시장보고서
상품코드
1623326

중국의 ADAS 이중화 시스템 전략(2024년)

China ADAS Redundant System Strategy Research Report, 2024

발행일: | 리서치사: ResearchInChina | 페이지 정보: 영문 330 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

이중화 시스템 전략 연구 : 통합 이중화 설계를 위한 개발

ADAS 이중화 시스템 정의 프레임워크

자율주행차는 안전이 기본 가정이며, ADAS가 완전히 이중화되어야만 진정한 안전이 보장됩니다. 현재 대부분의 OEM, Tier 1 공급업체, L4 자율주행 기업의 이중화 설계는 주로 소프트웨어와 하드웨어의 백업입니다.

소프트웨어 : GAC 그룹의 최신 ADiGO PILOT 지능형 주행 시스템은 AEB 기능 알고리즘, 비전 레이더 융합 알고리즘, 비전 알고리즘 실시간 이중화 검증 전략을 채택하여 AEB의 신뢰성을 최대화합니다. AEB의 신뢰성을 극대화합니다.

하드웨어 : 다른 기능적 위치에 반영됩니다. 인식 끝, 결정 끝, 실행 끝, 전원 공급 장치 등은 모두 이중 중복 설계 또는 다중 중복 설계를 채택하여 시스템 중 하나가 고장 나더라도 동일한 기능을 가진 다른 시스템이 정상적으로 작동 할 수 있도록합니다.

실행의 이중화 : 브레이크 시스템과 조향 시스템의 완전 이중화 설계

실행의 이중화와 판단의 이중화는 차량이 중요한 순간에 올바른 대응을 할 수 있는지 여부를 직접적으로 결정하는 핵심적인 부분입니다. 실행의 이중화는 종종 브레이크와 조향 시스템에 배치되며, 동일한 기능을 가진 두 개의 독립적인 시스템으로 설계되는 것이 일반적입니다. 판단의 중복성은 두뇌 쪽에 있습니다. 차량 EEA에서 중앙 컴퓨팅 플랫폼은 두 세트의 핵심 연산 유닛을 갖추고 있으며, 차량 아키텍처 수준, 기능 정의 수준, 시스템 수준 등에서 이중화 아키텍처 설계 개념을 채택하고 있습니다.

브레이크의 이중화 측면에서 그 특징과 동향은 다음과 같습니다.

현재 주요 제품은 전기 유압 브레이크 시스템(EHB)이며, 일반적인 이중화 방식은 기계식 이중화, 전자식 이중화, 이중 페일 세이프 모드, 보조 브레이크 모듈을 추가하는 것입니다.

전기 기계식 브레이크 시스템(EMB)은 전통적인 브레이크 시스템의 브레이크 액, 유압 파이프라인 및 기타 구성요소를 완전히 포기하고 전기 모터 구동을 통해 제동력을 생성하여 응답 속도를 높이고 구조 레이아웃을 단순화하며 고유 한 중복성을 가능하게합니다. 따라서 브레이크 바이 와이어 시스템은 미래 트렌드입니다. 그러나 요구되는 신뢰성이 매우 높아 단기간에 양산 및 차량 탑재가 어렵습니다.

조향장치의 이중화 관련 특징과 동향은 다음과 같습니다.

현재 전동식 파워 스티어링 시스템(EPS)은 주로 두 개의 모터, 두 개의 전원 공급 장치 및 두 개의 권선으로 구성된 이중 EPS 스티어링 이중화 방식을 채택하고 있으며, 이는 완전히 독립된 두 세트의 EPS 하드웨어에 해당하며 서로 독립적으로 백업되어 전체 비용이 상대적으로 높습니다. 상대적으로 높습니다.

조향 시스템은 전력 모드에서 유선 제어 모드로 개발되고 있습니다. SBW(Steer-by-Wire) 시스템은 스티어링 휠 어셈블리, 스티어링 액추에이터 어셈블리 및 ECU의 세 가지 주요 구성요소와 자동 페일 세이프 시스템 및 전원 공급 장치와 같은 보조 시스템으로 구성되며, SBW 시스템은 빠른 응답성, 유연한 장착 방법, 경량, 높은 충돌 안전성 등의 장점이 있습니다. 충돌 안전성 등의 장점을 가지고 있습니다. 따라서 SBW 시스템에는 핵심 구성요소의 중복 백업이 필요합니다.

NIO NT 3.0 플랫폼의 스티어 바이 와이어 시스템의 이중화 설계

스티어 바이 와이어 시스템은 스티어링 휠과 바퀴 사이의 전기 신호를 전송하고 제어하는 데 사용됩니다. 스티어링 휠의 각도와 저항 토크를 자유롭게 설계 할 수있어 낮은 지연, 고정밀 제어, 높은 전송 효율 및 유연한 레이아웃을 제공합니다.

이중 전원, 이중 통신, 이중 하드웨어, 이중 소프트웨어의 완전 이중화 설계. 스티어링 휠과 바퀴를 연결하는 기계식 스티어링 칼럼은 존재하지 않지만 그 신뢰성은 일반 전동식 파워 스티어링의 2.2 배입니다.

