시장보고서
상품코드
1400761

자율주행 맵 산업 분석(2024년)

Autonomous Driving Map Industry Report,2024

발행일: | 리서치사: ResearchInChina | 페이지 정보: 영문 270 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

HD 지도의 자격에 대한 감독이 엄격해지면서 지도 수집 비용, 업데이트 빈도, 커버리지 등의 문제가 부각되고 있습니다. 도시용 NOA(Navigation on Autopilot) 붐이 일고 있는 가운데, 2023년에는 '경량 지도'형 지능형 운전 솔루션이 화두로 떠오르고 있습니다. 이 솔루션은 오프라인 HD 맵에 대한 의존도를 낮춰 HD 맵 개발에 도전장을 내밀고 있습니다.

자율주행의 개발 과정에서 인간과 기계의 협동 운전이 일정 기간 중 존재한다는 것을 알 수 있습니다. 이 단계에서 필요한 지도가 반드시 HD 지도일 필요는 없습니다. 서로 다른 지도의 보완적인 특성을 통합한 멀티소스 지도가 이 단계의 자율주행 요구에 더 적합할 수 있습니다.

차세대 자율주행 지도 개발, 각 조직과 기업은 어떻게 대응할 것인가?

정부: HD 지도의 측량-매핑 A급 자격을 강화하는 한편, ADAS 지도와 B급 측량-매핑 자격 심사를 강화합니다.

OEM: 내비게이션용 전자지도 측량 및 매핑 A급 자격에 대한 관련 부문의 심사가 엄격해짐에 따라 OEM은 측량 및 매핑 A급 자격을 도입하는 것을 자제하고 있습니다. 현재 일부 OEM은 실시간 지도 제작에 신경망 모델 알고리즘을 사용하여 오프라인 HD 지도에 대한 의존도를 낮추고 있으며, Tesla, Li Auto, Xpeng, Huawei의 ADS 지원 모델이 그 대표적인 예입니다.

지도 프로바이더: 시장 수요를 충족시키기 위해 SD 데이터, HD 데이터, LD 데이터 등을 하나의 지도에 통합하여 내비게이션의 연속성을 보장하는 '경량화 지도' 솔루션을 발표했습니다. 일례로 텐센트는 '3-in-one' 지능형 운전 지도를 발표한 후 지도 프로바이더, 자동차 제조업체, 자율주행 기업 및 기타 기업의 협력 구축을 지원하는 '지능형 운전 클라우드 지도'를 선보였습니다.

"경량 지도" 솔루션에 적극적인 것은 주로 신흥 자동차 제조업체들입니다. 그 이유 중 하나는 그들이 도시 지역의 NOA 기능을 매우 빠르게 구현하고 있으며, HD 지도가 그들의 관련 요구에 부응하지 못하기 때문입니다.

세계 및 중국의 자율주행 맵 시장·산업에 대해 분석하고, 기술 개요 및 관련 규제·기준, 기술·시장 최신 상황(탑재 대수·보급률, 기술의 활용 동향 등), 향후 기술개발·활용 시나리오나 시장 성장의 방향성, 주요 기업의 개요와 주력 제품, 등의 정보를 정리하여 전해드립니다.

목차

제1장 자율주행 맵에 관한 정책·기준·규제의 현황

제2장 자율주행 맵 시장의 현황

  • 자율주행 맵의 개발 방향성
  • 자율주행 맵의 분류 : 내비게이션 맵(SD맵)
    • 카 내비게이션(car navigation) 맵 : 2D로부터 3D로의 업그레이드
    • 3D 내비게이션 맵 레이아웃 사례 : Tencent
    • 내비게이션 맵 : '비맵' 지능형 운전 솔루션의 기초 데이터를 제공
    • 주류 내비게이션 맵 : 차량에 대한 설치 상황
    • 중국의 승용차용 내비게이션 맵 설치 상황과 설치율
    • 중국의 승용차용 내비게이션 맵 설치 상황과 설치율 : 가격별
    • 중국의 승용차용 내비게이션 맵 설치 상황과 설치율 : 상위 차종 20종
    • 중국의 승용차용 내비게이션 맵 설치 상황과 설치율 : 상위 브랜드 20사
  • 자율주행 맵의 분류 : ADAS 맵(SD Pro MAP)
    • ADAS 맵의 카테고리
    • ADAS 맵 작성 프로세스
    • ADAS 맵의 주요 기술 : 기초 모델
    • ADAS 맵 솔루션 : 주류 맵 프로바이더가 사전에 맵을 구축
    • ADAS 맵 솔루션 : 일부 프로바이더는 알고리즘을 사용해 온라인으로 맵을 구축
    • Tier 1의 ADAS 맵 솔루션 : Baidu의 지능형 운전 솔루션용 매핑 기술
    • Tier 1의 ADAS 맵 솔루션 : DeepRoute.ai Driver 3.0
    • Tier 1의 ADAS 맵 솔루션 : MAXIEYE의 하이퍼 스페이스 아키텍처
    • Tier 1의 ADAS 맵 솔루션 : MAXIEYE의 자동 매핑 메모리
    • Tier 1의 ADAS 맵 솔루션 : Juefx Technology + Horizon Robotics
    • Tier 1의 ADAS 맵 솔루션 : Huawei
    • Tier 1의 ADAS 맵 솔루션 : Momenta의 비맵·지능형 운전 알고리즘 솔루션
    • Tier 1의 ADAS 맵 솔루션 : Momenta의 비맵·지능형 운전 알고리즘 로드맵
    • ADAS 맵의 차량에 대한 탑재 상황
    • OEM의 ADAS 맵 솔루션 : Tesla FSD
    • OEM의 ADAS 맵 솔루션 : Voyah의 도시 도로용 고정도 측위 솔루션
    • ADAS 맵의 개발 동향 : SD/HD 맵의 일관 제작
  • 자율주행 맵의 분류 : HD 맵
    • HD 맵
    • 지각과 HD 맵의 상호 보완 관계에 의한 도시용 NOA의 안전성 향상
    • 양산형 지도 프로바이더 대기업 3사의 비교
    • HD 맵에 대한 OEM의 자세
    • HD 맵의 개발 루트
  • 기존형 지도 프로바이더는 어떻게 도시용 NOA에 기반한 레이아웃을 작성하는가?
    • 도시용 NOA가 승용차 자율주행의 새로운 전장이 된다.
    • 자율주행용 멀티 소스·퓨전 맵 : 도시용 NOA에서의 영속적인 문제에 대한 효과적인 해결책
    • 도시용 NOA 시나리오 : 지도 프로바이더는 SD Pro MAP의 도입에 중점을 둔다.
    • SD Pro MAP의 기본 요건
    • 도시용 NOA가 추진하는 지도 프로바이더의 레이아웃 아이디어 : 지도와 경량 지도 모델의 작성
    • 지도 제공자의 레이아웃 전략
  • OEM에 의한 자율주행 맵 선정

