시장보고서
상품코드
1861222

세계의 EV 배터리용 열 인터페이스 재료 시장 : 시장 점유율과 순위, 전체 판매 및 수요 예측(2025-2031년)

Thermal Interface Material for EV Battery - Global Market Share and Ranking, Overall Sales and Demand Forecast 2025-2031

발행일: | 리서치사: QYResearch | 페이지 정보: 영문 | 배송안내 : 2-3일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

세계의 EV 배터리용 열 인터페이스 재료 시장 규모는 2024년에 4억 4,200만 달러로 추정되며, 2025년부터 2031년까지 예측 기간 동안 CAGR 11.3%로 확대되어 2031년까지 9억 5,000만 달러에 달할 것으로 예측됩니다.

본 보고서는 EV 배터리용 열 인터페이스 재료에 대한 최근 관세 조정 및 국제적인 전략적 대응 조치에 대해 국경 간 산업 발자국, 자본 배분 패턴, 지역 경제의 상호의존성, 공급망 재구축을 종합적으로 평가합니다.

EV 배터리용 열 인터페이스 재료(TIM)는 배터리 셀, 모듈, 팩과 냉각 시스템 간의 열 전달을 촉진하는 특수 설계 물질을 말합니다. 이 소재들은 접촉면 사이의 미세한 공기 틈새와 요철을 메워 열 저항을 줄여 효율적인 방열을 보장하도록 설계되었습니다. 전기자동차에서 배터리 온도 관리는 성능, 안전성, 수명 유지에 매우 중요합니다. 과도한 열은 리튬이온 배터리의 열화를 초래하여 작동 수명을 단축시킬 수 있기 때문입니다. EV 배터리용 TIM은 열 패드, 그리스, 그리스, 젤, 접착제, 상변화 재료 등 다양한 형태로 제공되며, 그 배합은 실리콘, 세라믹 충전 폴리머, 기타 열전도성 화합물을 기반으로 하는 경우가 많습니다. 2024년 세계 생산량은 약 21,546톤에 달했고, 세계 평균 시장 가격은 1kg당 약 20.52달러였습니다. 높은 열전도율, 전기 절연성, 진동 및 사이클 하에서 장기적인 안정성을 겸비한 TIM은 현대 EV 열 관리 시스템에서 없어서는 안 될 필수 요소입니다.

전기자동차 배터리용 열 인터페이스 소재 시장은 전동화 추진의 가속화와 배터리 안전성 및 효율성에 대한 관심이 높아지면서 빠르게 성장하고 있습니다. 자동차 제조업체들은 온도 분포의 균일성을 유지하고 열 폭주를 유발할 수 있는 핫스팟을 피하기 위해 고성능 TIM을 배터리 설계에 통합하는 사례가 증가하고 있습니다. 고에너지 밀도 배터리 화학의 혁신도 TIM 수요를 촉진하고 있으며, 이는 더 많은 열을 발생시키기 때문에 더 높은 수준의 냉각 전략이 필요합니다. 중국, 일본, 한국을 중심으로 한 아시아태평양은 주요 전기자동차 제조 거점일 뿐만 아니라 CATL, LG에너지솔루션, 파나소닉 등 주요 배터리 제조사가 존재하기 때문에 여전히 가장 큰 생산 및 소비 거점입니다. 동시에 북미와 유럽에서는 EV 생산 확대에 따라 TIM의 채택이 증가하고 있으며, OEM 업체들은 엄격한 안전, 환경, 성능 기준을 충족하는 재료에 초점을 맞추고 있습니다.

