½ÃÀ庸°í¼­
»óǰÄÚµå
1687460

¹ÝµµÃ¼ CVD Àåºñ : ½ÃÀå Á¡À¯À² ºÐ¼®, »ê¾÷ µ¿Çâ, Åë°è, ¼ºÀå ¿¹Ãø(2025-2030³â)

Semiconductor CVD Equipment - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030)

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Mordor Intelligence | ÆäÀÌÁö Á¤º¸: ¿µ¹® | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¹ÝµµÃ¼ CVD Àåºñ ½ÃÀå ±Ô¸ð´Â 2025³â¿¡ 180¾ï 3,000¸¸ ´Þ·¯, 2030³â¿¡´Â 240¾ï 7,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø±â°£(2025-2030³â)ÀÇ CAGRÀº 5.95%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

Semiconductor CVD Equipment-Market-IMG1

¸¶ÀÌÅ©·Î ÀÏ·ºÆ®·Î´Ð½º ±â¹Ý ¼ÒºñÀÚ Á¦Ç°¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ ¹ÝµµÃ¼, LED, ½ºÅ丮Áö µð¹ÙÀ̽º »ê¾÷ÀÌ ±Þ¼ºÀåÇϰí ÀÖÀ¸¸ç, Àü±âµµ±Ý¿ë Cr6ÀÇ »ç¿ë¿¡ ´ëÇÑ ¾ö°ÝÇÑ ±ÔÁ¦°¡ ÁÖ·Î CVD Àåºñ ½ÃÀåÀÇ ¼ºÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù.