이 보고서는 중국 자동차 산업에 대한 조사 분석을 통해 ADAS 이중화 시스템 개발 동향과 각 기업의 전략 등의 정보를 제공합니다.

목차

제1장 ADAS 이중화 시스템 개요

  • ADAS 이중화 시스템의 정의
  • ADAS 이중화 시스템 설계 공통 구조

제2장 ADAS 이중화 시스템 개발 동향 : 카테고리별

  • 지각 이중화
  • 결정(제어) 이중화
  • 실행(브레이크) 이중화
  • 실행(스티어링) 이중화
  • 실행(드라이브) 이중화
  • 전원 이중화
  • 통신 이중화
  • 중국과 국외 공급업체 간의 이중화 시스템의 비교

제3장 각 OEM의 ADAS 이중화 시스템 전략

  • Great Wall Motor
  • Changan Automobile
  • GAC Group
  • Dongfeng Motor
  • BYD
  • FAW Group
  • NIO
  • Xpeng Motors
  • IM Motors
  • Leapmotor
  • Neta Auto
  • Jidu Auto
  • ARCFOX
  • BMW
  • Volvo Cars
  • Tesla
  • Mercedes-Benz
  • 각 OEM의 이중화 시스템의 비교

제4장 L4 자율주행 기업 ADAS 이중화 시스템 전략

  • L4 자율주행 기업 이중화 시스템 요약(1)
  • L4 자율주행 기업 이중화 시스템 요약(2)
ksm 25.01.21

Redundant system strategy research: develop towards integrated redundant design

ADAS redundant system definition framework

For autonomous vehicles, safety is the primary premise. Only when ADAS is fully redundant can real safety be ensured. Currently, the redundant design of most OEMs, Tier 1 suppliers and L4 autonomous driving companies is mainly software and hardware backup:

Software: algorithm redundancy, for example, GAC Group's latest ADiGO PILOT intelligent driving system adopts the AEB function algorithm, the vision + radar fusion algorithm and the vision algorithm real-time redundant verification strategy to maximize the reliability of AEB.

Hardware: reflected in different functional positions. The perception end, decision end, execution end, power supply end, etc. all adopt dual-redundant or multi-redundant design to ensure that when one of the systems fails, another system with the same function can work normally.

Execution redundancy: Fully redundant design of braking and steering systems

Execution redundancy and decision redundancy are the core parts, directly determining whether the vehicle can make correct response at a critical moment. Execution redundancy is often placed in braking and steering systems, and is generally designed as two independent systems with same functions. Decision redundancy is on the brain side. In vehicle EEA, the central computing platform is equipped with two sets of core computing units, and the redundant architecture design concept is adopted at vehicle architecture level, function definition level, system level, etc.

From the perspective of braking redundancy, its characteristics and trends are as follows:

At present, the key product is electro-hydraulic brake system (EHB), and the common redundancy schemes are the mechanical redundancy + electronic redundancy dual fail-safe mode, and adding auxiliary brake modules;

Brake-by-wire system is the future trend, because the electromechanical brake system (EMB) completely abandons brake fluid, hydraulic pipelines and other components of traditional braking systems, and generates braking force by electric motor drive, which improves the response speed, simplifies the structural layout, and enables inherent redundancy capabilities. However, it has extremely high reliability requirements and is difficult to mass-produce and install on vehicles in the short term.

In terms of steering redundancy, its characteristics and trends are as follows:

Currently the electric power steering system (EPS) mainly adopts the dual EPS steering redundancy scheme with two motors, two power supplies and two windings, which is equivalent to two sets of completely independent EPS hardware, which are independent of and backed up by each other, and the overall cost is relatively high;

The steering system is developing from electric power mode to wired-control mode. Steer-by-wire (SBW) system is composed of three main parts, i.e., steering wheel assembly, steering actuator assembly and ECU, as well as auxiliary systems such as automatic fail-safe system and power supply. It offers benefits of quick response, flexible installation method, light weight and high collision safety. SBW system therefore needs to have redundant backup of core components.

Redundant design of steer-by-wire system of NIO NT 3.0 Platform

The steer-by-wire system is used for transmission and control of electrical signals between the steering wheel and wheels. The angle and resistance torque of the steering wheel can be freely designed, with lower delay, more precise control, higher transmission efficiency and more flexible layout.

Fully redundant design with dual power supply, dual communication, dual hardware and dual software. Although there are no mechanical steering columns to connect the steering wheel and wheels, its reliability is 2.2 times higher than common electric power steering systems.

In December 2024, NIO ET9, the first model based on NT 3.0 Platform, acquired the mass production license for steer-by-wire technology from the Ministry of Industry and Information Technology, becoming China's first model carrying steer-by-wire technology.

Integrated redundant design for central computing architecture

With the in-depth application of intelligent connection and autonomous driving technologies, vehicle braking and steering systems are heading in the direction of integration. The central EEA and integrated chassis launched by some OEMs and suppliers combine the braking system, steering system, drive system, etc., and adopt an integrated and fully redundant design concept.

