½ÃÀ庸°í¼­
»óǰÄÚµå
1574132

¼¼°èÀÇ AI ǰÁú °Ë»ç ½ÃÀå - ¿¹Ãø(2024-2029³â)

AI Quality Inspection Market - Forecasts from 2024 to 2029

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Knowledge Sourcing Intelligence | ÆäÀÌÁö Á¤º¸: ¿µ¹® 140 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

AI ǰÁú °Ë»ç ½ÃÀåÀº ¿¬Æò±Õ 20.53% ¼ºÀåÇÏ¿© 2024³â 278¾ï 800¸¸ ´Þ·¯¿¡¼­ 2029³â 707¾ï 4,700¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼ÒÇÁÆ®¿þ¾î ±â¹Ý ÀΰøÁö´É°ú ºñÀü ±â¼úÀ» Ȱ¿ëÇÑ AI ǰÁú °Ë»ç´Â ¹ÝµµÃ¼, ÀǾàǰ, ¼¶À¯, ÀÚµ¿Â÷ Á¦Á¶ µîÀÇ Á¦Ç°¿¡¼­ ºÒÀÏÄ¡¸¦ °¨ÁöÇϰí ó¸®ÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. ¹ÝµµÃ¼ »ê¾÷À» ºñ·ÔÇØ ÀÇ·á, ÀÇ·ù Á¦Á¶, ÀÚµ¿Â÷ Á¦Á¶ µî AI ǰÁú °Ë»ç ¿ëµµ´Â ³ôÀº Á¤È®µµ¿Í ½Ã°£ Àý¾àÀ¸·Î ÀÎÇØ Á¡Á¡ ´õ º¸ÆíÈ­µÇ°í ÀÖ½À´Ï´Ù.

AI ǰÁú °Ë»ç ¼ÒÇÁÆ®¿þ¾î´Â ¸Ó½Å·¯´× ¸ðµ¨À» ±â¹ÝÀ¸·Î Á¦Á¶Çϰųª »çÀü ÈÆ·ÃµÈ ¼ÒÇÁÆ®¿þ¾î ¼­ºñ½º·Î Á¦Á¶ÇÒ ¼ö ÀÖÀ¸¸ç, AI ±â¹Ý ǰÁú °ü¸® ±â¼úÀÌ Á¦°øÇÏ´Â ³ôÀº Á¤È®µµ´Â ¼öÀÛ¾÷ ǰÁú °ü¸®¿¡ ºñÇØ Å« ÀÌÁ¡ÀÌ ÀÖ¾î ¼¼°è ÁÖ¿ä Á¦Á¶ ¼¼°è ÁÖ¿ä Á¦Á¶±â¾÷µéÀÌ ¼±ÅÃÇϰí ÀÖ½À´Ï´Ù. µû¶ó¼­ AI ±â¹Ý Á¦Ç°¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í AI ǰÁú °Ë»ç ¼ÒÇÁÆ®¿þ¾î ¼Òºñ¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ±âŸ ¿äÀÎÀ» °í·ÁÇÒ ¶§ AI ±â¹Ý ǰÁú °ü¸® ½ÃÀåÀº ¿¹Ãø ±â°£ µ¿¾È ´õ Å« ½ÃÀå ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óÇÒ ¼ö ÀÖ½À´Ï´Ù.

AI ǰÁú °Ë»ç ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ:

  • Á¦Á¶¾÷°èÀÇ AI ±â¹Ý ǰÁú °ü¸® ¼ÒÇÁÆ®¿þ¾î äÅà Áõ°¡·Î ¼ö¿ä Áõ°¡ Àü¸Á

ÀÌ·¯ÇÑ ¼ºÀåÀÇ ¹è°æ¿¡´Â ǰÁúÀÌ ÁÁÁö ¾ÊÀº Á¦Ç°À» »ý»êÇÑ °á°ú Á¦Á¶±â¾÷ÀÇ ¿µ¾÷ºñ¿ëÀÌ Áõ°¡Ç߱⠶§¹®ÀÔ´Ï´Ù. ¿¹¸¦ µé¾î, µµ¿äŸ ÀÚµ¿Â÷´Â ÃÖ±Ù Á¦Á¶ ºÒ·®À¸·Î ÀÎÇØ 13¾ï ´Þ·¯ÀÇ ¼Õ½ÇÀ» ÀÔ¾ú½À´Ï´Ù. ¸¹Àº °æ¿ì ¼Õ»óµÈ ºÎǰÀÌ ¹ß°ßµÇÁö ¾ÊÀº ä·Î ÃÖÁ¾ Á¦Ç° »ý»ê °øÁ¤¿¡ »ç¿ëµË´Ï´Ù. ±× °á°ú Á¦Á¶È¸»çÀÇ ¿µ¾÷ºñ¿ëÀÌ Áõ°¡ÇÏ°í °áÇÔÀÌ ÀÖ´Â Á¦Ç°ÀÌ ½ÃÀå¿¡¼­ ÆÇ¸ÅµÇÁö ¸øÇÏ°Ô µË´Ï´Ù. ÀÌ·¯ÇÑ »ç·Ê´Â ´ë·®À¸·Î Á¦Ç°À» ´ë·® »ý»êÇÏ´Â ±â¾÷¿¡¼­ ¸¹ÀÌ º¼ ¼ö ÀÖ½À´Ï´Ù.

