½ÃÀ庸°í¼­
»óǰÄÚµå
1636593

µ¥ÀÌÅÍ ºÐ¼® ¾Æ¿ô¼Ò½Ì ½ÃÀå Àü¸Á : ½ÃÀå Á¡À¯À² ºÐ¼®, »ê¾÷ µ¿Çâ ¹Ø Åë°è, ¼ºÀå ¿¹Ãø(2025-2030³â)

Data Analytics Outsourcing - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030)

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Mordor Intelligence | ÆäÀÌÁö Á¤º¸: ¿µ¹® | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

µ¥ÀÌÅÍ ºÐ¼® ¾Æ¿ô¼Ò½Ì ½ÃÀå ±Ô¸ð´Â 2025³â¿¡ 108¾ï 9,000¸¸ ´Þ·¯·Î ÃßÁ¤µÇ¸ç, ¿¹Ãø ±â°£(2025-2030³â)ÀÇ ¿¬Æò±Õ ¼ºÀåÀ²(CAGR)Àº 34.33%·Î, 2030³â¿¡´Â 476¾ï 5,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

Data Analytics Outsourcing-Market-IMG1

ÀΰøÁö´É(AI) ¹× ¸Ó½Å·¯´× ±â¼úÀº µ¥ÀÌÅÍ ºÐ¼®ÀÇ ¿©·¯ Ãø¸é¿¡¼­ Àΰ£À» ´ë½ÅÇØ ´ëüµÇ¾î, ±× °á°ú Àΰ£ÀÇ ¼öÀÛ¾÷ÀÌ ´ú ÇÊ¿äÇÏ°Ô µÇ¾ú½À´Ï´Ù. µû¶ó¼­ µ¥ÀÌÅÍ ºÐ¼® ¾Æ¿ô¼Ò½ÌÀÇ º»ÁúÀº ±â¾÷ÀÌ ÇØ¿Ü ÆÀÀ» °ü¸®ÇÏ´Â ¹æ¹ýº¸´Ù´Â Àΰ£ÀÌ ¾î¶»°Ô È¿À²ÀûÀ¸·Î ¸Ó½Å·¯´× ¸ðµ¨À» ¸¸µé°í ÈÆ·ÃÇÒ ¼ö ÀÖ´ÂÁö¿¡ ÆíÇâµÇ¾î ÀÖ½À´Ï´Ù.

