![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1423746
Ç¥¸é ź¼ºÆÄ ¼¾¼ ½ÃÀå ¿¹Ãø(-2030³â) : ¼¾½Ì À¯Çüº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®Surface Acoustic Wave Sensors Market Forecasts to 2030 - Global Analysis By Sensing Type, End User and By Geography |
¼¼°è Ç¥¸é ź¼ºÆÄ ¼¾¼ ½ÃÀå ±Ô¸ð´Â 2023³â 10¾ï 1,700¸¸ ´Þ·¯¿¡ ´ÞÇϰí, ¿¹Ãø ±â°£ µ¿¾È CAGR 13.5%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 24¾ï 6,900¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Ç¥¸é ź¼ºÆÄ ¼¾¼´Â Ç¥¸é ź¼ºÆÄÀÇ Æ¯¼º º¯È¸¦ ÃøÁ¤ÇÏ¿© ¾Ð·Â, ¿Âµµ, Áú·®, ƯÁ¤ ¹°ÁúÀÇ Á¸Àç¿Í °°Àº ¹°¸®Àû ¸Å°³ º¯¼öÀÇ º¯È¸¦ °¨ÁöÇϵµ·Ï ¼³°èµÇ¾úÀ¸¸ç, SAW ¼¾¼ÀÇ °¨µµ°¡ ³ô¾Æ »ê¾÷ °øÁ¤ Á¦¾î, ȯ°æ ¸ð´ÏÅ͸µ, ÀÇ·á Áø´Ü, º¸¾È ½Ã½ºÅÛ µî ´Ù¾çÇÑ ÀÀ¿ë ºÐ¾ß¿¡ ÀûÇÕÇÕ´Ï´Ù.
»ê¾÷ ºÐ¾ß¿¡¼ÀÇ ¼ö¿ä Áõ°¡
»ê¾÷ ȯ°æ¿¡¼ÀÇ ¼¾¼´Â ¾Ð·Â, ¿Âµµ, °¡½º ³óµµ¿Í °°Àº ¿ä¼Ò¿¡ ´ëÇÑ Á¤È®ÇÑ ½Ç½Ã°£ µ¥ÀÌÅÍ¿¡ ´ëÇÑ Çʿ伺¿¡¼ ºñ·ÔµÈ °ÍÀ¸·Î, Á¦Á¶ °øÁ¤À» ÃÖÀûÈÇÏ°í ¿î¿µ È¿À²À» º¸ÀåÇÏ¸ç ¾ÈÀüÇÑ ÀÛ¾÷ ȯ°æÀ» À¯ÁöÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. »ê¾÷°è°¡ ÀÚµ¿È¿Í ½º¸¶Æ® Á¦Á¶¿¡ ´ëÇÑ Á߿伺À» °è¼Ó °Á¶ÇÔ¿¡ µû¶ó, »ê¾÷¿ë SAW ¼¾¼¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â Áö¼ÓµÉ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ÀÌ´Â ÀÌ ±â¼úÀÇ Àü¹ÝÀûÀÎ ¼ºÀå°ú äÅÿ¡ Å©°Ô ±â¿©ÇÒ °ÍÀ¸·Î Àü¸ÁµË´Ï´Ù.
º¹ÀâÇÑ Á¦Á¶ °øÁ¤
SAW ¼¾¼ÀÇ Á¦Á¶¿¡´Â º¹ÀâÇÑ ÀýÂ÷°¡ ÇÊ¿äÇϸç, Á¾Á¾ Ư¼ö Àåºñ¿Í Àü¹® Áö½ÄÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ º¹À⼺Àº ¼¾¼ÀÇ ÇÙ½É ºÎǰÀ» Çü¼ºÇÏ´Â ¾ÐÀü ±âÆÇ°ú µðÁöÅÐ °£ º¯È¯±â¸¦ Á¤¹ÐÇÏ°Ô ¼³°èÇØ¾ß Çϱ⠶§¹®¿¡ ¹ß»ýÇÕ´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ º¹ÀâÇÑ °øÁ¤Àº Á¦Á¶ ºñ¿ë »ó½ÂÀ¸·Î À̾îÁ® SAW ¼¾¼ Á¦Á¶¾÷ü°¡ ºñ¿ë È¿À²¼º°ú °æÀï·Â ÀÖ´Â °¡°Ý Ã¥Á¤À» ´Þ¼ºÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ°í ÀÖ½À´Ï´Ù.