ÁÖ¿ä ÇÏÀ̶óÀÌÆ®

  • È­ÇÐ ±â»ó ¼ºÀå(CVD) °øÁ¤Àº ¹ÝµµÃ¼ Á¦Á¶ ¹× ¹Ú¸· Á¦Á¶¿¡ ÀÚÁÖ »ç¿ëµË´Ï´Ù. ÃÖ±Ù CVD ÇÕ¼ºÀº 2Â÷¿ø Àç·áÀÇ ¹«±â ¹Ú¸·°ú ´Ù¾çÇÑ ±âÆÇ »ó¿¡ µî°¢À¸·Î ÁõÂøÇÒ ¼ö ÀÖ´Â °í¼øµµ Æú¸®¸Ó ¹Ú¸·À» ¸ðµÎ Á¤¹ÐÇÏ°Ô Á¦Á¶ÇÔÀ¸·Î½á »õ·Î¿î ³ôÀÌ¿¡ µµ´ÞÇϰí ÀÖ½À´Ï´Ù.
  • ¹ÝµµÃ¼ È­ÇÐ ±â»ó ¼ºÀå Àåºñ ¿¡¼­ Àü±¸Ã¼ °¡½º(ÀϹÝÀûÀ¸·Î ij¸®¾î °¡½º·Î Èñ¼®µÈ)´Â °ÅÀÇ »ó¿Â¿¡¼­ ¹ÝÀÀ è¹ö·Î °ø±ÞµË´Ï´Ù. ÀÌ·¯ÇÑ °¡½º´Â °¡¿­µÈ ±âÆÇÀ» Åë°úÇϰųª Á¢ÃËÇÒ ¶§ ¹ÝÀÀ ¶Ç´Â ºÐÇØµÇ¾î ±âÆÇ »ó¿¡ ÁõÂøµÇ´Â °í»óÀ» »ý¼ºÇÕ´Ï´Ù. ±âÆÇÀÇ ¿Âµµ´Â ¹ß»ýÇÏ´Â ¹ÝÀÀ¿¡ ¿µÇâÀ» ¹ÌÄ¡±â ¶§¹®¿¡ Áß¿äÇÕ´Ï´Ù.
  • CVD´Â ´Ù°áÁ¤, ´Ü°áÁ¤, ºñÁ¤Áú, ¿¡ÇÇÅÃ¼È µî ´Ù¾çÇÑ ÇüÅÂÀÇ Àç·á¸¦ ÁõÂøÇÏ´Â ¹Ì¼¼ °¡°ø ±â¼ú¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ½Ç¸®ÄÜ(ÀÌ»êÈ­¹°, źȭ¹°, ÁúÈ­¹°, »êÁúÈ­¹°), ź¼Ò(¼¶À¯, ³ª³ë¼¶À¯, ³ª³ëÆ©ºê, ´ÙÀ̾Ƹóµå, ±×·¡ÇÉ), Ç÷ç¿À·ÎÄ«º», Çʶó¸àÆ®, ÅÖ½ºÅÙ, ƼŸ´½ ÁúÈ­¹°, ´Ù¾çÇÑ °íÀ¯ÀüÀ² À¯Àüü µîÀÌ À̵é Àç·á¿¡ Æ÷ÇԵ˴ϴÙ.
  • ÀÌ·¯ÇÑ ±â¼úÀº »ç¹° ÀÎÅÍ³Ý ½ÃÀåÀ» ÆÄ±«Çϰí ÃßÁøÇÒ ÀáÀç·ÂÀ» °®°í Àֱ⠶§¹®¿¡ ½ÅÈï±¹ Á¤ºÎ¿Í ÀÌÇØ°ü°èÀÚµéÀº ¸¶ÀÌÅ©·ÎÀÏ·ºÆ®·Î´Ð½º ¾÷°è µ¿ÇâÀ» ÁÖ½ÃÇϰí ÀÖ½À´Ï´Ù. °¡»óÇö½Ç°ú Áõ°­Çö½Ç °¡Á¦Æ®ÀÇ Ã¤¿ëÀÌ Áõ°¡Çϰí Àֱ⠶§¹®¿¡ ´Ù°¡¿À´Â ´ë¿ªÆøÀÇ Á¦¾à¿¡ ´ëÀÀÇÏ¿© ¸¶ÀÌÅ©·Î ÀÏ·ºÆ®·Î´Ð½ºÀÇ ¿¬±¸ °³¹ßµµ Áõ°¡ÇÒ °¡´É¼ºÀÌ ÀÖ½À´Ï´Ù.
  • ±×µéÀº ¹ÝµµÃ¼¸¦ ¸¸µé°í ÀÖ½À´Ï´Ù. CVD ¼³Á¤Àº º¹ÀâÇÏ°í ¾öû³­ ºñ¿ëÀÌ µì´Ï´Ù. ÁÖÁ¶ ¾÷ü¿Í ¹ÝµµÃ¼ Á¶¸³ ¹× Å×½ºÆ® ȸ»ç(OSAT)´Â Ĩ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇØ »ý»ê È®´ë¸¦ °è¼ÓÇϰí Àֱ⠶§¹®¿¡ ¼³ºñ ÅõÀÚ¿¡ ´ëÇÑ ¾Ð·ÂÀÌ ³ô¾ÆÁú °¡´É¼ºÀÌ ³ô½À´Ï´Ù.
  • COVID-19ÀÇ ¹ß»ýÀº ¹ÝµµÃ¼ Ĩ Á¦Á¶ ½ÃÀå Àüü¿¡ ¼ö¿ä ¹× °ø±ÞÀÇ ¾ç¸éÀ¸·ÎºÎÅÍ ¿µÇâÀ» ÁÖ¾ú½À´Ï´Ù. Àü±¹ÀûÀÎ ¹ÝµµÃ¼ °øÀåÀÇ °¡µ¿ Á¤Áö¿Í Æó¼â´Â °ø±Þ ºÎÁ· µ¿Çâ¿¡ ´õ¿í ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ±×·¯³ª ÀÌ·¯ÇÑ ¿µÇâÀº ´Ü±âÀûÀÎ °ÍÀ¸·Î CVD ±â¼ú ¼ö¿ä¿¡ ÀϽÃÀûÀÎ ¿µÇâÀ» ¹ÌÄ¥ °¡´É¼ºÀÌ ³ô½À´Ï´Ù. ¶ÇÇÑ ÀÚµ¿Â÷ ¹× »ê¾÷ ºÎ¹®À» Áö¿øÇϱâ À§ÇÑ ¼¼°è Á¤ºÎÀÇ ¿¹¹æÃ¥Àº ÁÖÁ¶ »ê¾÷ÀÇ ¼ºÀåÀ» ºÎȰ½ÃŰ´Â µ¥ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.

