chemicals are bio-based renewable chemicals obtained from the pine tree. The carbonization of wood and the distillation of oleoresin provide these compounds. Additionally, the bulk of distilled goods is made from stumps, gum, sulfate pulp byproducts, and logs.

Chemicals derived from pine trees are obtained as byproducts of the pulping process in the form of crude sulfate turpentine and crude tall oil during the papermaking process. The wood carbonization process produces products such as creosote, charcoal, methanol, essential oils, tannin, phenol, and medicament. Furthermore, adhesives, resins, surface coatings, printing inks, soaps and detergents, plasticizers, and aroma compounds all include pine-derived substances.

MARKET TRENDS:

Several important factors drive the growth and development of the pine-derived chemical industry. One important factor is the increased demand from consumers for environmentally friendly and sustainable products, which has sparked interest in bio-based substitutes for chemicals obtained from petroleum. Pine trees are widely distributed around the globe and provide a sustainable and eco-friendly source for the production of terpenes, rosin, and derivatives of tall oil, among other compounds. These compounds made from pine are used in many different sectors, including adhesives, flavors, scents, paints, coatings, and medications.

Furthermore, the creation of superior pine-derived compounds with improved purity and performance characteristics is made possible by technical breakthroughs in extraction, purification, and processing procedures. Numerous significant factors drive the expansion and advancement of the chemical industry generated from pine. A significant contributing aspect is the growing consumer demand for sustainable and eco-friendly products, which has generated interest in bio-based alternatives to petroleum-based chemicals.

Pine trees are found all over the world and offer a sustainable and environmentally beneficial way to produce terpenes, rosin, and tall oil derivatives, among other chemicals. These pine-derived chemicals find use in a wide range of industries, such as adhesives, flavors, fragrances, paints, coatings, and pharmaceuticals. Furthermore, the creation of superior pine-derived compounds with improved purity and performance characteristics is made possible by technical breakthroughs in extraction, purification, and processing procedures.

MARKET DRIVERS:

  • An increase in applications of pine chemicals across industries is anticipated to drive the market.

The pine-derived chemicals market is largely driven by rising demand for products in the adhesive, paints and coatings, building, and healthcare industries. The increased emphasis on natural and environmentally friendly products that result in reduced CO2 emissions is fueling the product demand. Tall oil rosins offer a wide range of applications in the building sector. Owing to their durability and resilience to abrasion, compression, and weather, these materials are utilized as binders in cement, pavement marking, and other diverse applications. According to the Italian construction association, Associazione Nazionale Costruttori EdilI (ANCE), investment in the construction industry is anticipated to rise, further fueling the market.

  • Rising CO2 emitted by natural gas might propel the market growth.

Increasing CO2 emissions from natural gas and crude oil, as well as increasingly strict environmental regulations, are some of the causes that have prompted the firms to make a sustainable decision which in turn fuels the market. "The Crude Tall Oil Value Chain: Global Availability and the Influence of Regional Energy Policies," research published in 2020 by Pine Chemicals in The Journal of Cleaner Production, projects an 8% shortage of crude tall oil (CTO) global availability for all uses by 2030. This shortfall, according to the study, is attributable to the increased demand for CTOs for transportation-related biofuels. As a result, the manufacturing of pine-derived bio-based compounds will increase.

Furthermore, gum rosin, which is made from tree oleoresin, is used to improve plasticity, adhesive viscosity, and strength. Therefore, these factors are predicted to increase the consumption of pine-derived chemicals and fuel market expansion throughout the projected period.

MARKET RESTRAINTS:

  • Stringent government regulations might hinder the pine-derived chemical market.

Strict government rules are a major obstacle to the market for chemicals generated from pine, affecting the supply chain, market access, and several industrial processes. Pine feedstock supply and sustainability for chemical extraction can be impacted by laws about forestry management, environmental protection, and chemical safety.

Forestry laws that protect natural ecosystems and encourage sustainable forest management may impose restrictions on pine tree harvesting, which would reduce the availability of raw materials for the manufacturing of chemicals derived from pine. Additionally, producers of chemicals generated from pine may have to pay more to comply with environmental rules that control emissions, waste management, and the quality of the air and water.

