![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1284279
°Ô³ð ÆíÁý ½ÃÀå ¿¹Ãø(-2028³â) - Á¦Ç° ¹× ¼ºñ½º, ±â¼ú, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚ ¹× Áö¿ªº° ¼¼°è ºÐ¼®Genome Editing Market Forecasts to 2028 - Global Analysis By Product & Service, By Technology, By Application, By End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é, ¼¼°è °Ô³ð ÆíÁý ½ÃÀåÀº 2022³â 61¾ï ´Þ·¯ ±Ô¸ðÀ̸ç, 2028³â¿¡´Â 185¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¿¹Ãø ±â°£ µ¿¾È 20.2%ÀÇ CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î Àü¸ÁµË´Ï´Ù.
À¯ÀüÀÚ ÆíÁýÀº À¯ÀüÀÚÀÇ DNA ¿°±â¼¿À» ¸Å¿ì Ư¼öÇÏ°Ô º¯°æÇÏ¿© »ý¹°ÀÇ À¯ÀüÀû ¼³°èµµ¸¦ Å©°Ô º¯°æÇÏ´Â Àåºñ¿Í °øÁ¤À» »ç¿ëÇÏ´Â °ÍÀ» ¸»ÇÕ´Ï´Ù. À¯ÀüÀÚ ÆíÁýÀº À¯Àü ¹°ÁúÀ» ¹«ÀÛÀ§·Î ¼÷ÁÖ °Ô³ð¿¡ °áÇÕ½ÃŰ´Â À¯Àü°øÇаú ´Þ¸® ƯÁ¤ Ç¥Àû ¿µ¿ªÀ» ¼öÁ¤Çϱâ À§ÇØ ³ë·ÂÇÕ´Ï´Ù.
National Center for Advancing Translational Sciences updates form June 2022¿¡ µû¸£¸é, ¹Ì±¹ ±¹¸³º¸°Ç¿ø(NIH)ÀÇ Ã¼¼¼Æ÷ À¯Àüü ÆíÁý(SCGE) ÇÁ·Î±×·¥ÀÌ ¹Ì±¹°ú ij³ª´Ù ¿¬±¸Àڵ鿡°Ô 24°ÇÀÇ º¸Á¶±ÝÀ» Ãß°¡·Î ¼ö¿©Çß½À´Ï´Ù. Áö¿ø±ÝÀ» ¼ö¿©Çß½À´Ï´Ù.
ÃÖ±ÙÀÇ ¹ßÀüÀ¸·Î °Ô³ð ÆíÁý ±â´ÉÀÌ Å©°Ô Çâ»óµÇ¾î ´Ù¾çÇÑ ¼¼Æ÷Á¾°ú ¸ðµ¨ Á¾¿¡¼ °íÀ¯ÇÑ À¯ÀüÀÚ ¼¿À» ¼öÁ¤ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ƯÈ÷ Á¾¾çÇÐ °Ë»ç¿¡¼ À¯Àüü ÆíÁýÀº Áø´Ü µµ±¸¿¡ Å« º¯È¸¦ °¡Á®¿Ã ¼ö ÀÖ´Â ÀáÀç·ÂÀ» °¡Áö°í ÀÖ½À´Ï´Ù. À¯Àüü °øÇÐÀº ±×µ¿¾È ±¹°¡³ª ´ëÇÐ µî ÁÖ¿ä ¿¬±¸±â°ü¿¡¼ Ȱ¿ëµÇ¾î ¿Ô½À´Ï´Ù. ÇÏÁö¸¸ À¯ÀüÀÚ ÆíÁý ±â¼úÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀ¸·Î ÀÎÇØ ¿¬±¸±â°ü¿¡¼ ÀÓ»ó ¹× Áø´Ü ±â°üÀ¸·Î Å©°Ô À̵¿Çϰí ÀÖ½À´Ï´Ù.