CATL Integrated Intelligent Chassis (CIIC) of CATL (Shanghai) Intelligent Technology Co., Ltd.

CIIC (CATL Integrated Intelligent Chassis) launched by CATL (Shanghai) Intelligent Technology Co., Ltd. is a highly intelligent skateboard chassis, with core features of "upper and lower decoupling, high integration, and openness".

CIIC highly integrates vehicle drive system, brake system, steering system, suspension system, etc. into the physical underbody, and the platform design enables scalable software and hardware;

CIIC-M (middle platform) adopts fully wired-control technology, eliminating the mechanical connection between the brake pedal and ECU, and completely decoupling the upper and lower bodies; meanwhile, it adds software redundancy strategy, safety monitoring, and fault handling mechanism to ensure system safety and robustness.

BYD e4 Platform

BYD's e4 Platform cancels the steering column and brake caliper, and uses the driving-braking-steering three-in-one technology to achieve steering and braking, thereby realizing vehicle-level safety redundancy capabilities.

Equipped with four 220-240kW large motors, it achieves the maximum braking deceleration of 1g and braking through precise motor torque and speed control, coupled with power blade batteries, new silicon carbide motor controller and advanced thermal management technology;

Differential steering technology is used to steer the vehicle. The left and right wheels receive different torques to deflect and thus complete the steering. The minimum turning diameter is 12 meters, and in the 18m pylon course slalom test, the maximum speed is 60km/h.

The e4 Platform features a distributed drive form with four independently driven motors, and it enables basic driving capabilities even if only one motor is working. In addition, the e4 Platform's innovative technology can provide braking and steering dual redundant backup based on existing braking and steering.

Control redundancy: Multi-ECU redundancy is still the mainstream solution, and will develop towards single-chip redundancy in the future

The control system must meet fail-operational requirements to achieve L3 and above autonomous driving functions, that is, after a sensor fails, the vehicle can still perform corresponding functions and complete driving safely. To this end, controlling system will use two or three ECUs, and implant some redundant safety measures on some sensors, or achieve control redundancy by adding chips in the domain controller.

Multi-ECU Redundancy Scheme - Dual Computing Platforms of BYD Xuanji Intelligent Architecture

As the main computing platform, Tianxuan cross-domain computing platform integrates the power domain, body domain and chassis domain, and adopts a multi-PCB design scheme for cooperative control of power domain, body domain and chassis domain;

A backup computing platform Tianji is added as backup redundancy. It is connected to the front and rear control domains via dual Gigabit Ethernet for case of need.

Single-chip redundant layout - based on Renesas multi-domain fusion SoC R-Car X5

R-Car X5, Renesas Electronics' the latest generation of automotive multi-domain fusion SoC (using ARM Cortex-A720AE core, meeting ASIL-B to ASIL-D functional safety requirements; 32-core design, CPU computing power up to 1000kDMIPS), supports the safety isolation of multiple domains with different functional safety level requirements, and adopts hardware-based "Freedom From Interference (FFI)" technology. This hardware design achieves the isolation of critical safety functions (such as brake-by-wire) from non-critical functions, and critical functions that are considered to be related to safety can be assigned to their own independent and redundant domain. Each domain has its own independent CPU core, memory, and interface, thereby preventing potential catastrophic failures in the vehicle when hardware or software in different domains fails.

Table of Contents

1 Overview of ADAS Redundant System

  • 1.1 Definition of ADAS Redundant System
    • Definition and Source of ADAS Redundant System
    • ADAS Redundant System Structure (1)
    • ADAS Redundant System Structure (2)
    • Classification and Types of ADAS Redundant System (1)
    • Classification and Types of ADAS Redundant System (2)
  • 1.2 Common Structures of ADAS Redundant System Design
    • Common ADAS Redundant Architecture Types
    • Common ADAS Redundant Architecture - MooN Voting Structure (1)
    • Common ADAS Redundant Architecture - MooN Voting Structure (2)
    • Redundant Mode Design of L3 Autonomous Driving System Architecture
    • L3 Autonomous Driving System Architecture Redundant Design Solution - Main and Auxiliary Dual-System Fully Autonomous Driving System Architecture
    • L4 Autonomous Driving System Architecture Redundancy Design