향후 전기자동차 보급 확대, 열 안전 규제 강화, 급속 충전 보급에 따른 배터리 시스템 열 부하 증가를 배경으로 전기자동차 배터리용 열 인터페이스 소재 세계 시장은 견조한 성장세를 이어갈 것으로 전망됩니다. 연구 개발 노력은 더 높은 열전도율, 개선된 압축성, 자동 조립 공정과의 우수한 호환성을 갖춘 재료에 집중되어 있습니다. 또한, 지속가능성에 대한 고려가 제품 개발에 영향을 미치고 있으며, 제조업체들은 재활용이 가능하고, 저 VOC, 할로겐 프리 배합을 모색하고 있습니다. 고체 배터리로의 전환은 아직 초기 단계이지만, 발열 패턴과 패키지 구성의 변화를 통해 TIM의 요구 사항을 재구성할 수 있습니다. EV 기술이 주행거리 연장, 급속 충전, 고출력화로 진화하는 가운데, 열 인터페이스 소재는 배터리 성능과 신뢰성을 뒷받침하는 중요한 요소로, 세계 전기 모빌리티 공급망에서 전략적 구성요소로서의 입지를 확고히 할 것입니다.

이 보고서는 EV 배터리용 열 인터페이스 재료료 세계 시장에 대해 총 판매량, 매출액, 가격, 주요 기업의 시장 점유율 및 순위를 중심으로 지역별, 국가별, 유형별, 용도별 분석을 종합적으로 제시하는 것을 목적으로 합니다.

EV 배터리용 열 인터페이스 재료의 시장 규모, 추정치, 예측치를 판매량(톤) 및 매출액(백만 달러)으로 제시하고, 2024년을 기준년으로 하여, 2020년부터 2031년까지의 기간에 대한 과거 데이터와 예측 데이터를 포함합니다. 정량적, 정성적 분석을 통해 전기자동차 배터리용 열접합재료에 대한 사업 전략 및 성장 전략 수립, 시장 경쟁 상황 평가, 현재 시장에서의 자사 포지셔닝 분석, 정보에 입각한 비즈니스 의사결정을 할 수 있도록 도와드립니다.

시장 세분화

기업별

  • Jones Tech PLC
  • Shenzhen FRD Science & Technology
  • DuPont
  • Dow
  • Shin-Etsu Chemical
  • Parker Hannifin
  • Fujipoly
  • Henkel
  • Wacker
  • 3M
  • Bornsun
  • Jointas Chemical
  • Nano TIM
  • Amogreentech

유형별 부문

  • HD 갭 필러
  • HD 시트
  • HD 그리스
  • 기타

용도별 부문

  • 승용차
  • 상용차

지역별

  • 북미
    • 미국
    • 캐나다
  • 아시아태평양
    • 중국
    • 일본
    • 한국
    • 동남아시아
    • 인도
    • 호주
    • 기타 아시아태평양
  • 유럽
    • 독일
    • 프랑스
    • 영국
    • 이탈리아
    • 네덜란드
    • 북유럽 국가
    • 기타 유럽
  • 라틴아메리카
    • 멕시코
    • 브라질
    • 기타 라틴아메리카
  • 중동 및 아프리카
    • 튀르키예
    • 사우디아라비아
    • 아랍에미리트
    • 기타 중동 및 아프리카
KSM 25.12.03

자주 묻는 질문

  • 전기자동차 배터리용 열 인터페이스 재료 시장 규모는 어떻게 예측되나요?
  • 전기자동차 배터리용 열 인터페이스 재료의 주요 기능은 무엇인가요?
  • 전기자동차 배터리용 열 인터페이스 재료의 주요 기업은 어디인가요?
  • 전기자동차 배터리용 열 인터페이스 재료의 주요 유형은 무엇인가요?
  • 전기자동차 배터리용 열 인터페이스 재료의 용도는 무엇인가요?
  • 전기자동차 배터리용 열 인터페이스 재료 시장의 지역별 주요 시장은 어디인가요?

The global market for Thermal Interface Material for EV Battery was estimated to be worth US$ 442 million in 2024 and is forecast to a readjusted size of US$ 950 million by 2031 with a CAGR of 11.3% during the forecast period 2025-2031.

This report provides a comprehensive assessment of recent tariff adjustments and international strategic countermeasures on Thermal Interface Material for EV Battery cross-border industrial footprints, capital allocation patterns, regional economic interdependencies, and supply chain reconfigurations.