¹ÝµµÃ¼ CVD ½ÃÀå µ¿Çâ

¸¶ÀÌÅ©·Î ÀÏ·ºÆ®·Î´Ð½º¿Í ¼ÒºñÀÚ ÀÏ·ºÆ®·Î´Ð½º ¼ö¿ä Áõ°¡°¡ ¼ö¿ä¸¦ µÞ¹Þħ

  • ¸¶ÀÌÅ©·Î ÀÏ·ºÆ®·Î´Ð½º¿Í ¼ÒºñÀÚ ÀÏ·ºÆ®·Î´Ð½ºÀÇ ¸ÅÃâ Áõ°¡´Â ¿¹Ãø ±â°£ µ¿¾È ¹ÝµµÃ¼ IC ¼ö¿ä¸¦ ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±×·¯³ª ¹ÝµµÃ¼ IC ¼ö¿ä´Â ¹ÝµµÃ¼ µð¹ÙÀ̽º Á¦Á¶¾÷üÀÇ »ý»ê ´É·ÂÀ» ³ôÀÏ °ÍÀ¸·Î ¿¹»óµÇ¸ç È­ÇÐ ±â»ó ¼ºÀå ½ÃÀå ¼ö¿ä¸¦ Áõ°¡½Ãų ¼ö ÀÖ½À´Ï´Ù.
  • ÅëÇÕ µð¹ÙÀ̽º Á¦Á¶¾÷ü(IDM)¿¡´Â ·ÎÁ÷, ±¤ÀüÀÚ Á¦Ç°, ¼¾¼­, ÀÌ»ê ºÎǰ µîÀÌ Æ÷ÇԵ˴ϴÙ.(¸Þ¸ð¸® Á¦Á¶¾÷ü Á¦¿Ü). ÁýÀû µð¹ÙÀ̽º Á¦Á¶¾÷ü´Â ÁýÀû ȸ·Î(IC)¸¦ Á¦Á¶ ¹× ÆÇ¸ÅÇÕ´Ï´Ù. ÀüÇüÀûÀÎ IDMÀº ÀÚü ºê·£µå ĨÀ» ¼ÒÀ¯Çϰí, ÀÚü ¼³°è, Á¦Á¶ °øÀå¿¡¼­ Á¦Á¶ÇÕ´Ï´Ù. IDMÀº 10nm¿¡¼­ 5nm, ½ÉÁö¾î 3nm·Î ³ëµåÀÇ ¹Ì¼¼È­¸¦ Ãß±¸ÇÏ´Â ¹Ý¸é, ´Ù¸¥ Á¦Á¶¾÷ü´Â Æò¸é ¾ÆÅ°ÅØÃ³¸¦ Æ÷±âÇÏ°í ·ÎÁ÷°ú ¸Þ¸ð¸®¸¦ À§ÇØ Á¤±³ÇÑ 3Â÷¿ø(3D) ±¸Á¶¸¦ ¼±È£ÇÕ´Ï´Ù.
  • ¹Ú¸· Çü¼ºÀº ÁýÀû ȸ·Î(IC)ÀÇ Á¦Á¶¿¡ ÇʼöÀûÀÎ ´Ü°èÀÔ´Ï´Ù. ¹Ú¸· ¼ºÀåÀÇ °¡Àå ÀϹÝÀûÀÎ Á¢±Ù¹ýÀº CVDÀÔ´Ï´Ù. CVD¿¡¼­´Â Àü±¸Ã¼¿Í ¹ÝÀÀ¹°À» °øÁ¤ è¹ö¿¡¼­ °áÇÕ½ÃŲ ÈÄ Á¤»ó »óÅ·Π°ø±ÞÇÏ¿© ¿þÀÌÆÛ »ó¿¡ ¸·À» Çü¼ºÇÕ´Ï´Ù.