제3장 HD 맵 시장의 현황

  • HD 맵 시장 규모
    • 중국의 승용차 OEM용 HD 맵 시장 규모
    • HD 맵 대응 양산형 승용차 모델 : 중국내 판매 상위 10종(2022-2023년)
    • 중국내 고정도 측위를 갖춘 양산형 승용차 모델의 가격대(2022-2023년)
  • HD 맵 시장의 경쟁 패턴
    • HD 맵 시장의 주요 기업
    • HD 맵 시장의 기업 : 중국의 맵 프로바이더
    • HD 맵 시장의 기업 : OEM의 HD 맵 레이아웃
    • HD 맵 시장의 기업 : OEM은 HD 맵의 자사개발에서 과제에 직면하고 있다.
    • 과제를 해결하는 OEM의 솔루션
    • HD 맵 시장의 기업 : 외자계 맵 프로바이더
  • HD 맵 도입의 비즈니스 모델
    • HD 맵 비즈니스 모델(1) : 자율주행
    • HD 맵 비즈니스 모델(2) : 주차장
    • HD 맵 매출 모델의 분류
    • HD 맵 비즈니스 모델의 개요 : 국내계 맵 프로바이더
    • HD 맵 비즈니스 모델의 개요 : 외자계 맵 프로바이더
    • 도시용 NOA 개발에서 맵 프로바이더 비즈니스 모델의 변화
  • HD 맵의 개발에서의 과제
    • HD 맵의 개발이 보틀넥에 직면
    • HD 맵 개발의 과제
  • HD 지도 데이터 배포와 융합
    • HD 맵 데이터 배포·융합 프로세스
    • 프로세스(1) : HD 맵 데이터 분배 엔진 아키텍처
    • 프로세스(1) : HD 맵 데이터 분배 엔진 제휴 폼
    • 프로세스(1) : HD 맵 데이터 분배 엔진의 주요 공급업체
    • 프로세스(2) : HD 맵의 데이터 포맷 변환
    • 프로세스(3) : HD 맵 데이터 배포측과 수신측의 상호작용
    • 프로세스(4) : HD 맵 데이터 융합
    • HD 맵 데이터 배포·융합의 동향
  • 차선 레벨 측위에 적용된 HD 맵
    • HD 맵 준수의 차선 레벨 측위 솔루션 : 구조
    • HD 맵 준수의 차선 레벨 측위 솔루션 : 프로바이더
    • 사례