±â¼úÀÇ ¹ßÀü
Á¦Á¶ ±â¼úÀÇ ¹ßÀüÀº SAW ¼¾¼ÀÇ ¼ÒÇüÈ ¹× ¼ÒÇü ÈÞ´ë ±â±â¿¡ÀÇ ÅëÇÕ¿¡ ±â¿©Çß½À´Ï´Ù. ¸¶ÀÌÅ©·Î Àü±â ±â°è ½Ã½ºÅÛ Á¦Á¶ ±â¼úÀº °íÁ¤¹ÐÇϰí ÀϰüµÈ ¼ÒÇü SAW ¼¾¼ÀÇ Á¦Á¶¸¦ °¡´ÉÇÏ°Ô Çß½À´Ï´Ù. ¶ÇÇÑ ½º¸¶Æ®Æù, ¿þ¾î·¯ºí ±â±â ¹× ±âŸ IoT ±â±â¿¡ ½±°Ô ÅëÇÕÇÒ ¼ö ÀÖ°Ô µÇ¾î »õ·Î¿î ÀÀ¿ë ºÐ¾ß¸¦ °³Ã´ÇÏ°í ½ÃÀåÀ» È®´ëÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.
³ôÀº ¿¡³ÊÁö ¼Òºñ·®
SAW ¼¾¼´Â ÃÖÀûÀÇ ÀÛµ¿À» À§ÇØ Áö¼ÓÀûÀÎ Àü·Â °ø±ÞÀÌ ÇÊ¿äÇÑ °æ¿ì°¡ ¸¹±â ¶§¹®¿¡ ¿¡³ÊÁö ¼Òºñ ¼öÁØÀÌ ³ô½À´Ï´Ù. SAW ¼¾¼ÀÇ ³ôÀº ¿¡³ÊÁö ¼ö¿ä´Â ¹èÅ͸® ±¸µ¿ ÀåÄ¡³ª Àü·Â ÀÚ¿øÀÌ Á¦ÇÑÀûÀÎ IoT ¼¾¼¿Í °°ÀÌ ¿¡³ÊÁö È¿À²ÀÌ ÃÖ¿ì¼± ¼øÀ§ÀÎ ¾ÖÇø®ÄÉÀ̼ǿ¡¼ Å« ´ÜÁ¡ÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÇѰè´Â ¿¡³ÊÁö È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀ» ¼³°èÇÏ´Â µ¥ ¾î·Á¿òÀ» ÃÊ·¡Çϰí SAW ¼¾¼ÀÇ º¸±ÞÀ» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19 Àü¿°º´Àº Ç¥¸é ź¼ºÆÄ ¼¾¼ ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. Æó¼â, ¿©Çà Á¦ÇÑ ¹× °ø±Þ¸Á Áß´ÜÀ¸·Î ÀÎÇÑ ¼¼°è È¥¶õÀ¸·Î ÀÎÇØ óÀ½¿¡´Â ´Ù¾çÇÑ »ê¾÷¿¡¼ SAW ¼¾¼ÀÇ »ý»ê°ú ¼ö¿ä°¡ ÀϽÃÀûÀ¸·Î °¨¼ÒÇß½À´Ï´Ù. ±×·¯³ª ÀÇ·á ºÐ¾ß¿¡¼´Â Àü¿°º´ ±â°£ µ¿¾È SAW ¼¾¼¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇß½À´Ï´Ù. ƯÈ÷ ÇöÀå Áø´Ü ±â±â ¹× ±âŸ ÀÇ·á ¾ÖÇø®ÄÉÀÌ¼Ç °³¹ß¿¡¼ ºü¸£°í ºñÁ¢ÃË½Ä °¨Áö ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¿ä±¸°¡ µÎµå·¯Áö°Ô ³ªÅ¸³µ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ½Àµµ ¼¾¼ ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»ó
½Àµµ ¼¾¼ ºÎ¹®ÀÌ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Ç¥¸é ź¼ºÆÄ ¼¾¼´Â ½Àµµ °¨Áö ¾ÖÇø®ÄÉÀ̼ǿ¡¼ ¶Ù¾î³ ¼º´ÉÀ» ¹ßÈÖÇÏ¿© ´ë±â Áß ¼öºÐ ¼öÁØÀ» Á¤È®ÇÏ°í ½Å¼ÓÇÏ°Ô ÃøÁ¤ÇÕ´Ï´Ù. ÀÌ ¼¾¼´Â Ç¥¸é ź¼ºÆÄ¿Í ½Àµµ º¯È¿¡ µû¸¥ Àç·áÀÇ À¯Àüü Ư¼º º¯ÈÀÇ »óÈ£ ÀÛ¿ëÀ» ÀÌ¿ëÇÕ´Ï´Ù. ´Ù¾çÇÑ ºÐ¾ß¿¡¼ Á¤È®ÇÏ°í ¹ÝÀÀ¼ºÀÌ ³ôÀº ½Àµµ °¨Áö ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó, Ç¥¸é ź¼ºÆÄ ¼¾¼ ½ÃÀåÀÇ Ã¤ÅÃÀÌ È®´ëµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ÇコÄÉ¾î ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»ó