North America is predicted to account for a significant share of the pine-derived chemical market.

The pine-derived chemicals market is expected to grow rapidly in the North American region. This increase can be attributed to increased product demand from adhesive and sealant applications. The region's vast pine woods offer a plentiful and sustainable supply of raw materials for the manufacturing of compounds derived from pine, such as terpenes, turpentine, tall oil, and rosin. Owing to the feedstock's accessibility, producers of chemicals generated from pine have a steady supply chain, which is predicted to promote industrial expansion.

Furthermore, the growing use of sterols and gum rosin in printing inks is anticipated to drive the market in the Asia Pacific. The rising usage of chemicals in paint and coatings applications is driving expansion in Europe. Moreover, The Middle East and Africa are expected to see substantial development due to the use of tall oil rosin in surfactant applications.

Market Developments:

  • In January 2024, with the completion of a $35 million investment, Kraton Corporation, a prominent global sustainable producer of specialty polymers and high-value biobased products derived from pine wood pulping by-products, upgraded its crude tall oil (CTO) biorefinery towers at its manufacturing facility in Panama City, Florida.
  • In March 2023, in Japan, at the Kakogawa Plant, Harima established a myrcene production plant on the grounds of its manufacturing center. Myrcene, a crucial component of scent oils and perfumes, is derived from turpentine's pinene molecule, a naturally occurring material that is taken from pine trees.

Segmentation:

By Type

  • Tall Oil Fatty Acid
  • Tall Oil Rosin
  • Sterols
  • Pitch
  • Gum Turpentine
  • Gum Rosin
  • Others

By Source

  • Living Trees
  • Dead Pine Stumps & Logs
  • By-products of Sulphate Pulping

By Process

  • Tapping
  • Kraft

By Application

  • Paints & Coatings
  • Adhesives & Sealants
  • Printing Inks
  • Surfactants
  • Others

By Geography

  • North America
  • USA
  • Canada
  • Mexico
  • South America
  • Brazil
  • Argentina
  • Others
  • Europe
  • United Kingdom
  • Germany
  • France
  • Spain
  • Others
  • Middle East and Africa
  • Saudi Arabia
  • UAE
  • Israel
  • Others
  • Asia Pacific
  • China
  • Japan
  • India
  • South Korea
  • Taiwan
  • Thailand
  • Indonesia
  • Others

TABLE OF CONTENTS

1. INTRODUCTION

  • 1.1. Market Overview
  • 1.2. Market Definition
  • 1.3. Scope of the Study
  • 1.4. Market Segmentation
  • 1.5. Currency
  • 1.6. Assumptions
  • 1.7. Base, and Forecast Years Timeline
  • 1.8. Key Benefits for the stakeholder

2. RESEARCH METHODOLOGY

  • 2.1. Research Design
  • 2.2. Research Processes

3. EXECUTIVE SUMMARY

  • 3.1. Key Findings
  • 3.2. Analyst View

4. MARKET DYNAMICS

  • 4.1. Market Drivers
  • 4.2. Market Restraints
  • 4.3. Porter's Five Forces Analysis
    • 4.3.1. Bargaining Power of Suppliers
    • 4.3.2. Bargaining Power of Buyers
    • 4.3.3. Threat of New Entrants
    • 4.3.4. Threat of Substitutes
    • 4.3.5. Competitive Rivalry in the Industry
  • 4.4. Industry Value Chain Analysis
  • 4.5. Analyst View