제4장 OEM의 지능형 운전 맵 애플리케이션 레이아웃

  • 각종 레벨의 자율주행에 필요한 맵 요소
    • 자율주행에 필요한 맵 요소 : L2 NOA 기능
    • 자율주행에 필요한 맵 요소 : L2 핸즈프리 기능
    • 자율주행에 필요한 맵 요소 : L3
    • 자율주행에 필요한 맵 요소 : L4 이상
  • OEM에 의한 양산형 승용차에 대한 지능형 운전 맵의 도입
    • 중국의 독립계 브랜드에 의한 양산형 승용차에 대한 지능형 운전 맵의 탑재 상황
    • 합작계 브랜드에 의한 양산형 승용차에 대한 지능형 운전 맵의 탑재 상황
    • OEM의 지능형 운전 맵 도입 사례(1) : GAC Aion의 HD 맵 솔루션
    • OEM의 지능형 운전 맵 도입 사례(1) : GAC Aion의 Electronic Horizon System
    • OEM의 지능형 운전 맵 도입 사례(1) : GAC Aion의 HD 맵 곡률·경사
    • OEM의 지능형 운전 맵 도입 사례(2) : Xpeng에 의한 HD 맵 준수 도시 NOA의 실현
    • OEM의 지능형 운전 맵 도입 사례(2) : Xpeng XNGP의 '비맵' 솔루션 갱신
    • OEM의 지능형 운전 맵 도입 사례(3) : Great Wall WEY가 HD 맵을 활용하여 P2P 자율주행을 실현
    • OEM의 지능형 운전 맵 도입 사례(4) : Li Auto에 의한 HD 맵의 활용
    • OEM의 지능형 운전 맵 도입 사례(4) : Li AD Max 3.0에 의한 '비맵' 솔루션 갱신
    • OEM의 지능형 운전 맵 도입 사례(4) : Li Auto에 의한 온라인 매핑 기술의 활용
    • OEM의 지능형 운전 맵 도입 사례(5) : NIO NOP와 HD 맵의 융합
    • OEM의 지능형 운전 맵 도입 사례(5) : NIO는 '비맵' 솔루션을 신중하게 검토
    • OEM의 지능형 운전 맵 도입 사례(6)
    • OEM의 지능형 운전 맵 도입 사례(7)
    • OEM의 지능형 운전 맵 도입 사례(8)
    • OEM의 지능형 운전 맵 도입 사례(9)
  • 지능형 운전 맵의 활용 상황 : 서브 시나리오별 - 승용차의 저속 주차
    • AVP 맵 카테고리(1) : HD 맵
    • AVP 맵 카테고리(1) : SLAM 실시간 맵
    • 주차장용 주차 맵 프로바이더 : 상위 5사
    • 도입 사례 : Avatr 주차 기능 매핑 방법
  • 지능형 운전 맵의 활용 상황 : 서브 시나리오별 - 자동 물품 이송
    • 저속 자동 물품 이송에서 HD 맵의 중요성
    • 저속 자동 물품 이송을 위한 HD 매핑 방법
    • 자동 물품 이송용 HD 맵 프로바이더의 패턴
  • 지능형 운전 맵의 활용 상황 : 서브 시나리오별 - 자동 인원 이송
    • 첨단(자율형) 자율주행에서 HD 맵의 중요성
    • 자동 인원 이송의 활용 시나리오

제5장 국내계·외자계 맵 프로바이더

  • Baidu Maps
  • NavInfo
  • Amap
  • Tencent
  • BrightMap
  • Mxnavi
  • Huawei
  • Heading Data Intelligence
  • JD
  • Leador
  • eMapgo
  • Momenta
  • Roadgrids
  • Here

제6장 HD 맵 기술 기업

  • Mobileye
  • NVIDIA
  • DeepMotion
  • Mapbox
KSA 24.01.17

As the supervision of HD map qualifications tightens, issues such as map collection cost, update frequency, and coverage stand out. Amid the boom of urban NOA, the "lightweight map" intelligent driving solution has become a hot topic in 2023. This solution lessens the dependence on offline HD maps, posing a challenge to the development of HD maps.

From the development process of autonomous driving, it can be seen that human-machine co-driving will exist for a period of time. The need for maps in this phase is not necessarily HD maps. Multi-source maps that integrate the complementary characteristics of different maps may be more suitable for the needs of autonomous driving in this phase.

How do players respond to the development of new-generation autonomous driving maps?

Government: while tightening the Class A qualification for HD map surveying and mapping, work to enhance the review of ADAS maps and Class B surveying and mapping qualification.

In June 2023, the Map Technology Review Center of the Ministry of Natural Resources announced the phased progress in review of ADAS maps of ordinary urban roads across China, and allowed companies to submit ADAS maps of nationwide ordinary urban roads for review in batches. Currently, NavInfo's approved nationwide urban ADAS map data have covered 120 cities in 30 provinces; Baidu Maps has ADAS maps of 134 cities approved.

OEMs: relevant departments' stricter review of the Class A qualification for navigation electronic map surveying and mapping has discouraged OEMs to deploy the Class A qualification for map surveying and mapping. At present, some OEMs use neural network model algorithms for real-time mapping and lower reliance on offline HD maps, and the ADS-enabled models of Tesla, Li Auto, Xpeng, and Huawei are typical cases; some other OEMs prefer stability, and obtain surveying and mapping qualifications by way of applying for Class B qualification or establishing new joint ventures with map providers. For example, GAC together with its partners such as Nanjing Institute of Surveying, Mapping and Geotechnical Surveying Co., Ltd. co-funded "Guangdong Guangqi Yutu Equity Investment Partnership (Limited Partnership)"; Anhui NIO Smart Mobility Technology Co., Ltd., a subsidiary of NIO, applied for the Class A qualification for Internet map services.

Map providers: to meet the market demand, they launch "lightweight map" solutions, putting SD data, HD data, LD data, etc. on one map to ensure the continuity of navigation. One example is Tencent which introduced the "Intelligent Driving Cloud Map" to support the cooperative construction by map providers, automakers, autonomous driving companies and other players, after launching its "three-in-one" intelligent driving map.

Emerging carmakers take the lead in launching "lightweight map" solutions.

At present, OEMs' solutions that do not rely on HD maps don't mean that they do not use maps at all, but subtract elements from HD maps or add them to navigation maps instead.

It is mainly emerging carmakers that are more active in "lightweight map" solutions. One reason is that they implement urban NOA functions very quickly, and HD maps fail to answer their relevant needs.