Thermal interface material (TIM) for EV batteries refers to specially engineered substances that enhance heat transfer between battery cells, modules, or packs and their associated cooling systems. These materials are designed to fill microscopic air gaps and irregularities between contact surfaces, thereby reducing thermal resistance and ensuring efficient heat dissipation. In electric vehicles, managing battery temperature is critical to maintaining performance, safety, and longevity, as excessive heat can degrade lithium-ion cells and shorten their operational lifespan. TIMs for EV batteries are available in various forms, including thermal pads, greases, gels, adhesives, and phase change materials, with formulations often based on silicone, ceramic-filled polymers, or other thermally conductive compounds. In 2024, global production reached approximately 21,546 tons, with an average global market price of around US$20.52 per kg. Their combination of high thermal conductivity, electrical insulation, and long-term stability under vibration and cycling makes TIMs indispensable in modern EV thermal management systems.

The market for thermal interface materials in EV batteries has been expanding rapidly, driven by the accelerating adoption of electric mobility and the growing emphasis on battery safety and efficiency. Automakers are increasingly integrating high-performance TIMs into battery designs to maintain uniform temperature distribution and avoid hotspots, which can lead to thermal runaway events. The demand for TIMs is also benefiting from innovations in high-energy-density battery chemistries, which generate more heat and require more advanced cooling strategies. Asia-Pacific, led by China, Japan, and South Korea, remains the largest production and consumption hub due to its dominant EV manufacturing base and the presence of major battery producers such as CATL, LG Energy Solution, and Panasonic. In parallel, North America and Europe are seeing growing adoption of TIMs as EV production scales up, with OEMs focusing on materials that meet stringent safety, environmental, and performance standards.

Looking forward, the global TIM market for EV batteries is expected to continue its robust growth trajectory, supported by increasing EV penetration, stricter thermal safety regulations, and the trend toward fast charging, which imposes higher thermal loads on battery systems. Research and development efforts are concentrating on materials with higher thermal conductivity, improved compressibility, and better compatibility with automated assembly processes. Additionally, sustainability considerations are influencing product development, with manufacturers exploring recyclable, low-VOC, and halogen-free formulations. The transition to solid-state batteries, although still in its early stages, is likely to reshape TIM requirements by altering heat generation patterns and packaging configurations. As EV technology evolves toward greater range, faster charging, and higher power output, thermal interface materials will remain a critical enabler of battery performance and reliability, securing their place as a strategic component in the global electric mobility supply chain.

This report aims to provide a comprehensive presentation of the global market for Thermal Interface Material for EV Battery, focusing on the total sales volume, sales revenue, price, key companies market share and ranking, together with an analysis of Thermal Interface Material for EV Battery by region & country, by Type, and by Application.

The Thermal Interface Material for EV Battery market size, estimations, and forecasts are provided in terms of sales volume (Tons) and sales revenue ($ millions), considering 2024 as the base year, with history and forecast data for the period from 2020 to 2031. With both quantitative and qualitative analysis, to help readers develop business/growth strategies, assess the market competitive situation, analyze their position in the current marketplace, and make informed business decisions regarding Thermal Interface Material for EV Battery.

Market Segmentation

By Company

  • Jones Tech PLC
  • Shenzhen FRD Science & Technology
  • DuPont
  • Dow
  • Shin-Etsu Chemical
  • Parker Hannifin
  • Fujipoly
  • Henkel
  • Wacker
  • 3M
  • Bornsun
  • Jointas Chemical
  • Nano TIM
  • Amogreentech