Àΰ£ÀÇ ´«À¸·Î Á÷Á¢ ǰÁú °ü¸®¸¦ ÇÏ´Â °æ¿ì, ´ë·® ·ÎÆ®ÀÇ °áÇÔÀ» ¹ß°ßÇÏÁö ¸øÇÏ´Â °æ¿ì°¡ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÇѰ踦 ±Øº¹Çϱâ À§ÇØ ¼¼°è ÁÖ¿ä ±â¾÷µéÀº AI ±â¹Ý ǰÁú °Ë»ç ¼ÒÇÁÆ®¿þ¾î¿¡ Àû±ØÀûÀ¸·Î ÅõÀÚÇÏ¿© ºÒ·®Ç°À» Á¶±â¿¡ ¹ß°ßÇϰí Ãß°¡ ºñ¿ëÀ» ¹æÁöÇϰí ÀÖ½À´Ï´Ù.

AI ǰÁú °Ë»ç ½ÃÀåÀÇ Áö¸®Àû Àü¸Á

  • ºÏ¹Ì´Â ¿¹Ãø ±â°£ µ¿¾È ºñ¾àÀûÀÎ ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀÔ´Ï´Ù.

ºÏ¹Ì´Â ±¹Á¦ ÀΰøÁö´É ½ÃÀå¿¡¼­ °­·ÂÇÑ ±â¼ú ÁøÈ­ ¼¼·ÂÀ¸·Î, AI ǰÁú °ü¸® ¹× °Ë»ç¸¦ Æ÷ÇÔÇÑ AI ¼ÒÇÁÆ®¿þ¾îÀÇ ¹üÀ§¿Í ¿ëµµ¸¦ È®´ëÇϱâ À§ÇØ Àû±ØÀûÀ¸·Î ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î ºÐ¾ßÀÇ ¼±µÎ ±â¾÷µéÀº AI Á¦Ç° ¹× ¼­ºñ½º Æ÷Æ®Æú¸®¿À¸¦ °­È­Çϱâ À§ÇØ °³¹ß ¹× °æÀï¿¡ Èû¾²°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ¸¶ÀÌÅ©·Î¼ÒÇÁÆ®´Â ¸ðµç Á¦Ç° °áÇÔÀ» ½Äº°Çϱâ À§ÇÑ ±â¼ú ¼­ºñ½º¸¦ ÅëÇÕÇÑ °¡»ó AI ǰÁú °Ë»ç Á¦Ç°ÀÎ ½ºÆÄÀ̱۷¡½º ºñÁÖ¾ó ÀνºÆå¼Ç(Spyglass Visual Inspection)À» ¹ßÇ¥Çß½À´Ï´Ù.

ÀÌ ¿Ü¿¡µµ IBMÀº ¿¬ÇÕ ÇнÀ ¸ðµ¨À» ±¸ÇöÇÑ ÃֽŠAI ǰÁú °Ë»ç Á¦Ç°À» ¹ßÇ¥Çß½À´Ï´Ù. ÀÌ·¯ÇÑ ±âÁ¸ ±â¾÷µé°ú´Â º°µµ·Î, ¹Ì±¹ÀÇ ¸î¸î ½Å»ý ±â¾÷µéÀº AI Áö¿ø ǰÁú °Ë»ç¸¦ °³¼±Çϱâ À§ÇÑ »õ·Î¿î ¸ðµ¨°ú ¹æ¹ý·ÐÀÇ Çõ½Å¿¡ Á¦Ç° ¶óÀÎÀ» ¹ÙÄ¡°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, º¸½ºÅÏÀÇ ½Å»ý ±â¾÷ÀÎ Neurala Inc.ÀÇ AI ±â¹Ý ǰÁú °ü¸® ¿ëµµ´Â ¼¼°è ÃÖ°íÀÇ Á¦Á¶¾÷üÀÎ IHI Corporation¿¡ äÅõǾú½À´Ï´Ù. µû¶ó¼­ ÇöÀç AI ½ÃÀå µ¿Çâ°ú ÃÖ±Ù ¹Ì±¹ ³» AI ǰÁú °Ë»ç Á¦Ç° ½ÃÀå °³Ã´À» °í·ÁÇÒ ¶§, ºÏ¹Ì AI ǰÁú °Ë»ç ½ÃÀåÀº ¿¹Ãø ±â°£ µ¿¾È È®´ëµÉ °¡´É¼ºÀÌ ³ô´Ù°í ¿¹ÃøÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­¸¦ ±¸ÀÔÇØ¾ß ÇÏ´Â ÀÌÀ¯