Xpeng

In the first half of 2023, Xpeng started developing intelligent driving solutions based on SD maps. NGP that uses HD maps or does not use adopts the same technology stack. The only difference is that the original HD map input is replaced by the navigation map input, and the understanding of navigation information in real-time perception.

Xpeng's solution that does not use HD maps has the advantages of 4 to 10 times faster generalization speed, completely solving the problem of data freshness, reducing costs, and popularizing intelligent driving, compared with the solution using HD maps.

The "no offline HD map" solution implemented by Xpeng relies on XNet to build a "HD map" in real time.

Li Auto

Li Auto has launched urban NOA in 2023. This solution does not rely on HD maps. It aims to construct the features of intersections to assist in real-time perception and mapping. In a word, road sections are "unmapped", and intersections are mapped by crowdsourcing.

Li Auto is now promoting the NPN solution, hoping to solve the problem of online map updates.

In terms of OEMs' solutions, despite less dependence on HD maps, the "lightweight map" solution has higher requirements for vehicle perception and algorithms.

Conventional map providers launch lightweight autonomous driving map solutions to meet demand.

The voice of OEMs to "not rely on HD maps" is growing ever louder. To cater to the market demand, conventional map providers also make changes, trying hard to solve the three enduring problems of HD maps: update frequency, coverage area, and cost, and launching map products that more fit in with the current needs of autonomous driving.

Baidu

In July 2023, Baidu MapAuto 6.5, a human-machine co-driving map, was launched. It is a full 3D lane-level map and also an all-scenario human-machine co-driving map. It can provide three types of data: SD, LD and HD. Wherein, SD data has covered the whole country and is currently available on 10 million vehicles. Baidu's LD lightweight map data service consists of lane-level topology, complex scene geometry, experience layer, and dynamic information layer, allowing for daily update.

Amap

The new HQ Live MAP, launched in June 2023, combines the merits of HD MAP and SD MAP. In spite of a lower accuracy than HD MAP (absolute accuracy: 50cm, relative accuracy: 10cm), HQ Live MAP is enough for ADAS scenarios (highway and urban expressway scenarios: absolute accuracy of 1m, and relative accuracy of 30cm; ordinary urban road scenarios: relative accuracy of 1m), and it also simplifies unnecessary map elements in ordinary urban road scenarios, further reducing production and deployment costs.

Tencent

The latest Intelligent Driving Cloud Map, released in September 2023, enables fully cloud-based autonomous driving maps, supports element-level and minute-level online updates, and allows for the cooperative construction by map providers, automakers, autonomous driving companies and other players.

Tencent Intelligent Driving Cloud Map features scalable multi-layer forms, covering basic map layer, update element layer, ODD dynamic layer, driving experience layer and operation layer. Automakers can flexibly configure and manage the layers as they need, and build a data-driven operation platform suitable for themselves by combining it with their own data layer.

Autonomous Driving Map Industry Report,2024 highlights the following:

Autonomous driving map (formulation of policies, regulations, standards, etc.);

Vehicle map amid the development of urban NOA (development direction, coping strategies of conventional map providers, main types of maps used in urban NOA, etc.);

HD map (market status, market size, company pattern, business model, development challenges, etc.);

Application scenarios of intelligent driving map (high-speed autonomous driving of passenger cars, low-speed parking, autonomous human carrying, autonomous object carrying, etc.);

Major Chinese and foreign map providers (map product series, new product layout, product application cooperation, etc.);

HD map technology companies (technology layout, new technology R&D, etc.).

Table of Contents

1 Status Quo of Policies, Standards and Regulations Concerning Autonomous Driving Map

  • 1.1 Policies Concerning Autonomous Driving Map
    • 1.1.1 The Latest Policies in 2023: Guidelines for Construction of Intelligent Vehicle Basic Map Standard System (2023 Edition) (Released) (1)
    • 1.1.2 The Latest Policies in 2023: Guidelines for Construction of Intelligent Vehicle Basic Map Standard System (2023 Edition) (Released) (2)
    • 1.1.3 The Latest Policies in 2023: Guiding Opinions of Beijing Municipality on Piloting of HD Maps for Intelligent Connected Vehicles
    • 1.1.4 The Latest Policies in 2023: Administrative Regulations of Hangzhou City on HD Maps for Intelligent Connected Vehicles
  • 1.2 Regulations Concerning Autonomous Driving Map
    • 1.2.1 Foreign Regulations Concerning HD Map
    • 1.2.2 Chinese Regulations Concerning HD Map
    • 1.2.3 The Latest Regulations in 2023: National Regulatory Authorities Allow Maps of Nationwide City-level Roads to Be Submitted for Review
    • 1.2.4 The Latest Regulations in 2023: Improving the Efficiency of HD Map Review
  • 1.3 Standards Concerning Autonomous Driving Map
    • 1.3.1 Current Formulation of Foreign HD Map Standards
    • 1.3.2 Current Formulation of Chinese HD Map Standards (Released)
    • 1.3.3 Current Formulation of Chinese HD Map Standards (Pre-researched)
    • 1.3.4 Formulation of HD Map Standards in 2023: Incremental Update on Autonomous Driving Maps for Intelligent Connected Vehicles (Filed) (1)
    • 1.3.5 Formulation of HD Map Standards in 2023: Incremental Update on Autonomous Driving Maps for Intelligent Connected Vehicles (Filed) (2)

2 Status Quo of Autonomous Driving Map Market

  • 2.1 Development Direction of Autonomous Driving Maps
    • 2.1.1 Classification of Vehicle Maps: Navigation Map, ADAS Map and HD Map
    • 2.1.2 Autonomous Driving Is in the Phase of Human-machine Co-driving
    • 2.1.3 Challenges Posed to the Vehicle Map Industry in the Phase of Human-machine Co-driving
    • 2.1.4 Framework of Vehicle Map in the Phase of Human-machine Co-driving
    • 2.1.5 Vehicle Map Installation Trend: Navigation Map, ADAS Map and HD Map
  • 2.2 Classification of Autonomous Driving Maps: Navigation Map (SD Map)
    • 2.2.1 Vehicle Navigation Map Upgraded from 2D to 3D
    • 2.2.2 3D Navigation Map Layout Case: Tencent
    • 2.2.3 Navigation Map Provides Basic Data under the "Non-map" Intelligent Driving Solution (1)
    • 2.2.4 Navigation Map Provides Basic Data under the "Non-map" Intelligent Driving Solution (2)
    • 2.2.5 Installation of Mainstream Navigation Maps in Vehicles
    • 2.2.6 Installations and Installation Rate of Navigation Maps in Passenger Cars in China
    • 2.2.7 Installations and Installation Rate of Navigation Maps in Passenger Cars in China (by Price)
    • 2.2.8 Installations and Installation Rate of Navigation Maps in Passenger Cars in China (TOP20 Models)
    • 2.2.9 Installations and Installation Rate of Navigation Maps in Passenger Cars in China (TOP20 Brands)
  • 2.3 Classification of Autonomous Driving Maps: ADAS Map (SD Pro MAP)
    • 2.3.1 Categories of ADAS Maps
    • 2.3.2 ADAS Map Production Process
    • 2.3.3 ADAS Map Production Process 1
    • 2.3.4 ADAS Map Production Process 2
    • 2.3.5 ADAS Map Production Process 3
    • 2.3.6 Key Technology for ADAS Maps: Foundation Model
    • 2.3.7 ADAS Map Solution: Mainstream Map Providers Build Maps in Advance
    • 2.3.8 ADAS Map Solution: Some Providers Build Maps Online via Algorithms (1)
    • 2.3.9 ADAS Map Solution: Some Providers Build Maps Online via Algorithms (2)
    • 2.3.10 Tier1s' ADAS Map Solutions: Mapping Technology for Baidu Intelligent Driving Solution (1)
    • 2.3.11 Tier1s' ADAS Map Solutions: Mapping Technology for Baidu Intelligent Driving Solution (2)
    • 2.3.12 Tier1s' ADAS Map Solutions: DeepRoute.ai Driver 3.0 (1)
    • 2.3.13 Tier1s' ADAS Map Solutions: DeepRoute.ai Driver 3.0 (2)
    • 2.3.14 Tier1s' ADAS Map Solutions: MAXIEYE Hyperspace Architecture
    • 2.3.15 Tier1s' ADAS Map Solutions: MAXIEYE's Automatic Mapping Memory
    • 2.3.16 Tier1s' ADAS Map Solutions: Juefx Technology + Horizon Robotics
    • 2.3.17 Tier1s' ADAS Map Solutions: Huawei
    • 2.3.18 Tier1s' ADAS Map Solutions: Momenta's Non-map Intelligent Driving Algorithm Solution (1)
    • 2.3.19 Tier1s' ADAS Map Solutions: Momenta's Non-map Intelligent Driving Algorithm Solution (2)
    • 2.3.20 Tier1s' ADAS Map Solutions: Momenta's Non-map Intelligent Driving Algorithm Roadmap
    • 2.3.21 Installation of ADAS Maps in Vehicles (1)
    • 2.3.22 Installation of ADAS Maps in Vehicles (2)
    • 2.3.23 OEMs' ADAS Map Solutions: Tesla FSD (1)
    • 2.3.24 OEMs' ADAS Map Solutions: Tesla FSD (2)
    • 2.3.25 OEMs' ADAS Map Solutions: Voyah Urban Road High-Precision Positioning Solution
    • 2.3.26 Development Trend of ADAS Maps: Integrated Production of SD/HD Maps
  • 2.4 Classification of Autonomous Driving Maps: HD Map
    • 2.4.1 HD Map
    • 2.4.2 Perception and HD Maps Complement Each Other to Improve Urban NOA Safety
    • 2.4.3 Comparison between Three Major Mass-Production Map Providers
    • 2.4.4 OEMs' Attitude towards HD Maps
    • 2.4.5 HD Map Development Route
  • 2.5 How Do Conventional Map Providers Make Layout Driven by Urban NOA?
    • 2.5.1 Urban NOA Becomes A New Battlefield for Autonomous Driving of Passenger Cars
    • 2.5.2 Multi-source Fusion Map for Autonomous Driving Is An Effective Solution to Enduring Problems in Urban NOA
    • 2.5.3 In Urban NOA Scenario, Map Providers Focus on Deploying SD Pro MAP
    • 2.5.4 Basic Requirements for SD Pro MAP
    • 2.5.5 The Layout Idea of Map Providers Driven by Urban NOA: Create A Map and Lightweight Map Model
    • 2.5.6 Layout Strategy of Map Providers (1)
    • 2.5.7 Layout Strategy of Map Providers (2)
    • 2.5.8 Layout Strategy of Map Providers (3)
    • 2.5.9 Layout Strategy of Map Providers (4)
  • 2.6 Autonomous Driving Map Selection by OEMs
    • 2.6.1 Autonomous Driving Map Selection by OEMs (1)
    • 2.6.2 Autonomous Driving Map Selection by OEMs (2)