Segment by Type

  • HD Gap Filler
  • HD Sheet
  • HD Grease
  • Other

Segment by Application

  • Passenger Vehicle
  • Commercial Vehicle

By Region

  • North America
    • United States
    • Canada
  • Asia-Pacific
    • China
    • Japan
    • South Korea
    • Southeast Asia
    • India
    • Australia
    • Rest of Asia-Pacific
  • Europe
    • Germany
    • France
    • U.K.
    • Italy
    • Netherlands
    • Nordic Countries
    • Rest of Europe
  • Latin America
    • Mexico
    • Brazil
    • Rest of Latin America
  • Middle East & Africa
    • Turkey
    • Saudi Arabia
    • UAE
    • Rest of MEA

Chapter Outline

Chapter 1: Introduces the report scope of the report, global total market size (value, volume and price). This chapter also provides the market dynamics, latest developments of the market, the driving factors and restrictive factors of the market, the challenges and risks faced by manufacturers in the industry, and the analysis of relevant policies in the industry.

Chapter 2: Detailed analysis of Thermal Interface Material for EV Battery manufacturers competitive landscape, price, sales and revenue market share, latest development plan, merger, and acquisition information, etc.

Chapter 3: Provides the analysis of various market segments by Type, covering the market size and development potential of each market segment, to help readers find the blue ocean market in different market segments.

Chapter 4: Provides the analysis of various market segments by Application, covering the market size and development potential of each market segment, to help readers find the blue ocean market in different downstream markets.

Chapter 5: Sales, revenue of Thermal Interface Material for EV Battery in regional level. It provides a quantitative analysis of the market size and development potential of each region and introduces the market development, future development prospects, market space, and market size of each country in the world.

Chapter 6: Sales, revenue of Thermal Interface Material for EV Battery in country level. It provides sigmate data by Type, and by Application for each country/region.

Chapter 7: Provides profiles of key players, introducing the basic situation of the main companies in the market in detail, including product sales, revenue, price, gross margin, product introduction, recent development, etc.

Chapter 8: Analysis of industrial chain, including the upstream and downstream of the industry.

Chapter 9: Conclusion.

Table of Contents

1 Market Overview

  • 1.1 Thermal Interface Material for EV Battery Product Introduction
  • 1.2 Global Thermal Interface Material for EV Battery Market Size Forecast
    • 1.2.1 Global Thermal Interface Material for EV Battery Sales Value (2020-2031)
    • 1.2.2 Global Thermal Interface Material for EV Battery Sales Volume (2020-2031)
    • 1.2.3 Global Thermal Interface Material for EV Battery Sales Price (2020-2031)
  • 1.3 Thermal Interface Material for EV Battery Market Trends & Drivers
    • 1.3.1 Thermal Interface Material for EV Battery Industry Trends
    • 1.3.2 Thermal Interface Material for EV Battery Market Drivers & Opportunity
    • 1.3.3 Thermal Interface Material for EV Battery Market Challenges
    • 1.3.4 Thermal Interface Material for EV Battery Market Restraints
  • 1.4 Assumptions and Limitations
  • 1.5 Study Objectives
  • 1.6 Years Considered

2 Competitive Analysis by Company

  • 2.1 Global Thermal Interface Material for EV Battery Players Revenue Ranking (2024)
  • 2.2 Global Thermal Interface Material for EV Battery Revenue by Company (2020-2025)
  • 2.3 Global Thermal Interface Material for EV Battery Players Sales Volume Ranking (2024)
  • 2.4 Global Thermal Interface Material for EV Battery Sales Volume by Company Players (2020-2025)
  • 2.5 Global Thermal Interface Material for EV Battery Average Price by Company (2020-2025)
  • 2.6 Key Manufacturers Thermal Interface Material for EV Battery Manufacturing Base and Headquarters
  • 2.7 Key Manufacturers Thermal Interface Material for EV Battery Product Offered
  • 2.8 Key Manufacturers Time to Begin Mass Production of Thermal Interface Material for EV Battery
  • 2.9 Thermal Interface Material for EV Battery Market Competitive Analysis
    • 2.9.1 Thermal Interface Material for EV Battery Market Concentration Rate (2020-2025)
    • 2.9.2 Global 5 and 10 Largest Manufacturers by Thermal Interface Material for EV Battery Revenue in 2024
    • 2.9.3 Global Top Manufacturers by Company Type (Tier 1, Tier 2, and Tier 3) & (based on the Revenue in Thermal Interface Material for EV Battery as of 2024)
  • 2.10 Mergers & Acquisitions, Expansion