À¯Àüü Àåºñ´Â ÃÖ÷´Ü ±â´É°ú Ư¡À» °¡Áö°í Àֱ⠶§¹®¿¡ Æò±Õ 1,000¸¸ ´Þ·¯¿¡¼ 2,000¸¸ ´Þ·¯¿¡ ´ÞÇÏ´Â °í°¡ÀÇ Àåºñ´Ù. Á¦¾àȸ»ç³ª ¿¬±¸¼Ò¿¡¼ ÇÊ¿ä·Î ÇÏ´Â ½Ã½ºÅÛÀÌ ¸¹±â ¶§¹®¿¡ ¿©·¯ ´ëÀÇ °Ô³ð Àåºñ¸¦ ±¸ÀÔÇϱâ À§ÇÑ ¼³ºñÅõÀÚ ±Ý¾×ÀÌ ¸Å¿ì Å®´Ï´Ù. Áß¼Ò±Ô¸ðÀÇ Á¦¾àȸ»ç³ª ¿¬±¸¼Ò°¡ ´Ù¼öÀÇ °Ô³ð Àåºñ¿¡ ¸¹Àº ÅõÀÚ¸¦ ÇÏ´Â °ÍÀº Çö½ÇÀûÀÌÁö ¾Ê½À´Ï´Ù.
À¯Àüü ÆíÁý ½ÃÀåÀÇ Ç÷¹À̾îµéÀº °³ÀÎ ¸ÂÃãÇü ÀÇ·á ºÐ¾ß°¡ ¼ºÀåÇÔ¿¡ µû¶ó ±âȸ¸¦ ¾ò°Ô µÉ °ÍÀÔ´Ï´Ù. °³ÀÎ ¸ÂÃãÇü ÀǷḦ ÅëÇØ ÀÇ»ç´Â ȯÀÚÀÇ Á¤È®ÇÑ Çʿ並 ÆÄ¾ÇÇÏ°í ±×¿¡ ¸Â´Â ¾à¹°°ú Ä¡·á¹ýÀ» ó¹æÇÒ ¼ö ÀÖ½À´Ï´Ù. ºñ¿ë Àý°¨, ȯÀÚ ¼øÀÀµµ Çâ»ó, Áúº´ Á¶±â ¹ß°ß, Ä¡·á¹ý °³¼± µîÀÇ °¡´É¼ºÀ¸·Î ÀÎÇØ ¸ÂÃãÇü ÀÇ·áÀÇ »ç¿ëÀº Àü ¼¼°èÀûÀ¸·Î È®´ëµÇ°í ÀÖ½À´Ï´Ù.
CRISPR-Cas9ÀÇ ¿ÀÇÁ Ÿ°Ù °á°ú´Â ½É°¢ÇÑ ¿ì·Á »çÇ×À¸·Î, Cas9´Â ÀÌÁß »ç½½ Àý´ÜÀÌ ¹ß»ýÇϱ⠶§¹®¿¡ ¿ÀÇÁ Ÿ°ÙÀÇ ´ºÅ¬·¹¾ÆÁ¦ Ȱ¼ºÀÌ ÀÖÀ¸¸é ÀÌ·¯ÇÑ À¯ÀüÀÚ¸¦ º¯Çü½ÃÄÑ ¹ß¾ÏÀ» À¯¹ßÇÒ ¼ö ÀÖ½À´Ï´Ù. CRISPR-Cas9´Â Ÿ±êÀÇ 1-3°³ ºÒÀÏÄ¡°¡ Çã¿ëµÇ¸ç, ÀÌ´Â ¿ÀÇÁŸ±ê ´ºÅ¬·¹¾ÆÁ¦ Ȱ¼ºÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿ÀÇÁ Ÿ°Ù Ȱ¼ºÀÇ ³ôÀº ºóµµ(50%)´Â Å« ¿ì·Á »çÇ×À̸ç, ÀÌ´Â ¿¹Á¤µÈ ¿ÂŸ°Ù ºÎÀ§°¡ ¾Æ´Ñ ´Ù¸¥ °÷¿¡¼ º¯ÇüÀÌ ÀϾ´Â °ÍÀ» ÀǹÌÇÕ´Ï´Ù. ¿¹¸¦ µé¾î, CRISPRÀº ¾ÏÀ» À¯¹ßÇÏ´Â À¯ÀüÀÚ¸¦ Ȱ¼ºÈÇϰųª ¾ÏÀ» ¾ïÁ¦ÇÏ´Â À¯ÀüÀÚ¸¦ Ç¥ÀûÀ¸·Î »ïÀ» ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹Ù¶÷Á÷ÇÏÁö ¾ÊÀº ÀÛ¿ëÀ¸·Î ÀÎÇØ ÀÓ»ó ¿¬±¸¸¦ Á¶Á÷ÇÏ´Â ¸¹Àº ±â¾÷µéÀÌ ¹®Á¦¸¦ °Þ°í ÀÖ½À´Ï´Ù. ÀÓ»ó ½ÃÇèÀÌ Ãë¼ÒµÇ°í ±ÔÁ¦ ´ç±¹Àº ÀÌ ¹æ¹ýÀÇ ¾ÈÀü¼ºÀ» °³¼±Çϱâ À§ÇØ ´õ ¸¹Àº ¿¬±¸¸¦ ¿ä±¸Çϰí ÀÖ½À´Ï´Ù.