3 Status Quo of HD Map Market

  • 3.1 HD Map Market Size
    • 3.1.1 China's Passenger Car OEM HD Map Market Size (1)
    • 3.1.2 China's Passenger Car OEM HD Map Market Size (2)
    • 3.1.3 Top 10 HD Map-enabled Production Passenger Car Models by Sales in China, 2022-2023
    • 3.1.4 Price Range of Production Passenger Car Models with High-precision Positioning in China, 2022-2023
  • 3.2 Competitive Pattern of HD Map Market
    • 3.2.1 Major Players in HD Map Market
    • 3.2.2 Players in HD Map Market (1): Chinese Map Providers (1)
    • 3.2.3 Players in HD Map Market (1): Chinese Map Providers (2)
    • 3.2.4 Players in HD Map Market (2): HD Map Layout of OEMs
    • 3.2.5 Players in HD Map Market (2): OEMs Face Challenges in Self-development of HD Maps
    • 3.2.6 OEMs' Solutions to Map Challenges (1)
    • 3.2.7 OEMs' Solutions to Map Challenges (2)
    • 3.2.8 Players in HD Map Market (3): Foreign Map Providers
  • 3.3 Business Models for HD Map Implementation
    • 3.3.1 HD Map Business Model 1: Autonomous Driving
    • 3.3.2 HD Map Business Model 2: Parking Lot
    • 3.3.3 Classification of HD Map Profit Models
    • 3.3.4 Summary of HD Map Business Models: Chinese Map Providers (1)
    • 3.3.5 Summary of HD Map Business Models: Chinese Map Providers (2)
    • 3.3.6 Summary of HD Map Business Models: Foreign Map Providers
    • 3.3.7 Changes in Business Models of Map Providers in the Development of Urban NOA
  • 3.4 Challenges in Development of HD Maps
    • 3.4.1 Development of HD Maps Faces Bottlenecks
    • 3.4.2 Challenge 1 in Development of HD Maps
    • 3.4.3 Challenge 2 in Development of HD Maps
    • 3.4.4 Challenge 3 in Development of HD Maps
    • 3.4.5 Challenge 4 in Development of HD Maps
  • 3.5 HD Map Data Distribution and Fusion
    • 3.5.1 HD Map Data Distribution and Fusion Processes
    • 3.5.2 Process 1: HD Map Data Distribution Engine Architecture
    • 3.5.3 Process 1: HD Map data Distribution Engine Integration Form
    • 3.5.4 Process 1: Main Suppliers of HD Map Data Distribution Engine
    • 3.5.5 Process 2: HD Map Data Format Conversion (1)
    • 3.5.6 Process 2: HD Map Data Format Conversion (2)
    • 3.5.7 Process 3: Interaction between HD Map Data Distribution and Receiving End
    • 3.5.8 Process 4: HD Map Data Fusion
    • 3.5.9 HD Map Data Distribution and Fusion Trends
  • 3.6 HD Maps Applied to Lane-level Positioning
    • 3.6.1 Structure of Lane-level Positioning Solutions Based on HD Maps
    • 3.6.2 Providers of Lane-level Positioning Solutions Based on HD Maps
    • 3.6.3 Cases