3 Segmentation by Type

  • 3.1 Introduction by Type
    • 3.1.1 HD Gap Filler
    • 3.1.2 HD Sheet
    • 3.1.3 HD Grease
    • 3.1.4 Other
  • 3.2 Global Thermal Interface Material for EV Battery Sales Value by Type
    • 3.2.1 Global Thermal Interface Material for EV Battery Sales Value by Type (2020 VS 2024 VS 2031)
    • 3.2.2 Global Thermal Interface Material for EV Battery Sales Value, by Type (2020-2031)
    • 3.2.3 Global Thermal Interface Material for EV Battery Sales Value, by Type (%) (2020-2031)
  • 3.3 Global Thermal Interface Material for EV Battery Sales Volume by Type
    • 3.3.1 Global Thermal Interface Material for EV Battery Sales Volume by Type (2020 VS 2024 VS 2031)
    • 3.3.2 Global Thermal Interface Material for EV Battery Sales Volume, by Type (2020-2031)
    • 3.3.3 Global Thermal Interface Material for EV Battery Sales Volume, by Type (%) (2020-2031)
  • 3.4 Global Thermal Interface Material for EV Battery Average Price by Type (2020-2031)

4 Segmentation by Application

  • 4.1 Introduction by Application
    • 4.1.1 Passenger Vehicle
    • 4.1.2 Commercial Vehicle
  • 4.2 Global Thermal Interface Material for EV Battery Sales Value by Application
    • 4.2.1 Global Thermal Interface Material for EV Battery Sales Value by Application (2020 VS 2024 VS 2031)
    • 4.2.2 Global Thermal Interface Material for EV Battery Sales Value, by Application (2020-2031)
    • 4.2.3 Global Thermal Interface Material for EV Battery Sales Value, by Application (%) (2020-2031)
  • 4.3 Global Thermal Interface Material for EV Battery Sales Volume by Application
    • 4.3.1 Global Thermal Interface Material for EV Battery Sales Volume by Application (2020 VS 2024 VS 2031)
    • 4.3.2 Global Thermal Interface Material for EV Battery Sales Volume, by Application (2020-2031)
    • 4.3.3 Global Thermal Interface Material for EV Battery Sales Volume, by Application (%) (2020-2031)
  • 4.4 Global Thermal Interface Material for EV Battery Average Price by Application (2020-2031)

5 Segmentation by Region

  • 5.1 Global Thermal Interface Material for EV Battery Sales Value by Region
    • 5.1.1 Global Thermal Interface Material for EV Battery Sales Value by Region: 2020 VS 2024 VS 2031
    • 5.1.2 Global Thermal Interface Material for EV Battery Sales Value by Region (2020-2025)
    • 5.1.3 Global Thermal Interface Material for EV Battery Sales Value by Region (2026-2031)
    • 5.1.4 Global Thermal Interface Material for EV Battery Sales Value by Region (%), (2020-2031)
  • 5.2 Global Thermal Interface Material for EV Battery Sales Volume by Region
    • 5.2.1 Global Thermal Interface Material for EV Battery Sales Volume by Region: 2020 VS 2024 VS 2031
    • 5.2.2 Global Thermal Interface Material for EV Battery Sales Volume by Region (2020-2025)
    • 5.2.3 Global Thermal Interface Material for EV Battery Sales Volume by Region (2026-2031)
    • 5.2.4 Global Thermal Interface Material for EV Battery Sales Volume by Region (%), (2020-2031)
  • 5.3 Global Thermal Interface Material for EV Battery Average Price by Region (2020-2031)
  • 5.4 North America
    • 5.4.1 North America Thermal Interface Material for EV Battery Sales Value, 2020-2031
    • 5.4.2 North America Thermal Interface Material for EV Battery Sales Value by Country (%), 2024 VS 2031
  • 5.5 Europe
    • 5.5.1 Europe Thermal Interface Material for EV Battery Sales Value, 2020-2031
    • 5.5.2 Europe Thermal Interface Material for EV Battery Sales Value by Country (%), 2024 VS 2031
  • 5.6 Asia Pacific
    • 5.6.1 Asia Pacific Thermal Interface Material for EV Battery Sales Value, 2020-2031
    • 5.6.2 Asia Pacific Thermal Interface Material for EV Battery Sales Value by Region (%), 2024 VS 2031
  • 5.7 South America
    • 5.7.1 South America Thermal Interface Material for EV Battery Sales Value, 2020-2031
    • 5.7.2 South America Thermal Interface Material for EV Battery Sales Value by Country (%), 2024 VS 2031
  • 5.8 Middle East & Africa
    • 5.8.1 Middle East & Africa Thermal Interface Material for EV Battery Sales Value, 2020-2031
    • 5.8.2 Middle East & Africa Thermal Interface Material for EV Battery Sales Value by Country (%), 2024 VS 2031