  • ½ÃÀå °æÀï¿¡¼­´Â ´Ù¾çÇÑ IDMS°¡ °æÀï ¿ìÀ§¸¦ ¾ò±â À§ÇØ ´Ù¾çÇÑ ³ë·ÂÀ» Çϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, Canadian Photonics Fabrication Centre(CPFC)´Â Á¦Á¶ ¼­ºñ½º, »ó¾÷¿ë Æ÷Åä´Ð µð¹ÙÀ̽º ¹× Æ÷Åä´Ð ÁýÀû ȸ·Î Á¦Á¶¾÷ü¸¦ Á¦°øÇÏ´Â ½Ã¼³ÀÔ´Ï´Ù. ¼³°è ¹× ¸ðµ¨¸µ, ¿¡ÇÇÅýÃ, Á¦Á¶, Å×½ºÆ® ¹× Ư¼ºÈ­´Â CPFC°¡ Á¦°øÇÏ´Â À¯·á ¼­ºñ½º Áß ÇϳªÀÔ´Ï´Ù. CPFC´Â À¯±â±Ý¼ÓÈ­Çбâ»ó¼ºÀå(MOCVD)¹ÝÀÀ±â¸¦ ¿î¿µÇϰí ÀÖÀ¸¸ç, °¥·ýºñ¼Ò(GaAs)¿Í ÀÎÈ­Àεã(InP) ±â¹Ý µð¹ÙÀ̽º¸¦ ¿¬±¸ ¹× Á¦Á¶Çϰí ÀÖ½À´Ï´Ù.
  • ¶ÇÇÑ ÀÌ·¯ÇÑ ±â¼úÀº »ç¹° ÀÎÅÍ³Ý ½ÃÀåÀ» È¥¶õ½º·´°í Ȱ¼ºÈ­½Ãų ¼ö Àֱ⠶§¹®¿¡ Á¤ºÎ¿Í ÀÌÇØ°ü°èÀÚµéÀº ¸¶ÀÌÅ©·ÎÀÏ·ºÆ®·Î´Ð½º »ê¾÷ÀÇ Áøº¸¸¦ ÁÖ½ÃÇϰí ÀÖ½À´Ï´Ù. ¸¶ÀÌÅ©·Î ÀÏ·ºÆ®·Î´Ð½ºÀÇ ¿¬±¸ °³¹ßµµ °¡»óÇö½Ç°ú Áõ°­Çö½Ç(AR) µð¹ÙÀ̽ºÀÇ º¸±ÞÀÌ ÁøÇàµÇ°í ´ë¿ªÆø ºÎÁ·À¸·Î ÀÎÇØ ´Ù°¡¿À°í Àֱ⠶§¹®¿¡ Áõ°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. 2021³â 9¿ù µ¶ÀÏ Á¤ºÎ´Â À¯·´ ¹× ±¹Á¦ ¹ÝµµÃ¼ »ê¾÷ÀÇ ´ëÇ¥ÀÚ 50¸íÀ» ¸ðÀº ȸÀǸ¦ °³ÃÖÇϰí Áö¿øÃ¥À» Á¦½ÃÇÔÀ¸·Î½á µ¶ÀÏ¿¡ ´ëÇÑ ÅõÀÚ¸¦ ¼³µæÇß½À´Ï´Ù. µ¶ÀÏ Á¤ºÎ´Â ¹ÝµµÃ¼ÀÇ ¹ë·ùüÀÎ Àü¹Ý¿¡¼­ Á¦Á¶ ±âÁö¸¦ ŻȯÇϱâ À§ÇØ ¾à 45¾ï ´Þ·¯¸¦ ÅõÀÚÇÒ °èȹÀÔ´Ï´Ù.