2 Development Trends of ADAS Redundant Systems by Category

  • 2.1 Perception Redundancy
    • Perception Redundancy Scheme 1: Multi-sensor Heterogeneous Redundancy
    • Perception Redundancy Scheme 1: Multi-sensor Heterogeneous Redundancy - Pre-fusion and Post-fusion Algorithms of Multi-sensor Information
    • Perception Redundancy Scheme 1: Multi-sensor Heterogeneous Redundancy - Fusion Level Type of Multi-sensor Information
    • Perception Redundancy Scheme 1: Multi-sensor Heterogeneous Redundancy - Multi-sensor Fusion Architecture (1)
    • Perception Redundancy Scheme 1: Multi-sensor Heterogeneous Redundancy - Multi-sensor Fusion Architecture (2)
    • Perception Redundancy Scheme 2: V2X As A New Redundant Module (1)
    • Perception Redundancy Scheme 2: V2X As A New Redundant Module (2)
    • Perception Redundancy Scheme three: IMU Triple Heterogeneous Redundancy
    • Perception and Positioning Redundancy Case (2): Bosch's Perception Module Redundancy Design
    • Perception and Positioning Redundancy Case (2): Mobileye's True Redundancy (1)
    • Perception and Positioning Redundancy Case (2): Mobileye's True Redundancy (2)
    • Perception and Positioning Redundancy Case (2): Mobileye's True Redundancy Autonomous Driving Solution
    • Perception and Positioning Redundancy Case (3): Bosch's IMU Positioning Module Redundancy Design
    • Perception and Positioning Redundancy Case (4): ACEINNA Triple Redundant IMU
  • 2.2 Decision (Control) Redundancy
    • Control Redundancy Scheme 1: Domain Control Multi-ECU Mutual Redundancy (1)
    • Control Redundancy Scheme 1: Domain Control Multi-ECU Mutual Redundancy (2)
    • Control Redundancy Scheme 1: Domain Control Multi-ECU Mutual Redundancy (3)
    • Control Redundancy Scheme 2: Single-chip Cross-domain SoC Redundancy Strategy - Renesas R-Car X5
    • Control Redundancy Scheme 2: Single-chip Cross-domain SoC Redundancy Strategy - Qualcomm 8775
    • Control Redundancy Scheme 2: Single-chip Cross-domain SoC Redundancy Strategy - NVIDIA DRIVE Thor
    • Control Redundancy Scheme 2: Single-chip Cross-domain SoC Redundancy Strategy - Black Sesame Technologies C1296
    • Control Redundancy Scheme 3: L3 Autonomous Driving Redundant Computing Platform Design (1)
    • Control Redundancy Scheme 3: L3 Autonomous Driving Redundant Computing Platform Design (2)
    • Domain Control Multi-ECU Redundancy Case (1)
    • Domain Control Multi-ECU Redundancy Case (2)
    • Domain Control Multi-ECU Redundancy Case (3)
  • 2.3 Execution (Braking) Redundancy
    • Braking System Technology Route 1: EHB (Electro-Hydraulic Brake)
    • Braking System Technology Route 1: Auxiliary Components of EHB (Electro-Hydraulic Brake)
    • EHB Redundancy Scheme 1: Two-Box Redundant Braking Solution (1)
    • EHB Redundancy Scheme 1: Two-Box Redundant Braking Solution (2)
    • EHB Redundancy Scheme 1: One-Box Redundant Braking Solution (1)
    • EHB Redundancy Scheme 1: One-Box Redundant Braking Solution (2)
    • EHB Redundancy Case (1): Huawei's Braking Redundancy Control System Patent
    • EHB Redundancy Case (2): Jingwei HiRain's Braking Redundancy EWBS+ESP+EPB
    • EHB Redundancy Case (3): NASN Automotive's Nbooster + ESC Redundant System (1)
    • EHB Redundancy Case (3): NASN Automotive's Nbooster + ESC Redundant System (2)
    • EHB Redundancy Case (4): Bethel's Power Supply Redundancy and Speed Processing Redundant System
    • EHB Redundancy Case (4): Bethel's Electromechanical Redundancy and Hydraulic Redundancy Schemes
    • EHB Redundancy Case (5): Global Technology's GIBS+ESC Redundancy Design (1)
    • EHB Redundancy Case (5): Global Technology's GIBS+ESC Redundancy Design (2)
    • EHB Redundancy Case (5): Global Technology's Demand for RBUs in Redundant Braking Solution
    • EHB Redundancy Case (5): Comparison between Global Technology's One-box and Two-box