6 Segmentation by Key Countries/Regions

  • 6.1 Key Countries/Regions Thermal Interface Material for EV Battery Sales Value Growth Trends, 2020 VS 2024 VS 2031
  • 6.2 Key Countries/Regions Thermal Interface Material for EV Battery Sales Value and Sales Volume
    • 6.2.1 Key Countries/Regions Thermal Interface Material for EV Battery Sales Value, 2020-2031
    • 6.2.2 Key Countries/Regions Thermal Interface Material for EV Battery Sales Volume, 2020-2031
  • 6.3 United States
    • 6.3.1 United States Thermal Interface Material for EV Battery Sales Value, 2020-2031
    • 6.3.2 United States Thermal Interface Material for EV Battery Sales Value by Type (%), 2024 VS 2031
    • 6.3.3 United States Thermal Interface Material for EV Battery Sales Value by Application, 2024 VS 2031
  • 6.4 Europe
    • 6.4.1 Europe Thermal Interface Material for EV Battery Sales Value, 2020-2031
    • 6.4.2 Europe Thermal Interface Material for EV Battery Sales Value by Type (%), 2024 VS 2031
    • 6.4.3 Europe Thermal Interface Material for EV Battery Sales Value by Application, 2024 VS 2031
  • 6.5 China
    • 6.5.1 China Thermal Interface Material for EV Battery Sales Value, 2020-2031
    • 6.5.2 China Thermal Interface Material for EV Battery Sales Value by Type (%), 2024 VS 2031
    • 6.5.3 China Thermal Interface Material for EV Battery Sales Value by Application, 2024 VS 2031
  • 6.6 Japan
    • 6.6.1 Japan Thermal Interface Material for EV Battery Sales Value, 2020-2031
    • 6.6.2 Japan Thermal Interface Material for EV Battery Sales Value by Type (%), 2024 VS 2031
    • 6.6.3 Japan Thermal Interface Material for EV Battery Sales Value by Application, 2024 VS 2031
  • 6.7 South Korea
    • 6.7.1 South Korea Thermal Interface Material for EV Battery Sales Value, 2020-2031
    • 6.7.2 South Korea Thermal Interface Material for EV Battery Sales Value by Type (%), 2024 VS 2031
    • 6.7.3 South Korea Thermal Interface Material for EV Battery Sales Value by Application, 2024 VS 2031
  • 6.8 Southeast Asia
    • 6.8.1 Southeast Asia Thermal Interface Material for EV Battery Sales Value, 2020-2031
    • 6.8.2 Southeast Asia Thermal Interface Material for EV Battery Sales Value by Type (%), 2024 VS 2031
    • 6.8.3 Southeast Asia Thermal Interface Material for EV Battery Sales Value by Application, 2024 VS 2031
  • 6.9 India
    • 6.9.1 India Thermal Interface Material for EV Battery Sales Value, 2020-2031
    • 6.9.2 India Thermal Interface Material for EV Battery Sales Value by Type (%), 2024 VS 2031
    • 6.9.3 India Thermal Interface Material for EV Battery Sales Value by Application, 2024 VS 2031