4 Intelligent Driving Map Application Layout of OEMs

  • 4.1 Map Elements Required for Different Levels of Autonomous Driving
    • 4.1.1 Map Elements Required for Autonomous Driving: L2 NOA Function
    • 4.1.2 Map Elements Required for Autonomous Driving: L2 Hands Free Function
    • 4.1.3 Map Elements Required for Autonomous Driving: L3
    • 4.1.4 Map Elements Required for Autonomous Driving: L4 or Higher Level
  • 4.2 OEMs' Installation of Intelligent Driving Maps in Production Passenger Cars
    • 4.2.1 Chinese Independent Brands' Installation of Intelligent Driving Maps in Production Passenger Cars (1)
    • 4.2.2 Chinese Independent Brands' Installation of Intelligent Driving Maps in Production Passenger Cars (2)
    • 4.2.3 Chinese Independent Brands' Installation of Intelligent Driving Maps in Production Passenger Cars (3)
    • 4.2.4 Chinese Independent Brands' Installation of Intelligent Driving Maps in Production Passenger Cars (4)
    • 4.2.5 Chinese Independent Brands' Installation of Intelligent Driving Maps in Production Passenger Cars (5)
    • 4.2.6 Chinese Independent Brands' Installation of Intelligent Driving Maps in Production Passenger Cars (6)
    • 4.2.7 Chinese Independent Brands' Installation of Intelligent Driving Maps in Production Passenger Cars (7)
    • 4.2.8 Chinese Independent Brands' Installation of Intelligent Driving Maps in Production Passenger Cars (8)
    • 4.2.9 Joint Venture Brands' Installation of Intelligent Driving Maps in Production Passenger Cars
    • 4.2.10 OEMs' Intelligent Driving Map Installation Case 1: GAC Aion HD Map Solution
    • 4.2.11 OEMs' Intelligent Driving Map Installation Case 1: GAC Aion Electronic Horizon System
    • 4.2.12 OEMs' Intelligent Driving Map Installation Case 1: GAC Aion HD Map Curvature and Slope
    • 4.2.13 OEMs' Intelligent Driving Map Installation Case 2: Xpeng Realizes Urban NOA Based on HD Maps
    • 4.2.14 OEMs' Intelligent Driving Map Installation Case 2: Xpeng XNGP Upgrades "Non-map" Solution (1)
    • 4.2.15 OEMs' Intelligent Driving Map Installation Case 2: Xpeng XNGP Upgrades "Non-map" Solution (2)
    • 4.2.16 OEMs' Intelligent Driving Map Installation Case 2: Xpeng XNGP Upgrades "Non-map" Solution (3)
    • 4.2.17 OEMs' Intelligent Driving Map Installation Case 3: Great Wall WEY Uses HD Maps to Realize Point-to-point Autonomous Driving
    • 4.2.18 OEMs' Intelligent Driving Map Installation Case 4: Li Auto Uses HD Maps
    • 4.2.19 OEMs' Intelligent Driving Map Installation Case 4: Li AD Max 3.0 Upgrades "Non-map" Solution
    • 4.2.20 OEMs' Intelligent Driving Map Installation Case 4: Li Auto Uses Online Mapping Technology (1)
    • 4.2.21 OEMs' Intelligent Driving Map Installation Case 4: Li Auto Uses Online Mapping Technology (2)
    • 4.2.22 OEMs' Intelligent Driving Map Installation Case 5: NIO NOP Fuses HD Maps
    • 4.2.23 OEMs' Intelligent Driving Map Installation Case 5: NIO Carefully Explores "Non-map" Solution
    • 4.2.24 OEMs' Intelligent Driving Map Installation Case 6
    • 4.2.25 OEMs' Intelligent Driving Map Installation Case 7
    • 4.2.26 OEMs' Intelligent Driving Map Installation Case 8
    • 4.2.27 OEMs' Intelligent Driving Map Installation Case 9
  • 4.3 Intelligent Driving Map Application in Sub-scenarios: Low-speed Parking of Passenger Cars
    • 4.3.1 AVP Map Category 1: HD Map
    • 4.3.2 AVP Map Category 1: SLAM Real-Time Map
    • 4.3.3 Top Five Providers of Parking Maps for Parking Lots
    • 4.3.4 Installation Case: Mapping Method for Avatr Parking Functions
  • 4.4 Intelligent Driving Map Application in Sub-scenarios: Autonomous Object Carrying
    • 4.4.1 Importance of HD Maps for Low-speed Autonomous Object Carrying
    • 4.4.2 HD Mapping Method for Low-speed Autonomous Object Carrying
    • 4.4.3 Pattern of Providers of HD Maps for Autonomous Object Carrying (1)
    • 4.4.4 Pattern of Providers of HD Maps for Autonomous Object Carrying (2)
  • 4.5 Intelligent Driving Map Application in Sub-scenarios: Autonomous Human Carrying
    • 4.5.1 Importance of HD Maps for High-level (Autonomous) Automated Driving
    • 4.5.2 Application Scenarios of Autonomous Human Carrying (1)
    • 4.5.3 Application Scenarios of Autonomous Human Carrying (2)
    • 4.5.4 Application Scenarios of Autonomous Human Carrying (3)