    • EHB Redundancy Case (5): Global Technology's Braking System Development Plan
    • EHB Redundancy Case (6): LEEKR Technology's One-box Braking System
    • EHB Redundancy Case (7): Yunke Technology's Braking Redundancy and Control Redundancy Design
    • EHB Redundancy Case (8): Bosch's Execution Module Redundancy Design (1)
    • EHB Redundancy Case (8): Bosch's Execution Module Redundancy Design (2)
    • EHB Redundancy Case (8): Bosch's Execution Module Redundancy Design (3)
    • EHB Redundancy Case (9): Continental's MK Cx HAD Redundant Brake-by-Wire System (1)
    • EHB Redundancy Case (9): Continental's MK Cx HAD Redundant Brake-by-Wire System (2)
    • EHB Redundancy Case (9): Comparison between Continental KC1 and MKC2
    • EHB Redundancy Case (10): Tongyu Automotive's EHB Redundancy Design
    • EHB Redundancy Case (11): Bethel's Dual-Control EPB System and WCBS+ Dual-Control EPB Redundant System
    • EHB Redundancy Case (12): Global Technology's Braking Redundant System EPB
    • EHB Redundancy Case (13): CAIC's IBCU+RCU+Dual-control EPB System Design (1)
    • EHB Redundancy Case (13): CAIC's IBCU+RCU+Dual-control EPB System Design (2)
    • EHB Redundancy Case (13): CAIC's IBCU+RCU+Dual-control EPB System Design (3)
    • EHB Redundancy Case (14): UAES's Vehicle Motion Domain Controller VCU8.5 Redundancy Design (1)
    • EHB Redundancy Case (14): UAES's Vehicle Motion Domain Controller VCU8.5 Redundancy Design (2)
    • Braking System Technology Route 2: EMB (Electro-Mechanical Brake)
    • Braking System Technology Route 2: EMB (Electro-Mechanical Brake)
    • Braking System Technology Route 2: Some Companies Are Developing EMB Products
    • EMB Redundancy Case (2): Tongyu Automotive's EMB Redundancy Design
    • EMB Redundancy Case (2): Global Technology's EMB Redundancy Scheme (1)
    • EMB Redundancy Case (2): Global Technology's EMB Redundancy Scheme (2)
    • EMB Redundancy Case (2): Global Technology's EMB Redundancy Scheme (3)
    • EMB Redundancy Case (3): LEEKR Technology's EMB System
    • EMB Redundancy Case (4): Global Technology's e-Pedal 2.0 Redundancy Design
    • EMB Redundancy Case (5): CATL Intelligent's CIIC Redundancy Design
  • 2.4 Execution (Steering) Redundancy
    • Steering System Technology Evolution Route: Electric Power Steering to Steer-By-Wire Development (1)
    • Steering System Technology Evolution Route: Electric Power Steering to Steer-By-Wire Development (2)
    • EPS Redundancy Scheme 1: Mechanical System + TAS + Redundant EPS System
    • EPS Redundancy Scheme 2: Two Independent EPS Redundancy Systems
    • Redundant EPS Key Technologies (1): Redundancy Strategy and Safety Mechanism
    • Redundant EPS Key Technologies (2): Advanced Assist Algorithm Architecture
    • Redundant EPS Key Technologies (3): External Request Control Function
    • EPS Redundancy Case (1): Jingwei HiRain's Steering Redundant R-EPS
    • EPS Redundancy Case (2): Global Technology's Steering Redundant System
    • EPS Redundancy Case (2): Global Technology's Steering System Development Plan
    • EPS Redundancy Case (3): DECO Automotive's Fully Redundant Intelligent Steering Solution (1)
    • EPS Redundancy Case (3): DECO Automotive's Fully Redundant Intelligent Steering Solution (2)
    • EPS Redundancy Case (4): Yunke Technology's Steering Redundancy Design
    • EPS Redundancy Case (5): Handing Intelligent Technology's Steering Redundant Products (1)
    • EPS Redundancy Case (5): Handing Intelligent Technology's Steering Redundant Products (2)
    • EPS Redundancy Case (6): Bosch's Execution Module Redundancy Design (1)
    • EPS Redundancy Case (6): Bosch's Execution Module Redundancy Design (2)
    • EPS Redundancy Case (7): NASN Automotive's Steering System Redundancy Design
    • SBW Redundancy Scheme 1: Dual Redundant System Integrated Design (1)
    • SBW Redundancy Scheme 1: Dual Redundant System Integrated Design (2)