7 Company Profiles

  • 7.1 Jones Tech PLC
    • 7.1.1 Jones Tech PLC Company Information
    • 7.1.2 Jones Tech PLC Introduction and Business Overview
    • 7.1.3 Jones Tech PLC Thermal Interface Material for EV Battery Sales, Revenue, Price and Gross Margin (2020-2025)
    • 7.1.4 Jones Tech PLC Thermal Interface Material for EV Battery Product Offerings
    • 7.1.5 Jones Tech PLC Recent Development
  • 7.2 Shenzhen FRD Science & Technology
    • 7.2.1 Shenzhen FRD Science & Technology Company Information
    • 7.2.2 Shenzhen FRD Science & Technology Introduction and Business Overview
    • 7.2.3 Shenzhen FRD Science & Technology Thermal Interface Material for EV Battery Sales, Revenue, Price and Gross Margin (2020-2025)
    • 7.2.4 Shenzhen FRD Science & Technology Thermal Interface Material for EV Battery Product Offerings
    • 7.2.5 Shenzhen FRD Science & Technology Recent Development
  • 7.3 DuPont
    • 7.3.1 DuPont Company Information
    • 7.3.2 DuPont Introduction and Business Overview
    • 7.3.3 DuPont Thermal Interface Material for EV Battery Sales, Revenue, Price and Gross Margin (2020-2025)
    • 7.3.4 DuPont Thermal Interface Material for EV Battery Product Offerings
    • 7.3.5 DuPont Recent Development
  • 7.4 Dow
    • 7.4.1 Dow Company Information
    • 7.4.2 Dow Introduction and Business Overview
    • 7.4.3 Dow Thermal Interface Material for EV Battery Sales, Revenue, Price and Gross Margin (2020-2025)
    • 7.4.4 Dow Thermal Interface Material for EV Battery Product Offerings
    • 7.4.5 Dow Recent Development
  • 7.5 Shin-Etsu Chemical
    • 7.5.1 Shin-Etsu Chemical Company Information
    • 7.5.2 Shin-Etsu Chemical Introduction and Business Overview
    • 7.5.3 Shin-Etsu Chemical Thermal Interface Material for EV Battery Sales, Revenue, Price and Gross Margin (2020-2025)
    • 7.5.4 Shin-Etsu Chemical Thermal Interface Material for EV Battery Product Offerings
    • 7.5.5 Shin-Etsu Chemical Recent Development
  • 7.6 Parker Hannifin
    • 7.6.1 Parker Hannifin Company Information
    • 7.6.2 Parker Hannifin Introduction and Business Overview
    • 7.6.3 Parker Hannifin Thermal Interface Material for EV Battery Sales, Revenue, Price and Gross Margin (2020-2025)
    • 7.6.4 Parker Hannifin Thermal Interface Material for EV Battery Product Offerings
    • 7.6.5 Parker Hannifin Recent Development
  • 7.7 Fujipoly
    • 7.7.1 Fujipoly Company Information
    • 7.7.2 Fujipoly Introduction and Business Overview
    • 7.7.3 Fujipoly Thermal Interface Material for EV Battery Sales, Revenue, Price and Gross Margin (2020-2025)
    • 7.7.4 Fujipoly Thermal Interface Material for EV Battery Product Offerings
    • 7.7.5 Fujipoly Recent Development
  • 7.8 Henkel
    • 7.8.1 Henkel Company Information
    • 7.8.2 Henkel Introduction and Business Overview
    • 7.8.3 Henkel Thermal Interface Material for EV Battery Sales, Revenue, Price and Gross Margin (2020-2025)
    • 7.8.4 Henkel Thermal Interface Material for EV Battery Product Offerings
    • 7.8.5 Henkel Recent Development
  • 7.9 Wacker
    • 7.9.1 Wacker Company Information