  • ÅëÂû·Â ÀÖ´Â ºÐ¼® : °í°´ ºÎ¹®, Á¤ºÎ Á¤Ã¥ ¹× »çȸ°æÁ¦Àû ¿äÀÎ, ¼ÒºñÀÚ ¼±È£µµ, »ê¾÷ ºÐ¾ß ¹× ±âŸ ÇÏÀ§ ºÎ¹®¿¡ ÃÊÁ¡À» ¸ÂÃß¾î ÁÖ¿ä Áö¿ª°ú ½ÅÈï Áö¿ªÀ» Æ÷°ýÇÏ´Â »ó¼¼ÇÑ ½ÃÀå ÀλçÀÌÆ®À» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.
  • °æÀï ȯ°æ: ¼¼°è ÁÖ¿ä ±â¾÷µéÀÌ Ã¤ÅÃÇϰí ÀÖ´Â Àü·«Àû Àü·«À» ÀÌÇØÇϰí, ÀûÀýÇÑ Àü·«À» ÅëÇÑ ½ÃÀå ħÅõ °¡´É¼ºÀ» ÆÄ¾ÇÇÕ´Ï´Ù.
  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀΰú ÇâÈÄ µ¿Çâ : ¿ªµ¿ÀûÀÎ ¿äÀΰú ¸Å¿ì Áß¿äÇÑ ½ÃÀå µ¿Çâ, ±×¸®°í À̵éÀÌ ÇâÈÄ ½ÃÀå ¹ßÀüÀ» ¾î¶»°Ô Çü¼ºÇÒ °ÍÀÎÁö¿¡ ´ëÇØ ¾Ë¾Æº¾´Ï´Ù.
  • ½ÇÇà °¡´ÉÇÑ Á¦¾È: ¿ªµ¿ÀûÀΠȯ°æ ¼Ó¿¡¼­ »õ·Î¿î ºñÁî´Ï½º ½ºÆ®¸²°ú ¼öÀÍÀ» âÃâÇϱâ À§ÇÑ Àü·«Àû ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï ÅëÂû·ÂÀ» Ȱ¿ëÇÕ´Ï´Ù.
  • ±¤¹üÀ§ÇÑ µ¶ÀÚÃþ: ½ºÅ¸Æ®¾÷, ¿¬±¸±â°ü, ÄÁ¼³ÅÏÆ®, Áß¼Ò±â¾÷, ´ë±â¾÷¿¡ À¯ÀÍÇÏ°í ºñ¿ë È¿À²ÀûÀÓ.

±â¾÷Àº ¾î¶² ¸ñÀûÀ¸·Î ¿ì¸®ÀÇ º¸°í¼­¸¦ »ç¿ëÇϳª¿ä?

»ê¾÷ ¹× ½ÃÀå ÀλçÀÌÆ®, »ç¾÷ ±âȸ Æò°¡, Á¦Ç° ¼ö¿ä ¿¹Ãø, ½ÃÀå ÁøÃâ Àü·«, Áö¸®Àû È®Àå, ¼³ºñ ÅõÀÚ °áÁ¤, ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ© ¹× ¿µÇâ, ½ÅÁ¦Ç° °³¹ß, °æÀïÀÇ ¿µÇâ