¼¼°è ¹ÝµµÃ¼ CVD Àåºñ¿¡ °¡Àå À¯¸®ÇÑ ½ÃÀåÀº ¾Æ½Ã¾ÆÅÂÆò¾ç

  • ¾Æ½Ã¾ÆÅÂÆò¾çÀº ¼ÒºñÀÚ ÀÏ·ºÆ®·Î´Ð½º ¹× ¹ÝµµÃ¼ °ü·Ã Á¦Ç°À» °³¹ßÇϱâ À§ÇÑ ´Ù¾çÇÑ Á¦Á¶ ½Ã¼³À» °®Ãá ÀáÀçÀûÀÎ Áö¿ªÀÔ´Ï´Ù. ÀÌ Áö¿ªÀº ÇâÈÄ ¸î ³âµ¿¾È ¹ÝµµÃ¼ CVD Àåºñ ½ÃÀå¿¡¼­ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
  • ƯÈ÷ Áß±¹¿¡¼­ÀÇ ÀÏ·ºÆ®·Î¹Í½º ¹× ¹ÝµµÃ¼ »ê¾÷ÀÇ ¹ßÀüÀÌ ÀÌ Áö¿ª ½ÃÀå È®´ë¸¦ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. Áß±¹°ú Àεµ¿Í °°Àº ¼ºÀå °æÁ¦±Ç¿¡¼­´Â »ê¾÷È­ÀÇ ÁøÀü°ú ÃÖÁ¾ »ç¿ëÀÚ ºÎ¹®°ú ±â¾÷ÀÇ ¼ö°¡ ¾öû³­ ¹Ì¹ß°ß °¡´É¼ºÀ» º¸¿©ÁÝ´Ï´Ù. ½ÅÈï °æÁ¦ ±¹°¡ÀÇ Á¸Àç¿Í ÀüÀÚ »ê¾÷ÀÇ °³¹ß·Î ÀÌ Áö¿ªÀº ¿¹Ãø ±â°£ µ¿¾È »ó´çÇÑ ¼Óµµ·Î ÃßÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
  • Áß±¹Àº ¸Å¿ì ¾ß½ÉÂù ¹ÝµµÃ¼ ÀÇÁ¦¸¦ °¡Áö°í ÀÖ½À´Ï´Ù. 1,500¾ï ´Þ·¯ÀÇ ÀÚ±ÝÀ» ¹è°æÀ¸·Î, ÀÌ ³ª¶ó´Â ±¹³» IC »ê¾÷À» °³¹ßÇÏ°í ´õ ¸¹Àº Ĩ Á¦Á¶¸¦ °èȹÇϰí ÀÖ½À´Ï´Ù. È«Äá, Áß±¹, ´ë¸¸À» Æ÷ÇÔÇÑ ´ëÁßÈ­±ÇÀº ÁöÁ¤ÇÐÀû ÇÖ½ºÆÌÀÔ´Ï´Ù. ¹Ì±¹°ú Áß±¹ÀÇ ¹«¿ªÀüÀïÀº ÁÖ¿ä °øÁ¤ ±â¼úÀÌ ÁýÁߵǴ ÀÌ Áö¿ªÀÇ ±äÀåÀ» ´õ¿í ³ô¿©ÁÖ°í ÀÖÀ¸¸ç, ¸¹Àº Áß±¹ ±â¾÷µéÀº ¹ÝµµÃ¼ ÆÄ¿îµå¸®¿¡ ´ëÇÑ ÅõÀÚ¸¦ °­¿äÇϰí ÀÖ½À´Ï´Ù.
  • APAC ÀÚµ¿Â÷¿ë ¹ÝµµÃ¼ »ê¾÷ÀÇ ±Þ¼ºÀåÀº Àü±âÀÚµ¿Â÷ ¼ö¿ä Áõ°¡¿¡ ÀÇÇØ ÃËÁøµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷ü´Â ÀÚµ¿ ¿îÀü Â÷·®ÀÇ Çõ½Å, âÁ¶ ¹× °³¹ßÀ» °è¼ÓÇØ¾ß ÇÏÁö¸¸, ÀÚµ¿ ¿îÀü Â÷·®Àº ÀÌ¹Ì ÀÚµ¿Â÷ Á¦Á¶ÀÇ ÁÖ¿ä ±¹°¡¿¡¼­ ¸¹Àº °í°´À» À¯Ä¡Çϰí ÀÖ½À´Ï´Ù.
  • Àεµ´Â Àα¸°¡ ¸¹¾Æ ¼¼°è¿¡¼­ °¡Àå ±Þ¼ºÀåÇÏ´Â °æÁ¦ Áß Çϳª·Î ¶°¿À¸£°í ÀÖ½À´Ï´Ù. ¿¹Ãø¿¡ µû¸£¸é, ÀÌ ³ª¶óÀÇ ÀÚµ¿Â÷¿ë ¹ÝµµÃ¼ ½ÃÀåÀº ÇâÈÄ ¼ö³â°£ ±Þ¼ÓÈ÷ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ »ê¾÷Àº °­·ÂÇÑ ¹ÝµµÃ¼ R&D ÀÎÇÁ¶ó¿¡ ÀÇÇØ º¸¿ÏµÇ°í ÀÖÀ¸¸ç, ÀεµÀÇ ¹ÝµµÃ¼ ¿¡Äª ½ÃÀåÀº ÇâÈÄ ¼ö³â°£ »õ·Î¿î °¡´É¼ºÀ» ¿­¾îÁÙ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

¹ÝµµÃ¼ CVD »ê¾÷ °³¿ä

½ÃÀåÀº ¼¼ºÐÈ­µÇ¾î °æÀï¾÷ü °£ÀÇ °æÀï °ü°èµµ Ä¡¿­ÇÕ´Ï´Ù. ¶ÇÇÑ ½ÃÀå ħÅõ¿Í ÷´Ü Á¦Ç°À» Á¦°øÇÏ´Â ´É·ÂÀ¸·Î °æÀï¾÷ü °£ÀÇ Àû´ë °ü°èµµ ³ôÀ» °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ½ÃÀåÀº ´Ù¾çÇÑ ±â¾÷·Î ±¸¼ºµÇ¾î ÀÖÁö¸¸, ³ôÀº ¼öÁذú ¿ì¼öÇÑ Ç°Áú·Î ½ÃÀå¿¡¼­ µ¹ÃâÇϰíÀÖ´Â °ÍÀº ´ÜÁö ¼Ò¼öÀÔ´Ï´Ù.