    • 7.9.2 Wacker Introduction and Business Overview
    • 7.9.3 Wacker Thermal Interface Material for EV Battery Sales, Revenue, Price and Gross Margin (2020-2025)
    • 7.9.4 Wacker Thermal Interface Material for EV Battery Product Offerings
    • 7.9.5 Wacker Recent Development
  • 7.10 3M
    • 7.10.1 3M Company Information
    • 7.10.2 3M Introduction and Business Overview
    • 7.10.3 3M Thermal Interface Material for EV Battery Sales, Revenue, Price and Gross Margin (2020-2025)
    • 7.10.4 3M Thermal Interface Material for EV Battery Product Offerings
    • 7.10.5 3M Recent Development
  • 7.11 Bornsun
    • 7.11.1 Bornsun Company Information
    • 7.11.2 Bornsun Introduction and Business Overview
    • 7.11.3 Bornsun Thermal Interface Material for EV Battery Sales, Revenue, Price and Gross Margin (2020-2025)
    • 7.11.4 Bornsun Thermal Interface Material for EV Battery Product Offerings
    • 7.11.5 Bornsun Recent Development
  • 7.12 Jointas Chemical
    • 7.12.1 Jointas Chemical Company Information
    • 7.12.2 Jointas Chemical Introduction and Business Overview
    • 7.12.3 Jointas Chemical Thermal Interface Material for EV Battery Sales, Revenue, Price and Gross Margin (2020-2025)
    • 7.12.4 Jointas Chemical Thermal Interface Material for EV Battery Product Offerings
    • 7.12.5 Jointas Chemical Recent Development
  • 7.13 Nano TIM
    • 7.13.1 Nano TIM Company Information
    • 7.13.2 Nano TIM Introduction and Business Overview
    • 7.13.3 Nano TIM Thermal Interface Material for EV Battery Sales, Revenue, Price and Gross Margin (2020-2025)
    • 7.13.4 Nano TIM Thermal Interface Material for EV Battery Product Offerings
    • 7.13.5 Nano TIM Recent Development
  • 7.14 Amogreentech
    • 7.14.1 Amogreentech Company Information
    • 7.14.2 Amogreentech Introduction and Business Overview
    • 7.14.3 Amogreentech Thermal Interface Material for EV Battery Sales, Revenue, Price and Gross Margin (2020-2025)
    • 7.14.4 Amogreentech Thermal Interface Material for EV Battery Product Offerings
    • 7.14.5 Amogreentech Recent Development

8 Industry Chain Analysis

  • 8.1 Thermal Interface Material for EV Battery Industrial Chain
  • 8.2 Thermal Interface Material for EV Battery Upstream Analysis
    • 8.2.1 Key Raw Materials
    • 8.2.2 Raw Materials Key Suppliers
    • 8.2.3 Manufacturing Cost Structure
  • 8.3 Midstream Analysis
  • 8.4 Downstream Analysis (Customers Analysis)
  • 8.5 Sales Model and Sales Channels
    • 8.5.1 Thermal Interface Material for EV Battery Sales Model
    • 8.5.2 Sales Channel
    • 8.5.3 Thermal Interface Material for EV Battery Distributors

9 Research Findings and Conclusion

10 Appendix

  • 10.1 Research Methodology
    • 10.1.1 Methodology/Research Approach
      • 10.1.1.1 Research Programs/Design
      • 10.1.1.2 Market Size Estimation
      • 10.1.1.3 Market Breakdown and Data Triangulation
    • 10.1.2 Data Source
      • 10.1.2.1 Secondary Sources
      • 10.1.2.2 Primary Sources
  • 10.2 Author Details
  • 10.3 Disclaimer
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제