Á¶»ç ¹üÀ§

  • 2022³âºÎÅÍ 2029³â±îÁöÀÇ °ú°Å µ¥ÀÌÅÍ ¹× Àü¸Á
  • ¼ºÀå ±âȸ, °úÁ¦, °ø±Þ¸Á Àü¸Á, ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©, °í°´ Çൿ, Æ®·»µå ºÐ¼®
  • °æÀï»ç ½ÃÀå »óȲ, Àü·« ¹× ½ÃÀå Á¡À¯À² ºÐ¼®
  • °¢ ±¹°¡¸¦ Æ÷ÇÔÇÑ ºÎ¹® ¹× Áö¿ªº° ¼öÀÍ ¼ºÀå ¹× ¿¹Ãø Æò°¡
  • ±â¾÷ ÇÁ·ÎÆÄÀÏ(Àü·«, Á¦Ç°, À繫 Á¤º¸, ÁÖ¿ä ¹ßÀü µî)

AI ǰÁú °Ë»ç ½ÃÀåÀº ´ÙÀ½°ú °°ÀÌ ¼¼ºÐÈ­ ¹× ºÐ¼®µË´Ï´Ù :

À¯Çüº°

  • »çÀü ÇнÀÇü
  • µö·¯´×

ÃÖÁ¾»ç¿ëÀÚº°

  • ¹ÝµµÃ¼
  • Á¦¾à
  • ÀÚµ¿Â÷
  • ¼¶À¯
  • ±âŸ

Áö¿ªº°

  • ºÏ¹Ì
  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ³²¹Ì
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª
  • ±âŸ
  • À¯·´
  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ±âŸ
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ±âŸ
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
  • Áß±¹
  • ÀϺ»
  • Àεµ
  • Çѱ¹
  • È£ÁÖ
  • ½Ì°¡Æ÷¸£
  • Àεµ³×½Ã¾Æ
  • ±âŸ

¸ñÂ÷

Á¦1Àå ¼­·Ð

  • ½ÃÀå °³¿ä
  • ½ÃÀåÀÇ Á¤ÀÇ
  • Á¶»ç ¹üÀ§
  • ½ÃÀå ¼¼ºÐÈ­
  • ÅëÈ­
  • ÀüÁ¦Á¶°Ç
  • ±âÁسâ°ú ¿¹Ãø³â ŸÀÓ¶óÀÎ
  • ÀÌÇØ°ü°èÀÚ¿¡ À־ÀÇ ÁÖ¿ä ÀÌÁ¡

Á¦2Àå Á¶»ç ¹æ¹ý

  • Á¶»ç µðÀÚÀÎ
  • Á¶»ç °úÁ¤

Á¦3Àå ÁÖ¿ä ¿ä¾à

  • ÁÖ¿ä Á¶»ç °á°ú
  • CXOÀÇ °ßÇØ

Á¦4Àå ½ÃÀå ¿ªÇÐ

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
  • PorterÀÇ Five Forces ºÐ¼®
  • ¾÷°è ¹ë·ùüÀÎ ºÐ¼®
  • ¾Ö³Î¸®½ºÆ®ÀÇ °ßÇØ

Á¦5Àå AI ǰÁú °Ë»ç ½ÃÀå : À¯Çüº°

  • ¼­·Ð
  • Pre-trained
  • Deep learning

Á¦6Àå AI ǰÁú °Ë»ç ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • ¼­·Ð
  • ¹ÝµµÃ¼
  • Á¦¾à
  • ÀÚµ¿Â÷
  • ¼¶À¯
  • ±âŸ

Á¦7Àå AI ǰÁú °Ë»ç ½ÃÀå : Áö¿ªº°

  • ¼­·Ð
  • ºÏ¹Ì
    • À¯Çüº°
    • ÃÖÁ¾»ç¿ëÀÚº°
    • ±¹°¡º°
  • ³²¹Ì
    • À¯Çüº°
    • ÃÖÁ¾»ç¿ëÀÚº°
    • ±¹°¡º°
  • À¯·´
    • À¯Çüº°
    • ÃÖÁ¾»ç¿ëÀÚº°
    • ±¹°¡º°
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • À¯Çüº°
    • ÃÖÁ¾»ç¿ëÀÚº°
    • ±¹°¡º°
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • À¯Çüº°
    • ÃÖÁ¾»ç¿ëÀÚº°
    • ±¹°¡º°

Á¦8Àå °æÀï ȯ°æ°ú ºÐ¼®

  • ÁÖ¿ä ±â¾÷°ú Àü·« ºÐ¼®
  • ½ÃÀå Á¡À¯À² ºÐ¼®
  • ÇÕº´, Àμö, ÇÕÀÇ ¹× Çù¾÷
  • °æÀï ´ë½Ãº¸µå

Á¦9Àå ±â¾÷ °³¿ä

  • Intel Corp
  • Kitov Systems
  • Mitutoyo America Corporation
  • Landing AI
  • NEC Corporation
  • tunic AG
  • Robert Bosch GmbH
  • deevio GmbH
  • craftworks GmbH
  • Pleora Technologies Inc
LSH 24.11.04

The AI quality inspection market is expected to grow at a CAGR of 20.53%, reaching a market size of US$70.747 billion in 2029 from US$27.808 billion in 2024.