±âŸ ÇýÅà :

  • ¿¢¼¿ Çü½Ä ½ÃÀå ¿¹Ãø(ME) ½ÃÆ®
  • 3°³¿ù°£ÀÇ ¾Ö³Î¸®½ºÆ® ¼­Æ÷Æ®

¸ñÂ÷

Á¦1Àå ¼­·Ð

  • Á¶»çÀÇ ÀüÁ¦Á¶°Ç°ú ½ÃÀå Á¤ÀÇ
  • Á¶»ç ¹üÀ§

Á¦2Àå Á¶»ç ¹æ¹ý

  • Á¶»ç ÇÁ·¹ÀÓ¿öÅ©
  • 2Â÷ Á¶»ç
  • 1Â÷ Á¶»ç
  • µ¥ÀÌÅÍÀÇ »ï°¢Ãø·®°ú ÅëÂûÀÇ »ý¼º

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå °³¿ä
  • ¾÷°èÀÇ ¸Å·Âµµ - Porter's Five Forces ºÐ¼®
    • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
    • ±¸¸ÅÀÚÀÇ Çù»ó·Â
    • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
    • ´ëüǰÀÇ À§Çù
    • °æÀï ±â¾÷°£ °æÀï °ü°è
  • ¹ë·ùüÀÎ ºÐ¼®
  • ½ÃÀå¿¡ ´ëÇÑ COVID-19ÀÇ ¿µÇâ Æò°¡

Á¦5Àå ½ÃÀå ¿ªÇÐ

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ¸¶ÀÌÅ©·Î ÀÏ·ºÆ®·Î´Ð½º ¹× ¹ÝµµÃ¼ µð¹ÙÀ̽º ¼ö¿ä Áõ°¡
    • º¹¼öÀÇ ÃÖÁ¾ »ç¿ëÀÚ¿¡ ´ëÇÑ ±â¼ú ÀÀ¿ë Áõ°¡
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ±â¼ú¿¡ ´ëÇÑ °í¾× ÅõÀÚ
  • CVD °øÁ¤ ±â¼ú ½º³À¼¦
    • ´ë±â¾Ð È­ÇÐ ±â»ó ¼ºÀå¹ý(apcvd)
    • ¹Ðµµ ÇöóÁ È­ÇÐ ±â»ó ¼ºÀå¹ý(dpcvd)
    • Àú¾Ð È­ÇÐ ±â»ó ¼ºÀå¹ý(lpcvd)
    • À¯±â±Ý¼Ó±â»ó¼ºÀå¹ý(mocvd)

Á¦6Àå ½ÃÀå ¼¼ºÐÈ­

  • ¿ëµµº°
    • ÁÖÁ¶ Á¦Á¶¾÷ü
    • ÁýÀû µð¹ÙÀ̽º Á¦Á¶¾÷ü(idm)
    • ¸Þ¸ð¸® Á¦Á¶¾÷ü
  • Áö¿ªº°
    • ºÏ¹Ì
    • À¯·´
    • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ¼¼°è ±âŸ Áö¿ª

Á¦7Àå °æÀï ±¸µµ

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Aixtron Se
    • Applied Materials, Inc.
    • Asm International
    • Cvd Equipment Corporation
    • Oxford Instruments Plc
    • Lam Research Corporation
    • Tokyo Electron Limited
    • Ulvac Inc.
    • Veeco Instruments Inc.

Á¦8Àå ½ÃÀå ÅõÀÚ

Á¦9Àå ½ÃÀå ±âȸ¿Í ¾ÕÀ¸·ÎÀÇ µ¿Çâ

SHW 25.04.03

The Semiconductor CVD Equipment Market size is estimated at USD 18.03 billion in 2025, and is expected to reach USD 24.07 billion by 2030, at a CAGR of 5.95% during the forecast period (2025-2030).

Semiconductor CVD Equipment - Market - IMG1

Increasing demand for microelectronics-based consumer products, resulting in the faster growth of the semiconductor, LED, and storage device industry and strict regulations on the use of Cr6 for electroplating are primarily driving the growth of the CVD equipment market.