5 Chinese and Foreign Map Providers

  • 5.1 Baidu Maps
    • 5.1.1 Autonomous Driving Architecture Adjustment: Constrict L4/L2 Solutions
    • 5.1.2 Baidu Is Committed to Building Maps for Autonomous Driving
    • 5.1.3 Vehicle Map Product System
    • 5.1.4 Vehicle Map Product 1: Navigation Map
    • 5.1.5 Vehicle Map Product 2: Baidu MapAuto 6.5 (1)
    • 5.1.6 Vehicle Map Product 2: Baidu MapAuto 6.5 (2)
    • 5.1.7 Vehicle Map Product 2: Baidu MapAuto 6.5 (3)
    • 5.1.8 Vehicle Map Product 3: HD Map (1)
    • 5.1.9 Vehicle Map Product 3: HD Map (2)
    • 5.1.10 Map Is A Competitive Edge of Baidu's Autonomous Driving System
    • 5.1.11 Core Value 1 of "Familiar Road" Map: Safety (1)
    • 5.1.12 Core Value 1 of "Familiar Road" Map: Safety (2)
    • 5.1.13 Core Value 2 of "Familiar Road" Map: Comfort
    • 5.1.14 Core Value 3 of "Familiar Road" Map: High Efficiency
    • 5.1.15 Low-cost Construction of Intelligent Driving Map Technology 1: Mapping
    • 5.1.16 Low-cost Construction of Intelligent Driving Map Technology 2: Automatic Feature Extraction
    • 5.1.17 Compared with HD Maps, Baidu Autonomous Driving Map Loses Weight
  • 5.2 NavInfo
    • 5.2.1 New Vehicle Map Product System
    • 5.2.2 New Vehicle Map Product 1: Navigation Map
    • 5.2.3 New Vehicle Map Product 2: Scene map (1)
    • 5.2.4 New Vehicle Map Product 2: Scene Map (2)
    • 5.2.5 New Vehicle Map Product 3: HD Map (1)
    • 5.2.6 New Vehicle Map Product 3: HD Map (2)
    • 5.2.7 New Vehicle Map Product 3: HD Map (3)
    • 5.2.8 New Vehicle Map Product 3: HD Map (4)
    • 5.2.9 Intelligent Driving Map Application Case 1
    • 5.2.10 Intelligent Driving Map Application Case 2
    • 5.2.11 Intelligent Driving Map Application Case 3
  • 5.3 Amap
    • 5.3.1 Vehicle Map Product 1
    • 5.3.2 Vehicle Map Product 2
    • 5.3.3 Vehicle Map Product 3
    • 5.3.4 Matching of HD Map and SD Map
  • 5.4 Tencent
    • 5.4.1 "Vehicle-Cloud Integration" Strategic Layout
    • 5.4.2 Vehicle Map Product 1: Navigation Map
    • 5.4.3 Vehicle Map Product 2: Intelligent Driving Cloud Map (1)
    • 5.4.4 Vehicle Map Product 2: Intelligent Driving Cloud Map (2)
    • 5.4.5 Vehicle Map Product 3
    • 5.4.6 Vehicle Map Product 4
    • 5.4.7 Coping Strategies in "Lightweight Map" Mode: In-depth Cooperation with Tier1s (1)
    • 5.4.8 Coping Strategies in "Lightweight Map" Mode: In-depth Cooperation with Tier1s (2)
  • 5.5 BrightMap
    • 5.5.1 Introduction to Vehicle Map Business
    • 5.5.2 Vehicle Map Product: AVP HD Map (1)
    • 5.5.3 Vehicle Map Product: AVP HD Map (2)
  • 5.6 Mxnavi
    • 5.6.1 Business Layout
    • 5.6.2 Vehicle Map Product 1: Crowdsourced Map Technology
    • 5.6.3 Vehicle Map Product 2: HD Map Data
    • 5.6.4 Vehicle Map Product 3: HD Map Fusion Platform
    • 5.6.5 Coping Strategies in "Lightweight Map" Mode
  • 5.7 Huawei
    • 5.7.1 Vehicle Map Products (1)
    • 5.7.2 Vehicle Map Products (2)
    • 5.7.3 Vehicle Map Products (3)
    • 5.7.4 Vehicle Map Application: High-level Autonomous Driving System (ADS)
  • 5.8 Heading Data Intelligence
    • 5.8.1 Map-based Product Lines
    • 5.8.2 Vehicle Map Products (1)
    • 5.8.3 Vehicle Map Products (2)
    • 5.8.4 HD Map Application Scenario 1: Parking
    • 5.8.5 HD Map Application Scenario 2: Highway/Urban Driving Assistance
  • 5.9 JD
    • 5.9.1 JD Logistics Builds "Yutu" Platform (1)
    • 5.9.2 JD Logistics Builds "Yutu" Platform (2)
  • 5.10 Leador
    • 5.10.1 Autonomous Driving Technology Based on HD Maps
    • 5.10.2 Application of HD Map in Parking Lots
  • 5.11 eMapgo
    • 5.11.1 Vehicle Map Products: HD Map for Parking Lots (1)
    • 5.11.2 Vehicle Map Products: HD Map for Parking Lots (2)
    • 5.11.3 Vehicle Map Products: HD Map Cloud Platform
    • 5.11.4 Vehicle Map Application: Autonomous Driving Simulation Test
  • 5.12 Momenta
    • 5.12.1 Coping Strategies in "Lightweight Map" Mode
    • 5.12.2 Non-map Solution Algorithm: Lane Line Recognition
    • 5.12.3 Non-map Solution Algorithm: Positioning
    • 5.12.4 Non-map Solution Algorithm: Planning & Control
    • 5.12.5 Algorithm Iteration Path
  • 5.13 Roadgrids
    • 5.13.1 Automatic HD Map Building and Update
    • 5.13.2 Selection of Lightweight HD Map Elements
    • 5.13.3 Lightweight Map Closed-loop Solution (1)
    • 5.13.4 Lightweight Map Closed-loop Solution (2)
  • 5.14 Here
    • 5.14.1 Map Evolution Mode
    • 5.14.2 Emphasize Map Information Security
    • 5.14.3 Launch UniMap Mapping Platform
    • 5.14.4 HD Map Layout in China

6 HD Map Technology Companies

  • 6.1 Mobileye
    • 6.1.1 Focus on Deploying Lightweight Map Business (1)
    • 6.1.2 Focus on Deploying Lightweight Map Business (2)
    • 6.1.3 Benefits of REM
  • 6.2 NVIDIA
    • 6.2.1 Vehicle Map Business: DeepMap
    • 6.2.2 Vehicle Map Product: DRIVE Map (1)
    • 6.2.3 Vehicle Map Product: DRIVE Map (2)
  • 6.3 DeepMotion
    • 6.3.1 Acquired by Xiaomi
    • 6.3.2 HD Map Technical Solution
    • 6.3.3 Features of HD Map
  • 6.4 Mapbox
    • 6.4.1 Vehicle Map Products: Navigation Map
    • 6.4.2 Vehicle Map Products: HD Map
    • 6.4.3 Failure in the Chinese Market
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제