ÇコÄÉ¾î ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È À¯¸®ÇÑ ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. SAW ¼¾¼´Â ¹Î°¨µµ°¡ ³ô°í ¾×ü ȯ°æ¿¡¼µµ ÀÛµ¿Çϱ⠶§¹®¿¡ ¹ÙÀÌ¿À¼¾½Ì, ·¦¿ÂĨ ±â¼ú µîÀÇ ÀÀ¿ë ºÐ¾ß¿¡ ÀûÇÕÇϸç, SAW ¼¾¼´Â ƯÁ¤ »ýü ºÐÀÚ¸¦ °¨ÁöÇÒ ¼ö Àֱ⠶§¹®¿¡ Áúº´, °¨¿° ¹× °Ç° »óÅÂ¿Í °ü·ÃµÈ ¸¶Ä¿¸¦ ½Äº°ÇÏ´Â µ¥ À¯¿ëÇÕ´Ï´Ù. ¶ÇÇÑ, ºñħ½ÀÀû Ư¼º°ú Á¤È®ÇÑ °¨Áö ´É·ÂÀ¸·Î ÀÎÇØ SAW ¼¾¼´Â ÇöÀç ÁøÇà ÁßÀÎ ÀÇ·á °üÇàÀÇ Çõ½Å¿¡ Áß¿äÇÑ ±â¿©¸¦ ÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î ±â´ëµÇ°í ÀÖ½À´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀÌ ÃßÁ¤ ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀÔ´Ï´Ù. ÀÌ Áö¿ªÀº ƯÈ÷ Áß±¹, ÀϺ», Çѱ¹, Àεµ µîÀÇ ±¹°¡¿¡¼ °·ÂÇÑ °æÁ¦ ¼ºÀåÀ¸·Î ÀÎÇØ »ê¾÷È¿Í ±â¼ú ¹ßÀüÀÌ ÃËÁøµÇ¾î SAW ¼¾¼ ±â¼ú äÅÿ¡ À¯¸®ÇÑ È¯°æÀ» Á¶¼ºÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ Áö¿ªÀÇ ÇコÄÉ¾î ºÐ¾ßÀÇ ¹ø¿µ°ú ȯ°æ ¸ð´ÏÅ͸µ ¹× IoT ÅëÇÕ¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó SAW ¼¾¼ ½ÃÀåÀÌ ´õ¿í Ȱ¼ºÈµÇ°í ÀÖ½À´Ï´Ù.
ºÏ¹Ì Áö¿ªÀº źźÇÑ »ê¾÷ ÀÎÇÁ¶ó¿Í R&D¿¡ ´ëÇÑ ÁýÁßÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È ¼öÀͼº ³ôÀº ¼ºÀåÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¹Ì±¹¿¡¼´Â ÇコÄÉ¾î ºÐ¾ß°¡ °íµµ·Î ¹ßÀüÇϰí ÀÖÀ¸¸ç, ƯÈ÷ ÀÇ·á Áø´Ü ¹× ȯÀÚ ¸ð´ÏÅ͸µ ºÐ¾ß¿¡¼ SAW ¼¾¼ ¾ÖÇø®ÄÉÀ̼ÇÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ Áö¿ªÀÇ È¯°æÀû Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ³ë·Â°ú ¾ö°ÝÇÑ ±ÔÁ¦ ±âÁØÀº ´ë±â ¹× ¼öÁú ¸ð´ÏÅ͸µ°ú °°Àº ÀÀ¿ë ºÐ¾ß¿¡¼ SAW ¼¾¼ÀÇ »ç¿ëÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Surface Acoustic Wave Sensors Market is accounted for $1017 million in 2023 and is expected to reach $2469 million by 2030 growing at a CAGR of 13.5% during the forecast period. Surface Acoustic Wave sensors are designed to detect changes in physical parameters, such as pressure, temperature, mass, or the presence of specific substances, by measuring variations in the characteristics of the surface acoustic waves. The sensitivity of SAW sensors makes them suitable for a wide range of applications, including industrial process control, environmental monitoring, healthcare diagnostics, and security systems.