ÁÖ¿ä ÇÏÀ̶óÀÌÆ®

  • IBM¿¡ µû¸£¸é Áö³­ 2³â°£ Àü ¼¼°è µ¥ÀÌÅÍÀÇ 90% ÀÌ»óÀÌ »ý¼ºµÇ¾ú½À´Ï´Ù. ÀÎÀç °ÝÂ÷´Â Á¸ÀçÇÏÁö¸¸, ºÐ¼® ¼Ö·ç¼ÇÀÌ ±ÝÀ¶ ¼­ºñ½º »ê¾÷°ú ¼Ò¸Å¾÷ µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ äÅõǰí Àֱ⠶§¹®¿¡ ±× ¹üÀ§°¡ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ÀÏ¿ë¼ÒºñÀç(FMCG) ±â¾÷Àº Áø´Ü ºÐ¼®ÀÌ ºÎÁ·Çϰí, ½ÇÀûÀÌ ÁÁÁö ¾ÊÀº ºÎºÐÀ» Á¤È®È÷ ã¾Æ³»´Â ´É·ÂÀ̳ª Á¤È®ÇÑ ÆÇ¸Å ¿¹ÃøÀ» ÇÒ ¼ö ÀÖ´Â ¿ª·®ÀÌ ºÎÁ·ÇÏ¿© ÀϰüµÇÁö ¾ÊÀº ÆÇ¸Å ¼º°ú·Î ¾î·Á¿òÀ» °Þ°í ÀÖ´Â °ÍÀ¸·Î ÁöÀûµÇ¾î ¿Ô½À´Ï´Ù.
  • Á¦Á¶¾÷ü´Â ºü¸¥ ÀλçÀÌÆ®¸¦ ¾ò±â À§ÇØ ³»ºÎ µ¥ÀÌÅÍ ºÐ¼®À» È®ÀåÇÏ´Â µ¥ ºñ¿ë°ú ½Ã°£ÀÌ ÇÊ¿äÇß°í, Äڷγª19°¡ ¹ß»ýÇϱâ Àü¿¡ ºÐ¼® ¾Æ¿ô¼Ò½ÌÀ¸·Î ÀüȯÇßÀ¸¸ç, ¸¹Àº Á¶Á÷ÀÌ µ¥ÀÌÅÍ ¿î¿µÀ» ¾Æ¿ô¼Ò½ÌÇϰí ÀÖ¾ú´Âµ¥, À̹ø À§±â´Â ÀÌ·¯ÇÑ °üÇàÀ» ´õ¿í °¡¼ÓÈ­ÇßÀ¸¸ç, ±â¾÷µéÀº IT ¿¹»êÀÇ »ó´ç ºÎºÐÀ» »çÀ̹ö º¸¾È ³ë·Â¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. DataScience ºí·Î±×¿¡ µû¸£¸é ÃÖ±Ù ¼³¹®Á¶»ç¿¡ µû¸£¸é ±â¾÷ ¸®´õÀÇ 37%°¡ ÀÌ¹Ì IT ºÎ¼­ÀÇ ¿¹»êÀ» ÁÙÀÏ Áغñ¸¦ Çϰí ÀÖ´Ù°í ´äÇß½À´Ï´Ù. °°Àº ¿¬±¸¿¡¼­ 28%ÀÇ ±â¾÷ÀÌ µ¥ÀÌÅÍ ºÐ¼® ÇÁ·Î±×·¥ Áß ÀϺθ¦ ÇØ¿Ü·Î ÀÌÀüÇÒ °èȹÀ̶ó°í ¹àÇû½À´Ï´Ù.
  • ´ë±Ô¸ð µ¥ÀÌÅÍ »ý»êÀ¸·Î ÀÎÇØ ±â¾÷µéÀº ¼ÒºñÀÚ ¼¼ºÐÈ­, °¢ Ä«Å×°í¸® ³» ¼±È£µµ ÆÄ¾Ç, Çൿ º¯È­¿¡ ´ëÇÑ ½Å¼ÓÇÑ ´ëÀÀ, ¸ÂÃãÈ­ µîÀÇ ÀλçÀÌÆ®¸¦ ã°í ÀÖ½À´Ï´Ù. ÀÎÅÍ³Ý »ç¿ëÀÇ Áõ°¡·Î ÀÎÇØ ±â¾÷µéÀº ¹æ´ëÇÑ ¾çÀÇ Á¤Çü ¹× ºñÁ¤Çü µ¥ÀÌÅÍ¿¡ ¾×¼¼½ºÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ÀåÁ¡À¸·Î ÀÎÇØ ´Ù±¹Àû ±â¾÷µéÀº ÀÌÁ¦ ºòµ¥ÀÌÅ͸¦ ½Ç¿ëÀûÀÎ Áö½ÄÀ¸·Î Æò°¡Çϰí ÀÖ½À´Ï´Ù.
  • ¶ÇÇÑ ÀÌ·¯ÇÑ ±â´ÉÀº ºòµ¥ÀÌÅÍ ¼öÁý ±â´ÉÀ» º¸¿ÏÇϰí È®À强, ¹Îø¼º, ºñ¿ë È¿À²ÀûÀÎ ½ºÅ丮Áö ¿É¼Ç, ´ë±Ô¸ð ó¸® ´É·Â¿¡ ´ëÇÑ ¾×¼¼½º¿Í °°Àº Ŭ¶ó¿ìµå ±â´É¿¡ ³»ÀçµÇ¾î Àֱ⠶§¹®¿¡ Ŭ¶ó¿ìµå ¸¶À̱׷¹À̼ÇÀ» äÅÃÇß½À´Ï´Ù. ¶ÇÇÑ Å¬¶ó¿ìµå ÄÄÇ»ÆÃ ±â¼úÀº ÇöÀç ³Î¸® »ç¿ëµÇ°í ÀÖÀ¸¸ç, Ŭ¶ó¿ìµåÀÇ ¿øÈ°ÇÑ ¿¬°á¼ºÀº À̸¦ °¡´ÉÇÏ°Ô ÇÏ°í ºòµ¥ÀÌÅÍ °³¹ßÀ» ÃËÁøÇÕ´Ï´Ù. Right ScaleÀÇ ¿¬·Ê Ŭ¶ó¿ìµå ÇöȲ º¸°í¼­¿¡ µû¸£¸é 78%ÀÇ ±â¾÷ÀÌ ÇÏÀ̺긮µå Ŭ¶ó¿ìµå¸¦ »ç¿ëÇÏ´Â ¹Ý¸é, ÆÛºí¸¯ Ŭ¶ó¿ìµå¸¦ »ç¿ëÇÏ´Â ±â¾÷Àº 19%¿¡ ºÒ°úÇÕ´Ï´Ù. °á°úÀûÀ¸·Î Ŭ¶ó¿ìµå ±â¼úÀÇ ¹ßÀüÀº °ü·Ã »ê¾÷ÀÇ ¹ßÀüÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