COVID-19´Â °Ô³ð ÆíÁý ½ÃÀå¿¡ ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖÀ¸¸ç, COVID-19ÀÇ À¯ÇàÀº Àü ¼¼°è ÀÇ·á ½Ã½ºÅÛ¿¡ ´ëÇÑ ºÎ´ãÀ» °¡Áß½Ã۰í ÀÖ½À´Ï´Ù. ÁÖ¿ä Á¦¾àȸ»ç¿Í »ý¸í°øÇÐ ±â¾÷µéÀº COVID-19 »çÅ·ΠÀÎÇØ ¹é½Å ¿¬±¸°³¹ß°ú °Ô³ð ÆíÁý ½ÃÀå Âü¿©Àڵ鿡 ´ëÇÑ ÅõÀÚ¸¦ ´Ã¸®°í ÀÖ½À´Ï´Ù. ¿¹¹æÁ¢Á¾°ú ÀáÀçÀû Ç×¹ÙÀÌ·¯½ºÁ¦¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó °Ô³ð ÆíÁý ¹× ¿£Áö´Ï¾î¸µ ±â¼úÀÌ °úÇÐ ¿¬±¸ÀÇ ÃÖÀü¼±¿¡ ¼°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ °Ô³ð ÆíÁý ½ÃÀå»Ó¸¸ ¾Æ´Ï¶ó ´Ù¸¥ ÀÇ·á ¼ºñ½º¿¡µµ Àû´çÇÑ ¿µÇâÀ» ¹ÌÃÆÀ¸¸ç, COVID-19°¡ ¹ß°ß µÈ ÈÄ ¸¹Àº ¿¬±¸ÀÚµéÀÌÀÌ µ¶Æ¯ÇÑ ¹ÙÀÌ·¯½º¿Í ±×°ÍÀÌ »ý¼ºÇÏ´Â Áúº´À» Á¶»çÇϱâ À§ÇØ ¸¹Àº ¿¬±¸ÀÚµéÀÌ °ü½ÉÀ» µ¹ ·È½À´Ï´Ù.
Ŭ·¯½ºÅÍÇü ·¹±Ö·¯ ÀÎÅͽºÆäÀ̼ ´Ü¿°±â¼¿ ¹Ýº¹(CRISPR) ºÎ¹®Àº ¿¹¹æÁ¢Á¾, ÀÇ·á ±â¼ú, ÀǾàǰ ¹× °¡Á¦Æ® °³¹ß¿¡ ´ëÇÑ Á¤ºÎÀÇ ÀÚ±Ý Áö¿ø°ú ³ë·ÂÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¿¹Ãø ±â°£ µ¿¾È Áß°£ Á¤µµÀÇ ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. 2021³â 1¿ù New England Journal of Medicine¿¡ °ÔÀçµÈ 'CRISPR-Cas9 Gene Editing for Sickle Cell Disease and-Thalassemia'¶ó´Â Á¦¸ñÀÇ ¿¬±¸¿¡ µû¸£¸é, µÎ °¡Áö À¯Àü¼º Áúȯ, Áï TDT( ÁöÁßÇØ ºóÇ÷) ȯÀÚ¿Í °â»óÀûÇ÷±¸Áõ(SCD) ȯÀÚ µî 2¸íÀÇ À¯Àüº´ ȯÀÚ¸¦ ´ë»óÀ¸·Î CRISPR-Cas9 ±â¹Ý À¯ÀüÀÚ ÆíÁýÀ» ½ÃÇèÇϰí ÀÖ½À´Ï´Ù. µÎ ȯÀÚ ¸ðµÎ CTX001 Åõ¿© ÈÄ ´ÙÀ½ ÇØ±îÁö 99% ÀÌ»óÀÇ ÃéÀå¾×¼º¿¡¼ ÅÂ¾Æ Çì¸ð±Û·Îºó ¼öÄ¡°¡ Á¶±â¿¡, À¯ÀǹÌÇϰÔ, Àå±âÀûÀ¸·Î Áõ°¡ÇÏ¿´½À´Ï´Ù. µû¶ó¼ ¿¹Ãø ±â°£ µ¿¾È CRISPR ±â¼úÀº °â»óÀûÇ÷±¸Áõ°ú º£Å¸-«µ«é«»«ß«¢¸¦ Æ÷ÇÔÇÑ Áúº´ Ä¡·á¿¡ Ȱ¿ëµÇ¸é¼ ¼ö¿ä°¡ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Áٱ⼼Æ÷ ±â¹Ý ¿¬±¸¿¡¼ ¼¼Æ÷ÁÖ °øÇÐÀÇ È°¿ëÀÌ È®´ëµÊ¿¡ µû¶ó ¼¼Æ÷ÁÖ ÆíÁý ºÎ¹®Àº Àå±âÀûÀ¸·Î ¼öÀͼº ÀÖ´Â ¼ºÀåÀ» ÀÌ·ê °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¼¼Æ÷ÁÖ ¿£Áö´Ï¾î¸µÀº ±Þ¼ÓÇÑ °³¼±À¸·Î ÀÎÇØ ¼¼Æ÷ÀÇ À¯Àü ¹°ÁúÀ» º¯°æÇÏ´Â µ¥ µµ¿òÀÌ µÇ´Â Àΰø À¯µµ¸¸´ÉÁٱ⼼Æ÷(iPSC)¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Â¡Å©ÇΰŴºÅ¬·¹¾ÆÁ¦(ZFN), CRISPR/Cas, TALEN°ú °°Àº °í±Þ À¯ÀüÀÚ ÆíÁý ¹æ¹ýÀ» ÅëÇØ ¼¼Æ÷ ÆíÁýÀÌ Àú·ÅÇÏ°Ô ½ÇÇöµÇ°í ÀÖ½À´Ï´Ù.
»ý¸í°øÇÐ ¹× Á¦¾à »ê¾÷ÀÇ °·ÂÇÑ ¹ßÀü Ãß¼¼·Î ÀÎÇØ ºÏ¹Ì´Â °Ô³ð ÆíÁý ¼¼°è ½ÃÀåÀ» µ¶Á¡Çϰí ÀÖ½À´Ï´Ù. ¿¹Ãø ±â°£ µ¿¾È °Ô³ð ÆíÁý ±â¼ú ¹ßÀü, Á¦Ç° ½ÂÀÎ Áõ°¡, ¿¬±¸ °³¹ß ÀýÂ÷ È®´ë µîÀÇ ¿äÀÎÀ¸·Î ÀÎÇØ ½ÃÀå È®´ë°¡ °¡¼Ó鵃 °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±×·¯³ª ¹Ì±¹ ½ÄǰÀǾ౹(FDA)Àº 2021³â 3¿ù ͏®Æ÷´Ï¾Æ´ëÇб³(UC), »÷ÇÁ¶õ½Ã½ºÄÚ, UC ¹öŬ¸®, UC ·Î½º¾ØÁ©·¹½º ¿¬±¸ÁøÀÌ È¯ÀÚÀÇ Á¶Ç÷¸ð¼¼Æ÷¸¦ ÀÌ¿ëÇÑ °â»óÀûÇ÷±¸º´ ȯÀÚ¸¦ ´ë»óÀ¸·Î ÇÑ À¯ÀüÀÚ ±³Á¤ Ä¡·áÀÇ Ãʱ⠴ܰè, Àΰ£ ù ÀÓ»ó½ÃÇèÀ» °øµ¿À¸·Î ½ÃÀÛÇϱâ·Î ÇÕÀÇÇß½À´Ï´Ù. ÇÕÀÇÇß½À´Ï´Ù.