Key Highlights

  • The Chemical Vapor Deposition (CVD) process is often used in manufacturing semiconductors and producing thin films. In recent years, CVD synthesis has reached new heights with the precise manufacturing of both inorganic thin films of 2D materials and high-purity polymeric thin films that may be conformally deposited on various substrates.
  • Precursor gases (typically diluted in carrier gases) are supplied into the reaction chamber at around ambient temperatures in semiconductor chemical vapor deposition equipment. They react or break down when they pass across or come into touch with a heated substrate, generating a solid phase that is deposited on the substrate. The temperature of the substrate is important because it can influence the reactions that occur.
  • CVD is widely used in microfabrication techniques to deposit materials in various morphologies, including polycrystalline, monocrystalline, amorphous, and epitaxial. Silicon (dioxide, carbide, nitride, oxynitride), carbon (fiber, nanofibers, nanotubes, diamond, and graphene), fluorocarbons, filaments, tungsten, titanium nitride, and a variety of high-k dielectrics are among these materials.
  • Governments and business stakeholders are watching developments in the microelectronics industry closely because these technologies have the potential to disrupt and propel the Internet of Things market. Due to the increased adoption of virtual reality and augmented reality gadgets, R&D for microelectronics may also increase in response to the looming bandwidth constraint.
  • They are making semiconductors. CVD setup can be complex and comes with huge costs. The foundries and Outsources Semiconductor Assembly and Test (OSAT) companies are likely to face increased pressure on capital expenditures as they continue to expand production to address the rising chip demand.
  • The COVID -19 outbreak affected the overall semiconductor and chip fabrication market from the demand and supply sides. The nationwide lockdowns and closure of semiconductor plants have further fueled the supply shortage trend. However, these effects are likely to be short-term and temporarily affect the demand for CVD technologies. Moreover, government precautions globally to support automotive and industrial sectors could help revive foundry industry growth.

Semiconductor CVD Market Trends

Increase in Demand for Microelectronics and Consumer Electronics to Fuel the Demand

  • The rise in microelectronics and consumer electronics sales is expected to drive the demand for semiconductor ICs over the forecasted period. However, the demand for semiconductor ICs is expected to increase the production capacity of semiconductor device manufacturers, which may augment the demand in the chemical vapor deposition market.
  • The integrated device manufacturer (IDM) includes logic, optoelectronics, sensors, discrete components, and others. (Excluding Memory Manufacturers). An integrated device manufacturer manufactures and sells integrated circuits (ICs). A classic IDM owns its branded chips, designs them in-house, and makes them in a fabrication factory. IDMs pursue node scaling beyond 10 nm to 5 nm and even 3 nm, while other manufacturers renounce planar architectures favoring sophisticated, three-dimensional (3D) structures for logic and memory.
  • Thin-film deposition is a vital step in manufacturing integrated circuits (ICs). The most common approach for thin-film growth is CVD. Precursors and reactants are combined in a process chamber before being delivered in a steady state to form a film on the wafer in CVD.
  • The market is witnessing the presence of various IDMS undertaking different initiatives to gain a competitive advantage. For instance, the Canadian Photonics Fabrication Centre (CPFC) is a facility that provides fabrication services, pre-commercial photonic devices, and photonic integrated circuit manufacturers. Design and modeling, epitaxy, fabrication, and test and characterization are among the fee-based services provided by CPFC. CPFC operates a metal-organic chemical vapor deposition (MOCVD) reactor for the research and fabrication of gallium arsenide (GaAs) and indium phosphide (InP)-based devices.
  • Also, governments and industry stakeholders are keenly following the advances in the microelectronics industry as these technologies might potentially disrupt and boost the Internet of Things market. R&D for microelectronics may also increase with the impending bandwidth crunch due to the improved penetration of virtual reality and augmented reality devices. In September 2021, the government organized a conference with 50 European and international semiconductor industry representatives to persuade them to invest in Germany by offering them a help package. The German government plans to spend roughly USD 4.5 billion to recapture manufacturing locations across the semiconductor value chain.