µ¥ÀÌÅÍ ºÐ¼® ¾Æ¿ô¼Ò½Ì ½ÃÀå µ¿Çâ

BFSIÀÇ µ¥ÀÌÅÍ ºÐ¼® ¾Æ¿ô¼Ò½Ì µµÀÔÀÇ Áõ°¡°¡ ½ÃÀåÀ» ÁÖµµ

  • ÀºÇà ºÎ¹®¿¡¼­´Â »çÀ̹ö º¸¾È °­È­ºÎÅÍ °í°´ ÀÏÅ»·ü °¨¼Ò¿¡ À̸£±â±îÁö ´Ù¾çÇÑ µ¥ÀÌÅÍ ºÐ¼®À» Ȱ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. °Å·¡, ±ÔÁ¦, ¼Ò¼È ¹Ìµð¾îÀÇ °ü¿© µî, ¿ÜºÎ ¼Ò½º·ÎºÎÅÍÀÇ µ¥ÀÌÅ͵µ, ÀºÇàÀÌ ¾×¼¼½ºÇØ, ó¸® ¹× Æò°¡¸¦ °ÅÄ£ ÈÄ¿¡ ¾÷¹«¿¡ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ͏®Æ÷´Ï¾Æ ÁÖ »êŸ·Î»ç¿¡ À§Ä¡ÇÑ Redwood Credit UnionÀº ¼Ò¼È µ¥ÀÌÅͰ¡ ÀÚµ¿Â÷ ´ëÃâÀ» Á¦°øÇÏ´Â µ¥ ¼Ò¼È µ¥ÀÌÅͰ¡ ¸Å¿ì Áß¿äÇÏ´Ù´Â »ç½ÇÀ» ¹ß°ßÇß½À´Ï´Ù. ÀÌÀü¿¡´Â 2³â¸¶´Ù ÀÚµ¿Â÷ ´ëÃâ »çÀü ½ÂÀÎÀ» ¿¬ÀåÇÒ ¶§ ȸ¿øÀÇ ½Å¿ë Á¡¼ö¿Í ÀÚµ¿Â÷ ±¸¸Å ÀÌ·ÂÀ» °í·ÁÇß½À´Ï´Ù. ÇÏÁö¸¸ °ð ÈξÀ ´õ ½Å·ÚÇÒ ¼ö ÀÖ´Â ÁöÇ¥°¡ ÀÖ´Ù´Â »ç½ÇÀ» ¾Ë°Ô µÇ¾ú°í »çÀü ½ÂÀÎ ºóµµ¸¦ º¯°æÇß½À´Ï´Ù.
  • ºò µ¥ÀÌÅÍ´Â ÀºÇàÀÇ °í°´ ´ëÀÀ°ú °£Á¢ ¾÷¹«¿¡ Å« ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ºòµ¥ÀÌÅÍ´Â °Å·¡°¡ ¹«´ÜÀÏ °¡´É¼ºÀ̳ª ½Å¿ëÀ§ÇèÀ» ÃÊ·¡ÇÒ °¡´É¼ºÀ» ÆÇ´ÜÇÏ´Â µî À§Çè°ü¸® ¾÷¹«¸¦ ¼öÇàÇϴµ¥ ÇʼöÀûÀÔ´Ï´Ù. °¢ °Å·¡¿¡ ´ëÇØ µ¥ÀÌÅÍ ºÐ¼® ½Ã½ºÅÛÀº ½ÅûÀÚÀÇ ½Å¿ë ±â·Ï, °ú°ÅÀÇ ´ëÃâ ÀÌ¿ë »óȲ, °ú°ÅÀÇ ½Å¿ë Ä«µå ÀÌ¿ë »óȲ, ½Å¿ë ±â·ÏÀÇ Æ¯Á¤ »çÇ× µî ¼öõ °³ÀÇ º¯¼ö¸¦ Á¶»çÇÒ ¼ö ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ ÀºÇà ȸ¿øÀº °Å·¡ »ó´ë¹æÀÇ À§Çè Ãø¸é¿¡ ´ëÇÑ Á¤º¸¸¦ ±â¹ÝÀ¸·Î ¿¹ÃøÀ» ÇÒ ¼ö ÀÖ½À´Ï´Ù. Bank of AmericaÀÇ ±â¾÷ ÅõÀÚ ±×·ì(CIG)Àº ¾à 950¸¸ °ÇÀÇ ¸ð±âÁö 乫 ºÒÀÌÇà °¡´É¼ºÀ» µ¥ÀÌÅÍ ºÐ¼®¹ýÀ» »ç¿ëÇÏ¿© °è»êÇÏ¿© °è»ê ½Ã°£À» 96½Ã°£¿¡¼­ 4½Ã°£À¸·Î ´ÜÃàÇß½À´Ï´Ù.