    • SBW Redundancy Scheme 1: Dual Redundant System Integrated Design (3)
    • Key Redundant SBW Technologies
    • SBW Redundancy Case (1): High-Safety Steer-by-Wire System of HYCET EPS System
    • SBW Redundancy Case (1): Triple Redundancy Design for High-Safety Steer-by-Wire System of HYCET EPS System
    • SBW Redundancy Case (2): SBW System Redundancy Design of Handing Intelligent Technology (1)
    • SBW Redundancy Case (2): SBW System Redundancy Design of Handing Intelligent Technology (2)
  • 2.5 Execution (Drive) Redundancy
    • Drive Redundancy Scheme: Two Drive Units Are Mutually Redundant
    • Drive Redundancy Case (1): Huawei's DriveONE Redundancy Design
    • Drive Redundancy Case (2): Fully Redundant Electronic Control Solution Based on Dual Three-Phase Brushless DC Motors
    • Drive Redundancy Case (3): BYD e4 Platform Four-Motor Independent Drive Mode
  • 2.6 Power Redundancy
    • Power Redundancy Scheme 1: 12V Dual Redundant Power Supply System (1)
    • Power Redundancy Scheme 1: 12V Dual Redundant Power Supply System (2)
    • Power Redundancy Scheme 1: 12V Dual Redundant Power Supply System, Primary Power Supply Solution (1)
    • Power Redundancy Scheme 1: 12V Dual Redundant Power Supply System, Primary Power Supply Solution (2)
    • Power Redundancy Scheme 1: 12V Dual Redundant Power Supply System, Primary Power Supply Solution (3)
    • Power Redundancy Scheme 1: 12V Dual Redundant Power Supply System, Rear Redundant Power Supply (1)
    • Power Redundancy Scheme 1: 12V Dual Redundant Power Supply System, Rear Redundant Power Supply (2)
    • Power Redundancy Scheme 1: Redundancy Design of High Voltage + DCDC + 12V Low Voltage Battery Dual-Channel Power Supply Network (1)
    • Power Redundancy Scheme 1: Redundancy Design of High Voltage + DCDC + 12V Low Voltage Battery Dual-Channel Power Supply Network (2)
    • Power Redundancy Scheme 2: 48V+12V Redundant Power Supply Network
    • Power Redundancy Scheme 2: 48V Can Be Used as the Third Voltage Rail
    • Power Redundancy Scheme 2: L3 Autonomous Driving Power Supply Redundancy Scheme (1)
    • Power Redundancy Scheme 2: L3 Autonomous Driving Power Supply Redundancy Scheme (2)
    • Power supply Redundancy Scheme (1): UAES Zone Controller Power Supply Center Redundancy Design (1)
    • Power supply Redundancy Scheme (1): UAES Zone Controller Power Supply Center Redundancy Design (2)
    • Power supply Redundancy Scheme (2): Aptiv Power Supply Redundancy (1)
    • Power supply Redundancy Scheme (2): Aptiv Power Supply Redundancy (2)
    • Power supply Redundancy Scheme (3): G-Pulse Electronics' Dual-channel Redundant Power Supply System Design
  • 2.7 Communication Redundancy
    • Communication Redundancy Scheme 1: Setting Up Multiple Redundant Channels between Domains (1)
    • Communication Redundancy Scheme 1: Setting Up Multiple Redundant Channels between Domains (2)
    • Communication Redundancy Scheme 1: Setting Up Multiple Redundant Channels between Domains (3)
    • Communication Redundancy Scheme 2: Building Ring Ethernet architecture between domains
    • Communication Redundancy Scheme 3: Tesla Daisy Chain Communication Loop
    • Communication Redundancy Case (1)
    • Communication Redundancy Case (2)
    • Communication Redundancy Case (3)
    • Communication Redundancy Case (4)
    • Communication Redundancy Case (5)
    • Communication Redundancy Case (6)
    • Communication Redundancy Case (7)
    • Communication Redundancy Case (8)
  • 2.8 Comparison of Redundant Systems between Chinese and Foreign Suppliers
    • Summary of Redundant Systems of Chinese and Foreign Suppliers (1)
    • Summary of Redundant Systems of Chinese and Foreign Suppliers (2)
    • Summary of Redundant Systems of Chinese and Foreign Suppliers (3)
    • Bosch's Overall Redundant Design for Autonomous Driving Systems
    • CATL Intelligent's CIIC Redundant Architecture Design Solution