Rising demand in industrial sector
Sensors in industrial settings arise from the need for accurate and real-time data on factors such as pressure, temperature, and gas concentrations, essential for optimizing manufacturing processes, ensuring operational efficiency, and maintaining a safe working environment. As industries continue to emphasize automation and smart manufacturing practices, the rising demand for SAW sensors in industrial applications is expected to persist, contributing significantly to the overall growth and adoption of this technology.
Complex manufacturing processes
The fabrication of SAW sensors involves intricate procedures, often requiring specialized equipment and expertise. The complexity arises from the need to precisely engineer the piezoelectric substrates and interdigital transducers that form the core components of these sensors. Moreover, the intricate nature of these processes contributes to higher manufacturing costs, making it challenging for SAW sensor manufacturers to achieve cost-effectiveness and competitive pricing.
Technological advancements
Advancements in fabrication techniques have contributed to the miniaturization and integration of SAW sensors into compact and portable devices. The Microelectromechanical systems fabrication technique has enabled the production of small-scale SAW sensors with high precision and consistency. Moreover, this has facilitated their integration into smartphones, wearables, and other IoT devices, opening up new avenues for applications and expanding the market reach.
High energy consumption
SAW sensors often require a continuous power supply for optimal operation, leading to elevated energy consumption levels. In applications where energy efficiency is paramount, such as battery-operated devices or IoT sensors with limited power resources, the high energy demand of SAW sensors can be a significant drawback. This limitation poses challenges in designing energy-efficient solutions and may hinder the widespread adoption of SAW sensors.
Covid-19 Impact
The COVID-19 pandemic has significantly impacted the surface acoustic wave (SAW) sensor market. The global disruptions caused by lockdowns, travel restrictions, and supply chain interruptions initially led to a temporary decline in the production and demand for SAW sensors across various industries. However, the healthcare sector witnessed a surge in demand for SAW sensors during the pandemic. The need for rapid and contactless sensing solutions became more pronounced, especially in the development of point-of-care diagnostic devices and other healthcare applications.
The humidity sensors segment is expected to be the largest during the forecast period
The humidity sensors segment is estimated to hold the largest share. Surface Acoustic Wave (SAW) sensors demonstrate remarkable capabilities in humidity sensing applications, offering accurate and responsive measurements of atmospheric moisture levels. These sensors leverage the interaction between surface acoustic waves and changes in the dielectric properties of a material due to humidity variations. As the demand for accurate and responsive humidity sensing solutions grows across various sectors, the surface acoustic wave sensor market is poised to witness increased adoption.
The healthcare segment is expected to have the highest CAGR during the forecast period
The healthcare segment is anticipated to have lucrative growth during the forecast period. Their high sensitivity and ability to operate in liquid environments make them well-suited for applications such as biosensing and lab-on-a-chip technologies. SAW sensors can detect specific biomolecules, making them valuable for identifying markers associated with diseases, infections, or medical conditions. Moreover, their non-invasive nature and precise detection capabilities position SAW sensors as key contributors to the ongoing transformation of healthcare practices.
Asia Pacific commanded the largest market share during the extrapolated period. The region's robust economic growth, particularly in countries like China, Japan, South Korea, and India, has fuelled increased industrialization and technological advancements, creating a favourable environment for the adoption of SAW sensor technologies. Additionally, the region's thriving healthcare sector, coupled with a growing emphasis on environmental monitoring and IoT integration, has further propelled the market for SAW sensors.
North America is expected to witness profitable growth over the projection period, owing to robust industrial infrastructure, and a strong focus on research and development. In the United States, a highly developed healthcare sector has been a driving force for SAW sensor applications, particularly in medical diagnostics and patient monitoring. Moreover, the region's commitment to environmental sustainability and stringent regulatory standards further promotes the use of SAW sensors in applications such as air and water quality monitoring.
Key players in the market
Some of the key players in the Surface Acoustic Wave Sensors Market include Honeywell International, SENSeOR SAS, Vectron International, CTS Corporation, API Technologies, Teledyne Microwave Solutions, Raltron Electronics, Transense Technologies PLC, Pro-Micron GmbH & Co. KG and Sensor Technology Ltd.
In September 2023, Honeywell announced that it has partnered with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) on a year-long collaboration to prototype and support the commercialization of a cartridge-based hydrogen fuel storage solution for Uncrewed Aerial Vehicles (UAVs).
In September 2023, Honeywell, a leader in aerospace technology and Swedish electric airplane maker Heart Aerospace have announced a collaboration to integrate Honeywell's next-generation flight control system into the new ES-30 regional electric airplane.