  • Financial Conduct Authority¿Í Bank of England´Â Áö³­ÇØ µ¥ÀÌÅÍ ¼öÁý ¹æ½ÄÀ» º¯°æÇÏ·Á´Â ½Ãµµ¸¦ ¹ßÇ¥Çß½À´Ï´Ù.ÀÌ ¹é¼­¿¡¼­´Â ÇâÈÄ 10³â°£ ´ç±¹¿¡ ´õ ³ªÀº µ¥ÀÌÅ͸¦ Á¦°øÇÏ´Â µ¿½Ã¿¡ ±â¾÷ÀÇ ºÎ´ãÀ» ÁÙÀ̱â À§ÇØ µ¥ÀÌÅÍ ¼öÁýÀ» Å©°Ô °³¼±ÇÒ °ÍÀ» Á¦¾ÈÇϰí ÀÖ½À´Ï´Ù. ÀºÇà°ú FCAÀÇ µ¥ÀÌÅÍ ¼öÁý º¯°æ¿¡ ´ëÇÑ ºñÀü ¼±¾ð¹®¿¡´Â 'ºñÁî´Ï½º¿¡ °¡Àå ³·Àº ºñ¿ëÀ¸·Î ÀÓ¹«¸¦ ¼öÇàÇÏ´Â µ¥ ÇÊ¿äÇÑ µ¥ÀÌÅ͸¦ È®º¸ÇÏ´Â °Í'À̶ó´Â ¸ñÇ¥°¡ Àß µå·¯³ª ÀÖ½À´Ï´Ù.
  • ¶ÇÇÑ ABA Conference for Community BankersÀÇ ±â°£ µ¿¾È Bank of Botetourt, Farmers Bank of Appomattox, Select Bank & TrustÀÇ 3ÇàÀº º¡Ä¿°¡ º¡Ä¿¸¦ À§ÇØ °³¹ßÇÑ µ¶ÀÚÀûÀÎ µ¥ÀÌÅÍ ºÐ¼® ¼ÒÇÁÆ®¿þ¾î Ç÷§ÆûÀÎ KlariVisÀÇ Ã¤ÅÃÀ» ¹ßÇ¥ Çß½À´Ï´Ù. KlariVis´Â Áö¿ª ±ÝÀ¶±â°üÀÇ È¹±âÀûÀÎ µ¥ÀÌÅ͸¦ ã¾Æ ¾×¼¼½ºÇÒ ¼ö ÀÖ°Ô ÇÔÀ¸·Î½á º¸´Ù Àü·«ÀûÀ̰í Áö½ÄÀÌ Ç³ºÎÇÑ ÀÇ»ç °áÁ¤À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. Select Bank & Trust¿Í °°Àº ÀºÇàÀº KlariVis°¡ ½Ç¿ëÀûÀÎ µ¥ÀÌÅ͸¦ ÀÚµ¿À¸·Î Áý°èÇÏ°í ÆíÁýÇϹǷΠ¿¹±Ý, ´ëÃâ, ¼öÀÍ Áõ°¡ µîÀÇ º¯¼ö¿¡ ´ëÇÑ ´õ ³ªÀº ÅëÂû·ÂÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. Ä¿¹Â´ÏƼ ¹ðÅ©´Â µ¥ÀÌÅ͸¦ »ç¿ëÇÏ¿© Àü¹ÝÀûÀÎ ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖÀ¸¸ç ÇöÀç ½ÃÀå¿¡¼­ °æÀïÀÚ¿¡°Ô Å« ÀÌÁ¡À» °¡Áú ¼ö ÀÖ½À´Ï´Ù.

¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå ±Þ¼ºÀåÇÒ Àü¸Á

  • ºòµ¥ÀÌÅÍ ºÐ¼®Àº ¹Ì·¡ÀÇ È°µ¿, Æ®·»µå, °í°´ ÇൿÀ» ¿¹ÃøÇϱâ À§ÇØ ºü¸£°Ô µµÀԵǰí ÀÖ½À´Ï´Ù. ºòµ¥ÀÌÅÍ ºÐ¼®Àº ±âÁ¸ ÀλçÀÌÆ®¸¦ ÆÄ¾ÇÇϰí, µ¥ÀÌÅÍ Æ÷ÀÎÆ®¿Í ¼¼Æ® °£ÀÇ ¿¬°áÀ» »ý¼ºÇϸç, µ¥ÀÌÅ͸¦ Á¤¸®ÇÕ´Ï´Ù. ÀÌ ºÐ¾ßÀÇ ÁÖ¿ä IT ±â¾÷°ú ºÐ¼® Á¶Á÷Àº ML °üÇàÀ» È®¸³Çϰí AI/ML ¹× ºÐ¼® ¸ðµ¨À» °­È­ÇÏ´Â ¼öÁ÷Àû AI ¼Ö·ç¼ÇÀ» ¸¸µé°í ÀÖ½À´Ï´Ù.
  • Áõ°¡ÇÏ´Â ¼Ò¼È µ¥ÀÌÅÍ¿¡´Â ±âÁ¸ ºÐ¼® ±â¹ýÀ¸·Î´Â ¹ß°ßÇÒ ¼ö ¾ø´Â ¼û°ÜÁø ÆÐÅÏÀÌ Æ÷ÇԵǾî Àֱ⠶§¹®¿¡ ºÐ¼®ÀÇ È°¿ëµµ°¡ ³ô¾ÆÁ®¾ß ÇÕ´Ï´Ù. We Are Social¿¡ µû¸£¸é Áö³­ÇØ Áß±¹°ú ¹Ì±¹ÀÇ ¼Ò¼È ³×Æ®¿öÅ© º¸±Þ·üÀº °¢°¢ 64.6%¿Í 72.3%·Î, ºÐ¼®ÀÌ ÇÊ¿äÇÑ µ¥ÀÌÅÍ »ý¼º·®ÀÌ »ó´çÇÏ´Ù´Â °ÍÀ» º¸¿©ÁÝ´Ï´Ù. ÀÌ¿¡ µû¶ó °¢±¹ÀÇ ±â¾÷µéÀº µ¥ÀÌÅÍ ºÐ¼® ¾Æ¿ô¼Ò½ÌÀ» ¼±ÅÃÇϰí ÀÖ½À´Ï´Ù.
  • TCS´Â ºÐ¼® ¼­ºñ½º¿¡¼­ 20¾ï ´Þ·¯¸¦ âÃâÇϰí Àεµ´Â ºÐ¼® ½ÃÀå¿¡¼­ ÃÖ°í ¼öÀÍÀ» ¿Ã¸®°í ÀÖ½À´Ï´Ù. TCS, Genpact, Wipro·Î ´ëÇ¥µÇ´Â India Inc.¿Í °°Àº ±â¾÷µéµµ ÀÌ ºÎ¹®¿¡ ±¤¹üÀ§ÇÏ°Ô ÅõÀÚÇÏ¿© ÀÌ¿ë °¡´ÉÇÑ ¼­ºñ½ºÀÇ ÆøÀ» ³ÐÈ÷°í ÀÖ½À´Ï´Ù. °Ô´Ù°¡ Àεµ ºÐ¼® ¼öÀÍÀÇ ¾à 47%´Â ¹Ì±¹À¸·ÎÀÇ ¼öÃâ·Î ÀÎÇÑ ¹Ý¸é, 2À§ ¿µ±¹Àº ¾Æ¿ô¼Ò½Ì ¼öÀÍ 270¾ï ´Þ·¯ ÀüüÀÇ 9.6%¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù.
  • Áß±¹¿¡¼­´Â ÇöÀç ÁøÇà ÁßÀÎ Äڷγª19¿ÍÀÇ ÀüÀïÀ» ºñ·ÔÇØ Á¤ºÎÀÇ Á¤Ã¥ °áÁ¤À» Áö¿øÇϱâ À§ÇØ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ ºÐ¼®°ú ÷´Ü ±â¼úÀÌ ±¤¹üÀ§ÇÏ°Ô È°¿ëµÇ°í ÀÖ½À´Ï´Ù. °í±Þ µ¥ÀÌÅÍ ºÐ¼®Àº ƯÈ÷ Èĺ£À̼º ¶Ç´Â ±âŸ ¹ßº´ Áö¿ªÀ» ÃâÀÔÇÑ °³ÀÎÀ» ´ë»óÀ¸·Î µ¥ÀÌÅÍ Ç÷§ÆûÀ» ±â¹ÝÀ¸·Î »ç¶÷ À̵¿ °æ·Î Áöµµ¸¦ »ý¼ºÇÏ¿© À̵éÀÌ ´©±¸¿Í ¹ÐÁ¢ Á¢ÃËÇß´ÂÁö ÆÄ¾ÇÇϰí, Áö³­ 14ÀÏ µ¿¾È Äڷγª ¹ÙÀÌ·¯½º ¾ç¼º ÆÇÁ¤À» ¹ÞÀº »ç¶÷µéÀÇ À̵¿ °æ·Î¸¦ ÃßÀûÇß½À´Ï´Ù. ÀÌ·¯ÇÑ °á°ú¸¦ ¹ÙÅÁÀ¸·Î Áö¿ª Á¤ºÎ¿Í Áö¿ª»çȸ´Â ¹æ¾î Á¶Ä¡¸¦ ÃëÇÒ ¼ö ÀÖ¾ú½À´Ï´Ù.