3 ADAS Redundant System Strategies of OEMs

  • 3.1 Great Wall Motor
    • Six Safety Redundant Systems of Coffee Intelligence
    • Six Safety Redundant Systems of Coffee Intelligence: Perception redundancy - Multi-Source Heterogeneous Sensor Solution
    • Six Safety Redundant Systems of Coffee Intelligence: controller redundancy and architecture redundancy
    • Six Safety Redundant Systems of Coffee Intelligence: Power Redundancy and Brake Redundancy
    • Six Safety Redundant Systems of Coffee Intelligence: Steering Redundancy - Fully Redundant Steering System
    • Redundant System of Mecha Dragon
  • 3.2 Changan Automobile
    • ADAS Redundant System Design Solution
    • EPA1 E/E Architecture Decision Redundancy Design: Multi-Chip Redundancy
    • EPA1 E/E Architecture Execution Redundancy Design: Dual Redundant Braking System
    • SDA E/E Architecture Perception Redundancy Design: Fusion Perception System
    • SDA E/E Architecture Communication Redundancy Design: ETH, CANFD Dual Redundant Channels
    • SDA E/E Architecture Software and Hardware Redundancy Design
  • 3.3 GAC Group
    • ADAS Redundant System Design Solution
    • Eight Redundant Systems of ADiGO PILOT
    • Perception Redundancy of ADiGO PILOT: Multi-source Heterogeneous Sensor Solution
    • Perception Redundancy of ADiGO PILOT: Urban NDA Multi-sensor Fusion Perception Solution
    • Architecture Redundancy and Algorithm Redundancy of ADiGO PILOT
    • Power Redundancy of ADiGO PILOT: Dual Power Supply Network
  • 3.4 Dongfeng Motor
    • ADAS Redundant System Design Solution
    • Redundancy Design of Integrated Chassis System
    • Brake-by-wire Redundant Structure
    • Redundancy Design of Brake-by-wire Components (1)
    • Redundancy Design of Brake-by-wire Components (2)
    • Brake-by-wire Software and Hardware Redundancy Design (1)
    • Brake-by-wire Software and Hardware Redundancy Design (2)
  • 3.5 BYD
    • ADAS Redundant System Design Solution
    • "Xuanji" E/E Architecture Decision Redundancy Design (1)
    • "Xuanji" E/E Architecture Perception Redundancy Design (2)
    • "Xuanji" E/E Architecture Communication Redundancy Design (3)
    • e3.0 Evo Platform Power Control System Redundancy Design
    • e4 Platform Drive Architecture Redundancy Design (1)
    • e4 Platform Drive Architecture Redundancy Design (2)
  • 3.6 FAW Group
    • ADAS Redundant System Design Solution
    • FEEA3.0 E/E Architecture Redundancy Design (1)
    • FEEA3.0 E/E Architecture Redundancy Design (2)
    • FEEA3.0 E/E Architecture Redundancy Design (3)
    • FEEA3.0 E/E Architecture Power Supply Redundancy Design: Dual-channel Power Supply Network
  • 3.7 NIO
    • Comparison of Redundancy Strategies between NT3.0 Platform and NT2.0 Platform
    • Seven-layer Safety Redundancy Design of NT3.0 Platform
    • NT2.0 Platform Perception Redundancy Design: Aquila System + IMU + V2X Multi-solution Verification Perception
    • Perception Redundancy Scheme: Aquila System
    • Decision Redundancy Design: ADAM Adopts Multi-ECU Redundancy Scheme (1)
    • Decision Redundancy Design: ADAM Adopts Multi-ECU Redundancy Scheme (2)
    • Decision Redundancy Design: ADAM Adopts Multi-ECU Redundancy Scheme (3)
    • Execution Redundancy Scheme: Redundancy Design of Intelligent Chassis Controller (ICC)
    • Power Supply Redundancy Design: Dual Power Layout (1)
    • Power Supply Redundancy Design: Dual Power Layout (2)
    • Seven-layer Safety Redundancy Design of ET9
  • 3.8 Xpeng Motors
    • ADAS Redundant System Design Solution
    • Redundancy Design of XPILOT (1)
    • Redundancy Design of XPILOT (2)
    • Redundancy Design of X-EEA 3.0
    • Redundancy Design of X-EEA 3.5 (1)
    • Redundancy Design of X-EEA 3.5 (2)
    • Redundancy Design of X-EEA 3.5 (3)
    • Redundancy Design of Canghai Base
    • Hardware Redundant System Design (1)
    • Hardware Redundant System Design (2)
  • 3.9 IM Motors
    • ADAS Redundant System Design Solution
    • Decision Redundancy: Central Brain ZXD2 (Cockpit-driving Integration) Horizon J6 + Qualcomm, Multi-ECU Redundancy Scheme (1)
    • Decision Redundancy: Central Brain ZXD2 (Cockpit-driving Integration) Horizon J6 + Qualcomm, Multi-ECU Redundancy Scheme (2)
    • Redundancy Design of Global Motion Control Platform VMC
    • Redundancy design of IM AD System
  • 3.10 Leapmotor
    • ADAS Redundant System Design Solution
    • Redundancy Design of [Four-Leaf Clover] Integrated Architecture (1)
    • Redundancy Design of [Four-Leaf Clover] Integrated Architecture (2)
  • 3.11 Neta Auto
    • ADAS Redundant System Design Solution
    • "Shanhai 2.0" E/E Architecture Design (1)
    • "Shanhai 2.0" E/E Architecture Design (2)
    • Redundancy Design of Hozon Central Supercomputing Platform
    • GT Dual-redundant Intelligent Steering System Design
  • 3.12 Jidu Auto
    • ADAS Redundant System Design Solution
    • Functional Safety Design: Algorithm Redundancy and Perception Redundancy
    • Functional Safety Design: Perception Redundancy and Architecture Redundancy
    • Functional Safety Design: Controller Redundancy
  • 3.13 ARCFOX
    • ADAS Redundant System Design Solution
    • IMC Platform Architecture Design
  • 3.14 BMW
    • ADAS Redundant System Design
    • Personal Pilot L3 Redundancy Design: Perception Redundancy, Chip Redundancy
    • Personal Pilot L3 Redundancy Design: Architecture Redundancy, System Redundancy
    • Fail-operational Driving System Redundancy Design
  • 3.15 Volvo Cars
    • ADAS Redundant System Design
    • Safety Redundant Vehicle Control System (1)
    • Safety Redundant Vehicle Control System (2)
    • Safety Redundant Vehicle Control System (3)
    • SPA2 Architecture: 3* VCU + VIU
    • SPA 2 Multi-domain Hybrid Architecture: System Topology
    • Redundant Safety Technology of Autonomous Truck
  • 3.16 Tesla
    • ADAS Redundant System Design
    • HW1.0-HW4.0 Autonomous Driving Perception Solution Iteration Process
    • Perception Redundancy
    • HW3.0 Chip Redundancy
    • HW4.0 Chip Redundancy
    • Braking Redundancy
    • Steering Redundancy
    • Computer Redundancy and Battery Redundancy Patents
    • VCFront Power Supply Redundancy and Isolation Design
    • Cybertruck's Steer-by-wire System Redundancy Design
  • 3.17 Mercedes-Benz
    • ADAS Redundant System Design
    • DRIVE PILOT System Redundancy Design (1)
    • DRIVE PILOT System Redundancy Design (2)
    • STAR3 Domain Dual 12V Power Supply Architecture Design
  • 3.18 Comparison of Redundant Systems in OEMs
    • Summary of OEMs' Perception Redundant System (1)
    • Summary of OEMs' Perception Redundant System (2)
    • Summary of OEMs' Perception Redundant System (3)
    • Summary of OEMs' Control Redundant System (1)
    • Summary of OEMs' Control Redundant System (2)
    • Summary of OEMs' Steering redundant systems
    • Summary of OEMs' Braking Redundant Systems
    • Summary of OEMs' Power Supply Redundant Systems
    • Summary of OEMs' Communication Redundant System (1)
    • Summary of OEMs' Communication Redundant System (2)