5. PINE-DERIVED CHEMICALS MARKET, BY TYPE

  • 5.1. Introduction
  • 5.2. Tall Oil Fatty Acid
    • 5.2.1. Market Trends and Opportunities
    • 5.2.2. Growth Prospects
    • 5.2.3. Geographic Lucrativeness
  • 5.3. Tall Oil Rosin
    • 5.3.1. Market Trends and Opportunities
    • 5.3.2. Growth Prospects
    • 5.3.3. Geographic Lucrativeness
  • 5.4. Sterols
    • 5.4.1. Market Trends and Opportunities
    • 5.4.2. Growth Prospects
    • 5.4.3. Geographic Lucrativeness
  • 5.5. Pitch
    • 5.5.1. Market Trends and Opportunities
    • 5.5.2. Growth Prospects
    • 5.5.3. Geographic Lucrativeness
  • 5.6. Gum Turpentine
    • 5.6.1. Market Trends and Opportunities
    • 5.6.2. Growth Prospects
    • 5.6.3. Geographic Lucrativeness
  • 5.7. Gum Rosin
    • 5.7.1. Market Trends and Opportunities
    • 5.7.2. Growth Prospects
    • 5.7.3. Geographic Lucrativeness
  • 5.8. Others
    • 5.8.1. Market Trends and Opportunities
    • 5.8.2. Growth Prospects
    • 5.8.3. Geographic Lucrativeness

6. PINE-DERIVED CHEMICALS MARKET, BY SOURCE

  • 6.1. Introduction
  • 6.2. Living Trees
    • 6.2.1. Market Trends and Opportunities
    • 6.2.2. Growth Prospects
    • 6.2.3. Geographic Lucrativeness
  • 6.3. Dead Pine Stumps & Logs
    • 6.3.1. Market Trends and Opportunities
    • 6.3.2. Growth Prospects
    • 6.3.3. Geographic Lucrativeness
  • 6.4. By-products of Sulphate Pulping
    • 6.4.1. Market Trends and Opportunities
    • 6.4.2. Growth Prospects
    • 6.4.3. Geographic Lucrativeness

7. PINE-DERIVED CHEMICALS MARKET, BY PROCESS

  • 7.1. Introduction
  • 7.2. Tapping
    • 7.2.1. Market Trends and Opportunities
    • 7.2.2. Growth Prospects
    • 7.2.3. Geographic Lucrativeness
  • 7.3. Kraft
    • 7.3.1. Market Trends and Opportunities
    • 7.3.2. Growth Prospects
    • 7.3.3. Geographic Lucrativeness

8. PINE-DERIVED CHEMICALS MARKET, BY APPLICATION

  • 8.1. Introduction
  • 8.2. Paints & Coatings
    • 8.2.1. Market Trends and Opportunities
    • 8.2.2. Growth Prospects
    • 8.2.3. Geographic Lucrativeness
  • 8.3. Adhesives & Sealants
    • 8.3.1. Market Trends and Opportunities
    • 8.3.2. Growth Prospects
    • 8.3.3. Geographic Lucrativeness
  • 8.4. Printing Inks
    • 8.4.1. Market Trends and Opportunities
    • 8.4.2. Growth Prospects
    • 8.4.3. Geographic Lucrativeness
  • 8.5. Surfactants
    • 8.5.1. Market Trends and Opportunities
    • 8.5.2. Growth Prospects
    • 8.5.3. Geographic Lucrativeness
  • 8.6. Others
    • 8.6.1. Market Trends and Opportunities
    • 8.6.2. Growth Prospects
    • 8.6.3. Geographic Lucrativeness