À¯ÀüÀÚ Ä¡·áÀÇ ¹ßÀü, À¯ÀüÀÚ º¯Çü ÀÛ¹° ¼Òºñ Áõ°¡, ¿¬±¸ Àڱݿ¡ ´ëÇÑ Á¢±Ù¼º Çâ»óÀ¸·Î ÀÎÇØ ºÏ¹Ì´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» À¯ÁöÇϸç À¯ÀüÀÚ ÆíÁýÀ» À§ÇÑ µµ±¸¿Í ¼ºñ½º¸¦ Á¦°øÇÏ´Â ºñÁî´Ï½º¿¡ Å« ±â¿©¸¦ ÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ¶ÇÇÑ, ¹Ì±¹ÀÌ ºÏ¹Ì ½ÃÀåÀÇ ´ëºÎºÐÀ» Â÷ÁöÇϰí Àִµ¥, ÀÌ´Â À¯Àüü ¿¬±¸¸¦ À§ÇÑ °ø°ø ¹× ¹Î°£ ÀÚ±ÝÀÌ Áõ°¡Çϰí Àֱ⠶§¹®À¸·Î ºÐ¼®µË´Ï´Ù. ¶ÇÇÑ, ºÏ¹Ì À¯Àüü ÆíÁý ½ÃÀåÀº ¹Ì±¹°ú ij³ª´ÙÀÇ Èñ±ÍÁúȯ À¯º´·ü Áõ°¡·Î ÀÎÇØ ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ¹Ì±¹ ±¹¸³º¸°Ç¿ø(NIH)¿¡ µû¸£¸é, 7,000°³ ÀÌ»óÀÇ Èñ±ÍÁúȯÀÌ 2,500¸¸¿¡¼ 3,000¸¸ ¸íÀÇ ¹Ì±¹Àο¡°Ô ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ÀÌ Åë°è¿¡ µû¸£¸é, ¹Ì±¹ÀÎ 10¸í Áß 1¸íÀÌ Èñ±ÍÁúȯÀ» ¾Î°í ÀÖ´Â ¼ÀÀÔ´Ï´Ù. µû¶ó¼ ÀÌµé ±¹°¡¿¡¼ »õ·Î¿î DNA ÆíÁý¹ýÀÌ Ã¤ÅõǴ ¹è°æ¿¡´Â È¿°úÀûÀÎ ÀǾàǰÀ» Á¦°øÇØ¾ß ÇÒ Çʿ伺ÀÌ Ä¿Áö°í ÀÖ´Ù´Â Á¡ÀÌ ÀÖ½À´Ï´Ù.
2022³â 5¿ù ¿µ±¹ ÀÇȸ´Â À¯ÀüÀÚ ÆíÁý Á¦Ç°ÀÇ Ãâ½Ã¸¦ Çã¿ëÇÏ´Â ¹ý¾ÈÀ» Á¦ÃâÇߴµ¥, À¯ÀüÀÚ ±â¼ú(Á¤¹Ð À°Á¾) ¹ý¾È(Genetic Technology(Precision Breeding) Bill)Àº ±â¾÷, ³óºÎ, ¼ÒºñÀÚ¿¡°Ô ÀÌÀÍÀ» °¡Á®´ÙÁÖ´Â °ÍÀ» ¸ñÇ¥·Î Çϰí ÀÖ½À´Ï´Ù. ÀÌ ¹ý¾ÈÀº ÇöÀç ÇÏ¿ø¿¡¼ º¸°í ´Ü°è¿¡ ÀÖ½À´Ï´Ù.
Áö³ 2¿ù, Integrated DNA Technologies´Â »óµ¿¼º ÁöÇ⼺ º¹±¸(HDR) ¼Óµµ¸¦ ³ôÀ̱â À§ÇÑ °³¼±µÈ ¼Ö·ç¼ÇÀÎ Alt-R HDR Donor Blocks¸¦ ¹ßÇ¥Çß½À´Ï´Ù. CRISPR À¯ÀüÀÚ°¡À§ ¼Ö·ç¼Ç Æ÷Æ®Æú¸®¿À¿¡ Ãß°¡µÈ ÃֽŠÁ¦Ç°ÀÔ´Ï´Ù.
Áö³ 2¿ù ÀÎÅÚ¸®¾Æ Å×¶óǻƽ½º(Intellia Therapeutics, Inc.)¿Í ¸®Á¦³×·Ð ÆÄ¸¶½´Æ¼Äýº(Regeneron Pharmaceuticals, Inc.)´Â ¼±µµÀûÀÎ »ýü ³» À¯Àüü ÆíÁý Èĺ¸¹°ÁúÀÎ NTLA-2001(Investigational Crispr Therapy For Transthyretin(Attr) Amyloidosis)ÀÇ ÁøÇà ÁßÀÎ ÀÓ»ó 1»ó ½ÃÇè¿¡¼ ¾çÈ£ÇÑ Áß°£ µ¥ÀÌÅ͸¦ ¹ßÇ¥Çß½À´Ï´Ù.