µ¥ÀÌÅÍ ºÐ¼® ¾Æ¿ô¼Ò½Ì »ê¾÷ °³¿ä

µ¥ÀÌÅÍ ºÐ¼® ¾Æ¿ô¼Ò½Ì ½ÃÀåÀº ´ë±â¾÷°ú Áß¼Ò±â¾÷À» À§ÇÑ ºñÁî´Ï½º ÇÁ·Î¼¼½º ¼Ö·ç¼ÇÀ» Á¦°øÇÏ´Â ´Ù¾çÇÑ º¥´õ·Î ¼¼ºÐÈ­µÇ¾î ÀÖ½À´Ï´Ù. ±â¾÷ÀÌ »ý¼ºÇÏ´Â ºòµ¥ÀÌÅÍÀÇ ¾çÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ±â¾÷ µ¥ÀÌÅÍ °ü¸® ¹× µ¥ÀÌÅÍ ÀÎÅÚ¸®Àü½º ¼­ºñ½º¸¦ Á¦°øÇÏ´Â °ø±Þ¾÷ü°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ½ÃÀåÀÇ ±â¼úÀû Áøº¸µµ ±â¾÷¿¡ Áö¼Ó °¡´ÉÇÑ °æÀï ¿ìÀ§¸¦ °¡Á®¿À°í ÀÖÀ¸¸ç, ½ÃÀå¿¡¼­´Â ¿©·¯ ÆÄÆ®³Ê½Ê°ú ÀμöÇÕº´ÀÌ ÀϾ°í ÀÖ½À´Ï´Ù.

  • 2023³â 6¿ù¿¡ ºñÁî´Ï½º¸¦ º¯È­½ÃŰ´Â ¼º°ú Á¦°ø¿¡ ÁÖ·ÂÇÏ´Â ¼¼°èÀûÀÎ Àü¹® ¼­ºñ½º ±â¾÷ÀÎ Genpact´Â Google Cloud¿Í Çù¾÷ÇÏ¿© ½Ç¿ëÀûÀÎ ºñÁî´Ï½º ÅëÂûÀ» ÃßÁøÇϱâ À§ÇÑ »ý¼ºÇü AI ä¿ëÀ» Ȱ¿ëÇÏ´Â µî ±â¾÷ÀÌ ÀΰøÁö´É(AI) Àü·«À» °¡¼ÓÈ­ÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÑ´Ù°í ¹ßÇ¥Çß½À´Ï´Ù.

±âŸ ÇýÅÃ

  • ¿¢¼¿ Çü½Ä ½ÃÀå ¿¹Ãø(ME) ½ÃÆ®
  • 3°³¿ù°£ÀÇ ¾Ö³Î¸®½ºÆ® Áö¿ø

¸ñÂ÷

Á¦1Àå ¼­·Ð

  • Á¶»çÀÇ ÀüÁ¦Á¶°Ç°ú ½ÃÀå Á¤ÀÇ
  • Á¶»ç ¹üÀ§

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå ¿ªÇÐ

  • ½ÃÀå °³¿ä
  • COVID-19°¡ ½ÃÀå¿¡ ¹ÌÄ¡´Â ¿µÇâ
  • »ê¾÷ÀÇ ¸Å·Â - Porter's Five Forces ºÐ¼®
    • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
    • ¼ÒºñÀÚÀÇ Çù»ó·Â
    • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
    • °æÀï ±â¾÷°£ °æÀï °ü°èÀÇ °­µµ
    • ´ëüǰÀÇ À§Çù
  • »ê¾÷ ¹ë·ùüÀÎ ºÐ¼®
  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • »ý¼ºµÇ´Â µ¥ÀÌÅÍÀÇ ¾ç°ú À¯Çü Áõ°¡
    • BFSI¿¡¼­ÀÇ µ¥ÀÌÅÍ ºÐ¼® ¾Æ¿ô¼Ò½ÌÀÇ Ã¤Åà Áõ°¡
  • ½ÃÀåÀÇ °úÁ¦
    • ¼÷·ÃµÈ Àü¹®°¡ÀÇ ºÎÁ·

Á¦5Àå ½ÃÀå ¼¼ºÐÈ­

  • À¯Çü
    • CRM ºÐ¼®
    • °ø±Þ¸Á ºÐ¼®
    • ¸®½ºÅ© ºÐ¼®
    • À繫 ºÐ¼®
    • ±âŸ
  • ÃÖÁ¾ »ç¿ëÀÚ »ê¾÷
    • ¼Ò¸Å
    • ÀÚµ¿Â÷
    • Á¦Á¶¾÷
    • BFSI
    • IT ¹× Åë½Å
    • ¼®À¯ ¹× °¡½º
    • ±âŸ
  • Áö¿ª
    • ºÏ¹Ì
    • À¯·´
    • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ³²¹Ì
    • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦6Àå °æÀï ±¸µµ

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Accenture PLC
    • Capgemini SE
    • Cognizant Technology Solutions Corp.
    • Genpact Ltd.
    • Gramener
    • IBM Corporation
    • Infosys Ltd.
    • Mu Sigma Inc.
    • Opera Solutions LLC
    • Tata Consultancy Services Ltd.
    • Wipro Ltd.
    • WNS Global Services Private Limited
    • ZS Associates Inc.
  • º¥´õ ·©Å· ºÐ¼®

Á¦7Àå ÅõÀÚ ºÐ¼®°ú Àü¸Á

HBR 25.02.06

The Data Analytics Outsourcing Market size is estimated at USD 10.89 billion in 2025, and is expected to reach USD 47.65 billion by 2030, at a CAGR of 34.33% during the forecast period (2025-2030).