9. PINE-DERIVED CHEMICALS MARKET, BY GEOGRAPHY

  • 9.1. Introduction
  • 9.2. North America
    • 9.2.1. By Type
    • 9.2.2. By Source
    • 9.2.3. By Process
    • 9.2.4. By Application
    • 9.2.5. By Country
      • 9.2.5.1. USA
        • 9.2.5.1.1. Market Trends and Opportunities
        • 9.2.5.1.2. Growth Prospects
      • 9.2.5.2. Canada
        • 9.2.5.2.1. Market Trends and Opportunities
        • 9.2.5.2.2. Growth Prospects
      • 9.2.5.3. Mexico
        • 9.2.5.3.1. Market Trends and Opportunities
        • 9.2.5.3.2. Growth Prospects
  • 9.3. South America
    • 9.3.1. By Type
    • 9.3.2. By Source
    • 9.3.3. By Process
    • 9.3.4. By Application
    • 9.3.5. By Country
      • 9.3.5.1. Brazil
        • 9.3.5.1.1. Market Trends and Opportunities
        • 9.3.5.1.2. Growth Prospects
      • 9.3.5.2. Argentina
        • 9.3.5.2.1. Market Trends and Opportunities
        • 9.3.5.2.2. Growth Prospects
      • 9.3.5.3. Others
        • 9.3.5.3.1. Market Trends and Opportunities
        • 9.3.5.3.2. Growth Prospects
  • 9.4. Europe
    • 9.4.1. By Type
    • 9.4.2. By Source
    • 9.4.3. By Process
    • 9.4.4. By Application
    • 9.4.5. By Country
      • 9.4.5.1. United Kingdom
        • 9.4.5.1.1. Market Trends and Opportunities
        • 9.4.5.1.2. Growth Prospects
      • 9.4.5.2. Germany
        • 9.4.5.2.1. Market Trends and Opportunities
        • 9.4.5.2.2. Growth Prospects
      • 9.4.5.3. France
        • 9.4.5.3.1. Market Trends and Opportunities
        • 9.4.5.3.2. Growth Prospects
      • 9.4.5.4. Spain
        • 9.4.5.4.1. Market Trends and Opportunities
        • 9.4.5.4.2. Growth Prospects
      • 9.4.5.5. Others
        • 9.4.5.5.1. Market Trends and Opportunities
        • 9.4.5.5.2. Growth Prospects
  • 9.5. Middle East and Africa
    • 9.5.1. By Type
    • 9.5.2. By Source
    • 9.5.3. By Process
    • 9.5.4. By Application
    • 9.5.5. By Country
      • 9.5.5.1. Saudi Arabia
        • 9.5.5.1.1. Market Trends and Opportunities
        • 9.5.5.1.2. Growth Prospects
      • 9.5.5.2. UAE
        • 9.5.5.2.1. Market Trends and Opportunities
        • 9.5.5.2.2. Growth Prospects
      • 9.5.5.3. Israel
        • 9.5.5.3.1. Market Trends and Opportunities
        • 9.5.5.3.2. Growth Prospects
      • 9.5.5.4. Others
        • 9.5.5.4.1. Market Trends and Opportunities
        • 9.5.5.4.2. Growth Prospects
  • 9.6. Asia Pacific
    • 9.6.1. By Type
    • 9.6.2. By Source
    • 9.6.3. By Process
    • 9.6.4. By Application
    • 9.6.5. By Country
      • 9.6.5.1. China
        • 9.6.5.1.1. Market Trends and Opportunities
        • 9.6.5.1.2. Growth Prospects
      • 9.6.5.2. Japan
        • 9.6.5.2.1. Market Trends and Opportunities
        • 9.6.5.2.2. Growth Prospects
      • 9.6.5.3. India
        • 9.6.5.3.1. Market Trends and Opportunities
        • 9.6.5.3.2. Growth Prospects
      • 9.6.5.4. South Korea
        • 9.6.5.4.1. Market Trends and Opportunities
        • 9.6.5.4.2. Growth Prospects
      • 9.6.5.5. Taiwan
        • 9.6.5.5.1. Market Trends and Opportunities
        • 9.6.5.5.2. Growth Prospects
      • 9.6.5.6. Thailand
        • 9.6.5.6.1. Market Trends and Opportunities
        • 9.6.5.6.2. Growth Prospects
      • 9.6.5.7. Indonesia
        • 9.6.5.7.1. Market Trends and Opportunities
        • 9.6.5.7.2. Growth Prospects
      • 9.6.5.8. Others
        • 9.6.5.8.1. Market Trends and Opportunities
        • 9.6.5.8.2. Growth Prospects

10. COMPETITIVE ENVIRONMENT AND ANALYSIS

  • 10.1. Major Players and Strategy Analysis
  • 10.2. Market Share Analysis
  • 10.3. Mergers, Acquisitions, Agreements, and Collaborations
  • 10.4. Competitive Dashboard

11. COMPANY PROFILES

  • 11.1. Harima Chemicals Group, Inc.
  • 11.2. Arakawa Chemical Industries, Ltd.
  • 11.3. Ingevity Corporation
  • 11.4. DRT (Derives Resiniques ET Terpeniques) (Firmenich)
  • 11.5. Foreverest Resources Ltd.
  • 11.6. Kraton Corporation (DL Chemical Co. Ltd.)
  • 11.7. Forchem (Respol Resinas, S.A.)
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