CRISPR Therapeutics AG´Â 2022³â 1¿ù, ĸ½Ã´Ù ¹ÙÀÌ¿ÀÅ×¶óǻƽ½º(Capsida Biotherapeutics Inc.)¿Í ´Ù¾çÇÑ Áúº´ Ä¡·á¸¦ À§ÇØ CRISPR/Cas9 ±â¼úÀ» Ȱ¿ëÇÑ »õ·Î¿î À¯ÀüÀÚ Ä¡·áÁ¦¸¦ °³¹ßÇϱâ À§ÇÑ Àü·«Àû ÆÄÆ®³Ê½ÊÀ» ü°áÇß´Ù°í ¹ßÇ¥Çß½À´Ï´Ù. À̹ø °è¾à¿¡¼ CRISPR Therapeutics´Â À¯Àüü ÆíÁý Àü¹® Áö½ÄÀ» Á¦°øÇϰí, Capsida´Â ¾Æµ¥³ëºÎ¼öü ¹ÙÀÌ·¯½º(AAV) Àü´Þ ±â¼úÀ» Á¦°øÇÏ°Ô µË´Ï´Ù.
According to Stratistics MRC, the Global Genome Editing Market is accounted for $6.1 billion in 2022 and is expected to reach $18.5 billion by 2028 growing at a CAGR of 20.2% during the forecast period. Gene editing is the use of instruments and processes that significantly change the genetic blueprints of a living thing by making extremely particular alterations to the DNA sequence of a gene. Gene editing strives to modify particular target regions, as opposed to genetic engineering, which randomly combines genetic material into a host genome.
According to the National Center for Advancing Translational Sciences updates form June 2022, the Somatic Cell Genome Editing (SCGE) Program at the National Institutes of Health (NIH) has awarded 24 more grants to researchers across the United States and Canada.
Recent developments have substantially improved genome editing capabilities, enabling the alteration of unique gene sequences in a variety of cell types and model species. In particular, for oncology tests, genome engineering has developed into a potentially game-changing diagnostic tool. Genome engineering was previously used by major research institutions, including those affiliated with the government and universities. This significant movement away from academics and into clinical and diagnostic facilities is primarily driven by the rapid advancement of gene editing technology.
Because genomic instruments have cutting-edge features and functions, they are more expensive, with costs averaging between USD 10 and USD 20 million. As many of these systems are needed by pharmaceutical businesses and research labs, their capital expenditure to acquire several genomic equipment is very significant. It is not practical for small and medium-sized pharmaceutical corporations and research labs to invest substantially in numerous genomics devices.
Players in the genome editing market should have opportunities as the field of customized medicine grows. With the aid of personalized medicine, practitioners may identify a patient's precise needs and then prescribe medications and treatments in response. Due to its potential for cost reductions, better patient compliance, early disease identification, and therapy improvement, the use of customized medicine is expanding globally.
CRISPR-Cas9's off-target consequences are a significant concern. Any off-target nuclease activity may modify these genes and result in oncogenesis since Cas9 generates double-stranded breaks. One to three mismatches in the target can be tolerated by CRISPR-Cas9, which can result in off-target nuclease activity. A significant concern is the high frequency of off-target activity (50%), which refers to alterations at locations other than the planned on-target site. For instance, CRISPR can activate the cancer-causing gene or target the tumor suppressor gene. Due to this undesirable effect, numerous companies that are organizing clinical studies have experienced problems. Clinical trials have been revoked, and regulatory authorities demand more studies to improve the safety of this procedure.
COVID-19 has a favorable effect on the market for genome editing. The COVID-19 epidemic has increased the strain on healthcare systems around the world. Major pharmaceutical and biotechnology companies have increased their investments in vaccine R&D and market players for genome editing as a result of the COVID-19 pandemic. Due to the rising demand for vaccinations and potential antiviral medications, genome editing and engineering technologies are at the forefront of scientific research. Additionally, there has been a moderate impact on the market for genome editing as well as other healthcare services. Many researchers switched their attention to the investigation of this unique virus and the illness it produces after COVID-19 was originally identified.