4 ADAS Redundant System Strategies of L4 Autonomous Driving Companies

  • Summary of Redundant Systems of L4 Autonomous Driving Companies (1)
  • Summary of Redundant Systems of L4 Autonomous Driving Companies (2)
    • 4.1 Baidu Apollo
      • ADAS Redundant System Design Solution
      • Autonomous Vehicle Redundancy Design (1)
      • Autonomous Vehicle Redundancy Design (2)
      • Galaxy Architecture Platform
    • 4.2 WeRide
      • ADAS Redundant System Design Solution
      • WeRide One
      • WeRide One Redundant System Design (1)
      • WeRide One Redundant System Design (2)
      • WeRide One Redundant System Design (3)
    • 4.3 DeepRoute.ai
      • ADAS Redundant System Design Solution
      • Perception Redundancy Design (1)
      • Perception Redundancy Design (2)
      • Perception Redundancy Design (3)
      • chip Redundancy Design
    • 4.4 Pegasus Technology
      • ADAS Redundant System Design Solution
      • High Redundant System Design
      • Redundancy Design of Robot Computing Platform
    • 4.5 Pony.ai
      • ADAS Redundant System Design Solution
      • Positioning Redundancy: Multi-sensor Fusion Positioning System
      • Redundancy Design of Sixth-generation Autonomous Driving Software and Hardware System (1)
      • Redundancy Design of Sixth-generation Autonomous Driving Software and Hardware System (2)
      • Planning of Seventh-Generation Autonomous Driving Software and Hardware System
      • Redundancy Design of Software and Hardware Integrated System for Third-generation Autonomous Driving Truck
    • 4.6 UISEE
      • ADAS Redundant System Design Solution
      • Autonomous Driving Technology Safety System (1)
      • Autonomous Driving Technology Safety System (2)
      • Redundancy Design of U-Drive(R) Intelligent Driving Platform
      • Redundant Architecture Design of U-Drive(R) Intelligent Driving Platform
      • U-Drive(R) Intelligent Driving Platform Redundant System Switching Algorithm
      • U-Drive(R) Intelligent Driving Platform Perception Redundancy Technology (1)
      • U-Drive(R) Intelligent Driving Platform Perception Redundancy Technology (2)
      • U-Drive(R) Intelligent Driving Platform Perception Redundancy Technology (3)
    • 4.7 QCraft.ai
      • ADAS Redundant System Design Solution
      • "Driven-by-QCraft" Autonomous Driving Redundancy Design (1)
      • "Driven-by-QCraft" Autonomous Driving Redundancy Design (2)
      • Redundancy Design of Autonomous Driving Sensor Kit
    • 4.8 Momenta
      • ADAS Redundant System Design Solution
      • Mpilot/MSD Autonomous Driving Solution Redundancy Design (1)
      • Mpilot/MSD Autonomous Driving Solution Redundancy Design (2)
      • Momenta Provides Perception Redundancy Scheme for GWM Mecha Dragon's Intelligent Driving System
      • Momenta 5.0 Advanced Intelligent Driving System Redundancy Design
    • 4.9 AutoX
      • Redundancy Design of Fifth-generation Autonomous Driving System for AutoX Gen5
      • Full Stack Redundancy Design (1)
      • Full Stack Redundancy Design (2)
    • 4.10 Didi Autonomous Driving
      • Gemini Platform Multi-layer Security Redundancy Design (1)
      • Gemini Platform Multi-layer Security Redundancy Design (2)
      • Redundancy Design of Next-generation Robotaxi Model
    • 4.11 IDRIVERPLUS
      • Redundancy Design of H-INP ADAS system
      • Redundancy Design of Driving-parking Integration
    • 4.12 Waymo
      • ADAS Redundant System Design
      • Autonomous Driving System Redundancy Design (1)
      • Autonomous Driving System Redundancy Design (2)
      • Autonomous Driving System Redundancy Design (3)
      • Autonomous Driving System Redundancy Design (4)
      • Truck Redundancy Design (1)
      • Truck Redundancy Design (2)
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제