Data Analytics Outsourcing - Market - IMG1

Artificial Intelligence (AI)/Machine Learning technology has replaced humans in many aspects of data analytics, thus, requiring less input from human manual work. Therefore, the nature of data analytics outsourcing skews toward how humans can effectively create and train a machine learning model rather than how businesses could manage an offshore team.

Key Highlights

  • According to IBM, the last two years have created over 90% of the world's data. And while there is a talent gap, analytics solutions are expanding because they are being accepted by a variety of sectors, including BFSI and retail, to mention a few. For instance, it has been noted that FMCG firms struggle with inconsistent sales performance due to a lack of diagnostic analytics, the ability to pinpoint what terrible bad performance is, or the capacity to produce precise sales forecasts.
  • The manufacturer needed money and time to expand internal data analytics to gain quick insight, they turned to analytics outsourcing before the COVID-19 outbreak, and many organizations were outsourcing their data operations; the crisis accelerated this practice even further-additionally, businesses investing a significant portion of their IT budgets in cybersecurity initiatives. DataScience blog reports that a recent survey revealed that 37% of corporate leaders claimed they were already preparing to reduce the budgets for their IT departments. The same study discovered that 28% of companies want to relocate some of their data analytics programs overseas.
  • Large-scale data production has prompted businesses to look for insights, including consumer segmentation, understanding of preferences within each category, staying up to speed with changes in behavior, and customization. Due to increased internet usage, organizations have access to a vast amount of structured and unstructured data. Due to these advantages, multinational corporations now have their big data evaluated for practical knowledge.
  • Adoption also included cloud migration because these capabilities complement the ability to gather Big Data and are intrinsic to cloud features like scalability, agility, cost-effective storage options, and access to massive processing power. In addition, cloud computing technology is now widely used, and the cloud's seamless connectivity makes it available and encourages the development of Big Data Byce to the annual State of the Cloud Report from Right Scale, 78% of firms use hybrid cloud, compared to 19% who use public cloud. Consequently, the development of cloud technology is accelerating the development of the industry under investigation.

Data Analytics Outsourcing Market Trends

Increasing Adoption of Data Analytics Outsourcing in BFSI is Driving the Market

  • In the banking sector, data analytics may be used for various things, from enhancing cybersecurity to lowering customer attrition. Even more data from external sources, such as trade, regulatory, and social media involvement, can be accessed by banks and used for their operations after being processed and evaluated. For instance, Redwood Credit Union in Santa Rosa, California, discovered that social data was crucial for providing auto loans. It previously considered a member's credit score and history of auto purchases when extending preapproval for such loans every two years. It soon learned that there was a far more trustworthy indicator and changed how frequently preapprovals were granted.
  • Big Data has a tremendous impact on banks' customer-facing and back-of-house activities. It is essential for performing risk management tasks, which include determining the probability that a given transaction will be fraudulent or pose a credit risk. For each transaction, data analytics systems can examine thousands of variables, such as applicants' credit histories, prior loan activity, past credit card activity, or specific things in their credit histories. This enables bank employees to make informed forecasts about interactions' risk aspects. The default likelihood of roughly 9.5 million mortgages was calculated by Bank of America's Corporate Investment Group (CIG) using a data analytics method, cutting the computation time from 96 to 4 hours.
  • The Financial Conduct Authority and the Bank of England updated the public on their attempts to alter data collection last year. The paper suggests significant data collection advancements over the following ten years to give authorities better data while lessening the strain on businesses. The vision statement for modifying data collection from the Bank and FCA best captures this goal: "that they get the data they need to perform their mission, at the lowest possible cost to the business.
  • Additionally, during the ABA Conference for Community Bankers, the Bank of Botetourt, Farmers Bank of Appomattox, and Select Bank & Trust announced their selection of KlariVis, a unique and exclusive data analytics software platform created by bankers for bankers. By locating and making accessible community financial institutions' revolutionary data, KlariVis enables them to make more strategic and knowledgeable decisions. Banks like Select Bank & Trust benefit from better and immediate insight into variables like deposit, loan, and revenue growth because of KlariVis' automatic compilation and aggregation of actionable data. Community banks may use data to drive decisions across the board, giving them a significant edge over rivals in the current market.