When it comes to using software-driven artificial intelligence and vision technologies, AI quality inspection helps detect and process inconsistencies in products, including semiconductors, pharmaceuticals, textiles, and automotive manufacturing. Hence, AI-owned applications that make quality checks are becoming more common in the semiconductor industry as well as in medicine, clothing production, car-making industries, and others because of their precision and ability to save time.

The AI quality inspection software can be manufactured either based on the machine learning model or as a pre-trained software service. The precision offered by AI-powered quality control techniques is a significant advantage over manual quality control, making it the preferred choice for leading manufacturing companies worldwide. Therefore, considering the increasing demand for AI-based products and other factors influencing the consumption of AI quality inspection software, it can be expected that the AI-based quality control market will reach a larger market size in the forecast period.

AI quality inspection Market Drivers:

  • Increasing adoption of AI-based quality control software in the manufacturing sector is anticipated to increase the demand

The growth can be attributed to the increase in operating costs for manufacturing companies as a result of the production of poor-quality products. For instance, Toyota Company incurred a recent loss of $1.3 billion as a result of manufacturing defects. Often, when a damaged component goes undetected, it is used in the process of manufacturing the final product. This results in a rise in the operating expenses for the manufacturing company and leads to defective goods not being sold in the market. Such cases are prevalent in companies that engage in mass production of goods in batches.

The manual quality control offered by the human eye can sometimes fail to detect such failures in large batches. To overcome this limitation, leading manufacturing companies worldwide are actively investing in AI-based quality inspection software to identify defective goods earlier and prevent additional expenses.

AI Quality Inspection Market Geographical Outlook

  • North America is witnessing exponential growth during the forecast period

North America, being a strong technological evolution force in the international artificial intelligence market, has been actively investing in expanding the scope and applications of AI software, including AI quality control and inspection. The top companies in the software sector are working on developing and competing with other companies to enhance their AI products and services portfolio. For instance, Microsoft has introduced its virtual AI quality inspection product, Spyglass Visual Inspection, which integrates technological services to identify any product defects.

In addition to this, IBM has introduced its latest AI quality inspection product, which implements a federated learning model. Apart from these established companies, several startups in the USA are dedicating their product line to innovating novel models and methods to improve AI-assisted quality inspection. For instance, the AI-based quality control application of Neurala Inc., a Boston startup, has been incorporated by one of the leading manufacturers in the world, IHI Corporation. Therefore, considering the present trends in the AI market and the recent developments in AI quality inspection products in the USA, it can be anticipated that the North American AI quality inspection market is likely to witness an expansion over the forecast period.

Reasons for buying this report:-

  • Insightful Analysis: Gain detailed market insights covering major as well as emerging geographical regions, focusing on customer segments, government policies and socio-economic factors, consumer preferences, industry verticals, other sub- segments.
  • Competitive Landscape: Understand the strategic maneuvers employed by key players globally to understand possible market penetration with the correct strategy.
  • Market Drivers & Future Trends: Explore the dynamic factors and pivotal market trends and how they will shape up future market developments.
  • Actionable Recommendations: Utilize the insights to exercise strategic decision to uncover new business streams and revenues in a dynamic environment.
  • Caters to a Wide Audience: Beneficial and cost-effective for startups, research institutions, consultants, SMEs, and large enterprises.

What do businesses use our reports for?

Industry and Market Insights, Opportunity Assessment, Product Demand Forecasting, Market Entry Strategy, Geographical Expansion, Capital Investment Decisions, Regulatory Framework & Implications, New Product Development, Competitive Intelligence

Report Coverage:

  • Historical data & forecasts from 2022 to 2029
  • Growth Opportunities, Challenges, Supply Chain Outlook, Regulatory Framework, Customer Behaviour, and Trend Analysis
  • Competitive Positioning, Strategies, and Market Share Analysis
  • Revenue Growth and Forecast Assessment of segments and regions including countries
  • Company Profiling (Strategies, Products, Financial Information, and Key Developments among others)

The AI quality inspection market is segmented and analyzed as follows:

By Type

  • Pre-trained
  • Deep learning

By End-Users

  • Semiconductor
  • Pharmaceutical
  • Automotive
  • Textile
  • Others

By Geography

  • North America
  • USA
  • Canada
  • Mexico
  • South America
  • Brazil
  • Argentina
  • Others
  • Europe
  • United Kingdom
  • Germany
  • France
  • Italy
  • Spain
  • Others
  • Middle East and Africa
  • Saudi Arabia
  • UAE
  • Others
  • Asia Pacific
  • China
  • Japan
  • India
  • South Korea
  • Australia
  • Singapore
  • Indonesia
  • Others

TABLE OF CONTENTS

1. INTRODUCTION

  • 1.1. Market Overview
  • 1.2. Market Definition
  • 1.3. Scope of the Study
  • 1.4. Market Segmentation
  • 1.5. Currency
  • 1.6. Assumptions
  • 1.7. Base and Forecast Years Timeline
  • 1.8. Key Benefits to the Stakeholder

2. RESEARCH METHODOLOGY

  • 2.1. Research Design
  • 2.2. Research Processes

3. EXECUTIVE SUMMARY

  • 3.1. Key Findings
  • 3.2. CXO Perspective

4. MARKET DYNAMICS

  • 4.1. Market Drivers
  • 4.2. Market Restraints
  • 4.3. Porter's Five Forces Analysis
    • 4.3.1. Bargaining Power of Suppliers
    • 4.3.2. Bargaining Power of Buyers
    • 4.3.3. Threat of New Entrants
    • 4.3.4. Threat of Substitutes
    • 4.3.5. Competitive Rivalry in the Industry
  • 4.4. Industry Value Chain Analysis
  • 4.5. Analyst View

5. AI QUALITY INSPECTION MARKET BY TYPE

  • 5.1. Introduction
  • 5.2. Pre-trained
  • 5.3. Deep learning

6. AI QUALITY INSPECTION MARKET BY END-USER

  • 6.1. Introduction
  • 6.2. Semiconductor
  • 6.3. Pharmaceutical
  • 6.4. Automotive
  • 6.5. Textile
  • 6.6. Others

7. AI QUALITY INSPECTION MARKET BY GEOGRAPHY

  • 7.1. Introduction
  • 7.2. North America
    • 7.2.1. By Type
    • 7.2.2. By End-User
    • 7.2.3. By Country
      • 7.2.3.1. USA
      • 7.2.3.2. Canada
      • 7.2.3.3. Mexico
  • 7.3. South America
    • 7.3.1. By Type
    • 7.3.2. By End-User
    • 7.3.3. By Country
      • 7.3.3.1. Brazil
      • 7.3.3.2. Argentina
      • 7.3.3.3. Others
  • 7.4. Europe
    • 7.4.1. By Type
    • 7.4.2. By End-User
    • 7.4.3. By Country
      • 7.4.3.1. United Kingdom
      • 7.4.3.2. Germany
      • 7.4.3.3. France
      • 7.4.3.4. Italy
      • 7.4.3.5. Spain
      • 7.4.3.6. Others
  • 7.5. Middle East and Africa
    • 7.5.1. By Type
    • 7.5.2. By End-User
    • 7.5.3. By Country
      • 7.5.3.1. Saudi Arabia
      • 7.5.3.2. UAE
      • 7.5.3.3. Others
  • 7.6. Asia Pacific
    • 7.6.1. By Type
    • 7.6.2. By End-User
    • 7.6.3. By Country
      • 7.6.3.1. China
      • 7.6.3.2. Japan
      • 7.6.3.3. India
      • 7.6.3.4. South Korea
      • 7.6.3.5. Australia
      • 7.6.3.6. Singapore
      • 7.6.3.7. Indonesia
      • 7.6.3.8. Others

8. COMPETITIVE ENVIRONMENT AND ANALYSIS

  • 8.1. Major Players and Strategy Analysis
  • 8.2. Market Share Analysis
  • 8.3. Mergers, Acquisitions, Agreements, and Collaborations
  • 8.4. Competitive Dashboard

9. COMPANY PROFILES

  • 9.1. Intel Corp
  • 9.2. Kitov Systems
  • 9.3. Mitutoyo America Corporation
  • 9.4. Landing AI
  • 9.5. NEC Corporation
  • 9.6. tunic AG
  • 9.7. Robert Bosch GmbH
  • 9.8. deevio GmbH
  • 9.9. craftworks GmbH
  • 9.10. Pleora Technologies Inc
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