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) segment is expected to have moderate growth over the projected period because of increased government financing and initiatives to develop vaccinations, medical technology, pharmaceuticals, and gadgets. In two cases of inherited diseases-one in a patient with TDT (thalassemia) and the other in a patient with SCD (sickle cell disease)-CRISPR-Cas9-based gene editing is being tested, according to a study titled "CRISPR-Cas9 Gene Editing for Sickle Cell Disease and -Thalassemia," published in the New England Journal of Medicine in January 2021. Both patients witnessed early, significant, and long-lasting increases in fetal hemoglobin levels with more than 99% pancellularity throughout the course of the following year after receiving CTX001. Therefore, it is anticipated that over the forecast period, demand for CRISPR technology will increase due to its use in treating diseases including sickle cell disease and beta-thalassemia.
Due to the expanding use of cell line engineering in stem cell-based research, it is predicted that the cell line editing segment will have profitable growth over an extended period. Cell line engineering is widely used for induced pluripotent stem cells (iPSCs), which help to change the genetic material of the cells as a result of rapid improvements. Additionally, advanced gene editing methods, including zinc finger nucleases (ZFNs), CRISPR/Cas, and TALENs, have made cell editing affordable and feasible.
Due to the biotechnology and pharmaceutical industries' strong development trends, North America has acquired a monopoly on the global market for genome editing. During the anticipated period, it is predicted that factors including technological advancements in genome editing, rising product approvals, and expanding R&D procedures would accelerate market expansion. However, the United States Food and Drug Administration provided consent to researchers at the University of California (UC), San Francisco, UC Berkeley, and UC Los Angeles in March 2021 to jointly begin an early-phase, first-in-human clinical trial of a gene correction therapy in sickle cell disease patients using the patient's blood-forming stem cells.
Due to the advancement of gene therapy, growing consumption of genetically modified crops, and easy access to research funding, North America hold the highest CAGR over the forecasted period and will continue to make the largest contribution to businesses offering tools and services for gene editing. Additionally, the U.S. controls the majority of the market in North America, mostly as a result of increased public and private financing for genomics research. Furthermore, the market for genome editing in North America is being driven by the rising prevalence of rare illnesses in the United States and Canada. More than 7,000 rare diseases affect between 25 and 30 million Americans, according to the National Institutes of Health (NIH). According to this statistic, one in ten Americans has a rare disorder. As a result, the adoption of novel DNA editing methods in these nations is driven by the growing need to provide effective medications.
Some of the key players in Genome Editing market include Agilent Technologies Inc., AstraZeneca, Beam Therapeutics, Bluebird Bio, Caribou Biosciences, Inc, Cellectis S.A., Cibus, Recombinetics, Inc., CRISPR Therapeutics AG, Editas Medicine Inc., Egenesis Inc., GenScript Biotech Corporation, GenScript USA Inc., Horizon Discovery Group plc, Integrated DNA Technologies Inc., Intellia Therapeutics, Inc., Lonza Group Ltd, Merck KGaA, New England Biolabs Inc., Origene Technologies Inc., Precision BioSciences Inc., Sangamo Therapeutics Inc., Takara Bio Inc., Tecan Life Sciences , Thermo Fisher Scientific Inc. and Transposagen Biopharmaceuticals Inc.
In May 2022, the English parliament introduced a Bill that would enable the release of genetically edited products. The Genetic Technology (Precision Breeding) Bill aims to benefit companies, farmers, and consumers. The bill is currently under the report stage in the House of Commons.
In February 2022, Integrated DNA Technologies unveiled Alt-R HDR Donor Blocks, an improved solution for increasing homology-directed repair (HDR) rates. Alt-R HDR Donor Blocks are the latest addition to IDT's complete portfolio of Alt-R CRISPR genome editing solutions.
In February 2022, Intellia Therapeutics, Inc. and Regeneron Pharmaceuticals, Inc. announced the positive interim data from an ongoing Phase I clinical study of their lead in vivo genome editing candidate, NTLA-2001 (Investigational Crispr Therapy For Transthyretin (Attr) Amyloidosis).
In January 2022, CRISPR Therapeutics AG announced a strategic partnership with Capsida Biotherapeutics Inc. to develop new gene therapies using the CRISPR/Cas9 technology for the treatment of various diseases. Under the agreement, CRISPR Therapeutics will provide its genome editing expertise, while Capsida will contribute its adeno-associated virus (AAV) delivery technology.