Asia-Pacific Region is Expected to Witness Fastest Growth

  • Big Data analytics is being rapidly adopted to predict future activity, trends, and customer behaviors. Big Data analytics identifies existing insights, creates connections between data points and sets, and cleans the data. Major IT companies and analytics organizations in the area are establishing ML practices and creating vertically-specific AI solutions, which AI/ML and analytical models reinforce.
  • Growing usage of analytics is necessary since the data from rising social penetration contains hidden patterns that can't be found using conventional analytics techniques. We Are Social reports that the active social network penetration in China and the US last year was 64.6% and 72.3%, respectively, demonstrating a significant volume of data generation necessitating analytics. Businesses nationwide are encouraged by this to choose data analytics outsourcing.
  • With TCS producing USD 2 billion from analytics services, India has been the analytics market's top revenue producer. Companies like India Inc., led by TCS, Genpact, and Wipro, also invest extensively in this field, broadening the services available. Additionally, about 47% of India's analytics revenues come from exports to the US, whereas the UK, which is in second place, generates 9.6% of its overall USD 27 billion in outsourcing revenue.
  • Extensive data analysis and high-tech were extensively employed in China to assist governmental policy decisions, including the ongoing battle against COVID-19. Advanced data analytics generated a path map for people flow based on the data platform, specifically for individuals who entered and exited Hubei Province or other outbreak areas to determine who these individuals had been in close contact with; these maps followed the movement of those who had tested positive for the coronavirus in the previous 14 days. The local government and community could implement defensive measures because of these findings.

Data Analytics Outsourcing Industry Overview

The Data Analytics Outsourcing Market is fragmented, with various vendors providing business process solutions for big companies and SMEs. As the amount of big data enterprises generate increases, more vendors are contacted to manage enterprise data and provide data intelligence services. Technological advancements in the market are also bringing sustainable competitive advantages to companies, and the market is also witnessing multiple partnerships and mergers.

  • June 2023 - Genpact, a global professional services firm focused on delivering outcomes that transform businesses, announced it is working with Google Cloud to help businesses accelerate artificial intelligence (AI) strategies, including taking advantage of generative AI's adoption to drive actionable business insights.

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET DYNAMICS

  • 4.1 Market Overview
  • 4.2 Impact of COVID-19 on the market
  • 4.3 Industry Attractiveness - Porter's Five Forces Analysis
    • 4.3.1 Bargaining Power of Suppliers
    • 4.3.2 Bargaining Power of Consumers
    • 4.3.3 Threat of New Entrants
    • 4.3.4 Intensity of Competitive Rivalry
    • 4.3.5 Threat of Substitute Products
  • 4.4 Industry Value Chain Analysis
  • 4.5 Market Drivers
    • 4.5.1 Increasing Volume and Variety of Data being Generated are the Major Driving Factors for this Industry
    • 4.5.2 Increasing Adoption of Data Analytics Outsourcing in BFSI
  • 4.6 Market Challenges
    • 4.6.1 Lack of Skilled Professionals

5 MARKET SEGMENTATION

  • 5.1 Type
    • 5.1.1 CRM Analytics
    • 5.1.2 Supply Chain Analytics
    • 5.1.3 Risk Analytics
    • 5.1.4 Financial Analytics
    • 5.1.5 Other Types
  • 5.2 End-user Industry
    • 5.2.1 Retail
    • 5.2.2 Automotive
    • 5.2.3 Manufacturing
    • 5.2.4 BFSI
    • 5.2.5 IT and Telecom
    • 5.2.6 Oil & Gas
    • 5.2.7 Other End-user Industries
  • 5.3 Geography
    • 5.3.1 North America
    • 5.3.2 Europe
    • 5.3.3 Asia Pacific
    • 5.3.4 South America
    • 5.3.5 Middle East and Africa

6 COMPETITIVE LANDSCAPE

  • 6.1 Company Profiles
    • 6.1.1 Accenture PLC
    • 6.1.2 Capgemini SE
    • 6.1.3 Cognizant Technology Solutions Corp.
    • 6.1.4 Genpact Ltd.
    • 6.1.5 Gramener
    • 6.1.6 IBM Corporation
    • 6.1.7 Infosys Ltd.
    • 6.1.8 Mu Sigma Inc.
    • 6.1.9 Opera Solutions LLC
    • 6.1.10 Tata Consultancy Services Ltd.
    • 6.1.11 Wipro Ltd.
    • 6.1.12 WNS Global Services Private Limited
    • 6.1.13 ZS Associates Inc.
  • 6.2 Vendor Ranking Analysis

7 INVESTMENT ANALYSIS AND FUTURE OUTLOOK

ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