Asia Pacific as the Most Lucrative Market for Global Semiconductor CVD Equipment

  • The Asia Pacific is a potential region with various manufacturing facilities for developing consumer electronics and semiconductor-related products. The particular region is expected to occupy the largest market share in the semiconductor CVD equipment market in the coming years.
  • The advancement of the electronics and semiconductor industries, particularly in China, is driving market expansion in the region. In growing economies like China and India, the expansion in industrialization and the number of end-user sectors and companies presented enormous undiscovered potential. Due to the sheer existence of growing economies and the development of the electronics industries, the region is predicted to propel at a significant rate over the forecast period.
  • China has a very ambitious semiconductor agenda. Backed by USD 150 billion in funding, the country is developing its domestic IC industry and plans to make more of its chips. Greater China, which encompasses Hong Kong, China, and Taiwan, is a geopolitical hotspot. The US-China trade war is compounding tensions in an area where all the leading process technology is located, forcing many Chinese companies to invest in their semiconductor foundries.
  • The rapid expansion of the APAC automotive semiconductor industry is expected to be fueled by the rising demand for electric vehicles. Automobile manufacturers must continue to innovate, create, and develop self-driving cars, which have already attracted many customers in key automotive manufacturing countries.
  • India has emerged as one of the world's fastest-growing economies due to its large population. According to projections, the automotive semiconductor market in the country will increase rapidly in the coming years. The Automotive industry is complemented by a strong semiconductor R&D infrastructure, which will open new potential for the semiconductor etch market in India in the forthcoming years.

Semiconductor CVD Industry Overview

The market is fragmented with high competitive rivalry. Also, owing to their market penetration and the ability to offer advanced products, the competitive rivalry is expected to be high. Although the market comprises various players, only a handful are prominent in the market for their high standards and excellent quality.

  • August 2021 - CVD Equipment Corporation, one of the key suppliers of chemical vapor deposition systems, announced that it had secured a production system order worth about USD 1.7 million from a large US-based electric car battery material producer. In the first quarter of 2022, the system will be delivered to the customer.
  • July 2021 - ASM International N.V. announced the availability of Intrepid ESATM epitaxy equipment for 300mm applications in power and analog devices and epitaxial silicon wafers. The new ESA tool increases ASM's atmospheric epi capabilities with ASM's first 300mm atmospheric cluster tool based on the proven, high-volume manufacturing Intrepid platform. On-wafer performance with the Intrepid ESA.

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 RESEARCH METHODOLOGY

  • 2.1 Research Framework
  • 2.2 Secondary Research
  • 2.3 Primary Research
  • 2.4 Data Triangulation and Insight Generation

3 EXECUTIVE SUMMARY

4 MARKET INSIGHT

  • 4.1 Market Overview
  • 4.2 Industry Attractiveness - Porter's Five Forces Analysis
    • 4.2.1 Bargaining Power of Suppliers
    • 4.2.2 Bargaining Power of Buyers
    • 4.2.3 Threat of New Entrants
    • 4.2.4 Threat of Substitutes
    • 4.2.5 Intensity of Competitive Rivalry
  • 4.3 Value Chain Analysis
  • 4.4 Assessment of Impact of Covid-19 on the Market

5 MARKET DYNAMICS

  • 5.1 Market Drivers
    • 5.1.1 Increase In Demand For Microelectronics And Semiconductor Devices
    • 5.1.2 Rise In Application Of The Technology For Several End-users
  • 5.2 Market Restraint
    • 5.2.1 High Investment For The Technology
  • 5.3 Cvd Processes Technology Snapshot
    • 5.3.1 Atmospheric-pressure Chemical Vapor Deposition (apcvd)
    • 5.3.2 Density-plasma Chemical Vapor Deposition (dpcvd)
    • 5.3.3 Low-pressure Chemical Vapor Deposition (lpcvd)
    • 5.3.4 Metal-organic Chemical Vapor Phase Deposition (mocvd)

6 MARKET SEGMENTATION

  • 6.1 By Application
    • 6.1.1 Foundry
    • 6.1.2 Integrated Device Manufacturer (idm)
    • 6.1.3 Memory Manufacturers
  • 6.2 By Geography
    • 6.2.1 North America
    • 6.2.2 Europe
    • 6.2.3 Asia-Pacific
    • 6.2.4 Rest of The World

7 COMPETITIVE LANDSCAPE

  • 7.1 Company Profiles
    • 7.1.1 Aixtron Se
    • 7.1.2 Applied Materials, Inc.
    • 7.1.3 Asm International
    • 7.1.4 Cvd Equipment Corporation
    • 7.1.5 Oxford Instruments Plc
    • 7.1.6 Lam Research Corporation
    • 7.1.7 Tokyo Electron Limited
    • 7.1.8 Ulvac Inc.
    • 7.1.9 Veeco Instruments Inc.

8 MARKET INVESTMENTS

9 MARKET OPPORTUNITIES AND FUTURE TRENDS

ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