![]() |
½ÃÀ庸°í¼
»óÇ°ÄÚµå
1462769
¼¼°èÀÇ µðÁöÅРȹ° ¸ÅĪ ½ÃÀå Àü¸Á(-2030³â) : ±â¼ú, ¼ºñ½º, ¿î¼Û ÇüÅÂ, ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚ, Áö¿ªº° ºÐ¼®Digital Freight Matching Market Forecasts to 2030 - Global Analysis By Technology, Service, Transportation Mode, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é, ¼¼°è µðÁöÅРȹ° ¸ÅĪ ½ÃÀåÀº 2023³â 375¾ï 8,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, ¿¹Ãø ±â°£ µ¿¾È 33.50%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 2,840¾ï 1,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
µðÁöÅРȹ° ¸ÅĪ(DFM)Àº ¹°·ù ¹× ¿î¼Û »ê¾÷ÀÇ Çõ½Å ±â¼úÀÔ´Ï´Ù. µðÁöÅÐ Ç÷§Æû°ú ¾Ë°í¸®ÁòÀ» È°¿ëÇÏ¿© ÈÁÖ¿Í ¿î¼Û¾÷ü¸¦ È¿À²ÀûÀ¸·Î ¿¬°áÇÏ°í, »ç¿ë °¡´ÉÇÑ È¹°°ú ¿î¼Û ´É·ÂÀ» ½Ç½Ã°£À¸·Î ¸ÅĪÇÏ´Â µðÁöÅÐ Ç÷§Æû°ú ¾Ë°í¸®ÁòÀ» È°¿ëÇÕ´Ï´Ù. µ¥ÀÌÅÍ ºÐ¼®, ¸Ó½Å·¯´×, ÀÚµ¿È¸¦ ÅëÇØ DFMÀº ±âÁ¸ ¼öÀÛ¾÷À¸·Î ÁøÇàµÇ´ø ¿î¼Û¾÷ü¿Í ȹ°ÀÇ ¸ÅĪ ÇÁ·Î¼¼½º¸¦ °£¼ÒÈÇÏ¿© È¿À²¼ºÀ» ³ôÀÌ°í, ºñ¿ëÀ» Àý°¨Çϸç, °ø±Þ¸Á Àü¹ÝÀÇ Åõ¸í¼ºÀ» ³ôÀÔ´Ï´Ù. ÀÌ ±â¼úÀ» ÅëÇØ ÀÚ¿øÀ» È¿À²ÀûÀ¸·Î È°¿ëÇÏ°í, °øÂ÷ °Å¸®¸¦ ÁÙÀ̸ç, ´ë±â ½Ã°£À» ÃÖ¼ÒÈÇÏ¿© ±Ã±ØÀûÀ¸·Î ÈÁÖ¿Í ¿î¼Û¾÷ü ¸ðµÎ¿¡°Ô ¹°·ù ÇÁ·Î¼¼½º¸¦ ÃÖÀûÈÇÒ ¼ö ÀÖ½À´Ï´Ù.
¹Ì±¹ »ó¹«ºÎÀÇ 2020³â ¼Ò¸Å¾÷ ¿¬·ÊÁ¶»ç(ARTS)¿¡ µû¸£¸é 2020³â ¹Ì±¹ ÀüÀÚ»ó°Å·¡ ¸ÅÃâÀº 2019³â ´ëºñ 43% Áõ°¡Çß½À´Ï´Ù.
È¿À²¼º ¹× ºñ¿ëÀý°¨
µðÁöÅÐ Ç÷§ÆûÀ» È°¿ëÇÏ¸é ±â¾÷Àº ȹ°°ú ¿î¼Û¾÷ü¸¦ ¸ÅĪÇÏ°í, À¯ÈÞ ½Ã°£À» ÁÙÀÌ°í, °æ·Î¸¦ ÃÖÀûÈÇÏ´Â µî ÇÁ·Î¼¼½º¸¦ °£¼ÒÈÇÒ ¼ö ÀÖ½À´Ï´Ù. DFM ¼Ö·ç¼ÇÀº ½Ç½Ã°£ ÃßÀû ¹× ¸ð´ÏÅ͸µÀÌ °¡´ÉÇÏ¿© Áö¿¬À» ÃÖ¼ÒÈÇÏ°í Àû½Ã¿¡ ¹è¼ÛÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÖ¸ç, ¼öÀÛ¾÷À¸·Î ÀÌ·ïÁö´ø ¹®¼È ¹× Ä¿¹Â´ÏÄÉÀ̼ÇÀ» µðÁöÅÐ Ç÷§ÆûÀ» ÅëÇØ ¼öÀÛ¾÷À¸·Î ÀÌ·ïÁö´ø ¿î¼Û¾÷ü¿ÍÀÇ ¸ÅĪ, À¯È޽𣠴ÜÃà, °æ·Î ÃÖÀûÈ µîÀÇ ÇÁ·Î¼¼½º¸¦ °£¼ÒÈÇÒ ¼ö ÀÖ½À´Ï´Ù. DFM ¼Ö·ç¼ÇÀº ¹®¼ ÀÛ¼º, Ä¿¹Â´ÏÄÉÀÌ¼Ç µî ±âÁ¸¿¡ ¼öÀÛ¾÷À¸·Î ÁøÇàµÇ´ø ¸¹Àº ÀÛ¾÷À» ÀÚµ¿ÈÇÔÀ¸·Î½á Àüü °ø±Þ¸ÁÀÇ »ý»ê¼ºÀ» Çâ»ó½ÃÅ°¸é¼ ¿î¿µ ºñ¿ëÀ» ´õ¿í Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, DFMÀÇ È¿À²¼º°ú ºñ¿ë Àý°¨¿¡ ´ëÇÑ °Á¶´Â ÈÁÖ¿Í ¿î¼Û¾÷ü ¸ðµÎ¿¡°Ô ½ÇÁúÀûÀÎ ÀÌÁ¡À» °¡Á®´ÙÁÖ¸ç, ¿À´Ã³¯ÀÇ ¹°·ù ȯ°æ¿¡¼ ¸Å¿ì Áß¿äÇÑ ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù.
º¸¾È ¿ì·Á¿¡ ´ëÇÑ ¿ì·Á
ÀÌ ½ÃÀåÀÇ º¸¾È ¿ì·Á´Â µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã, »çÀ̹ö °ø°Ý, ½Ã½ºÅÛ Ãë¾à¼ºÀ» Áß½ÉÀ¸·Î Àü°³µË´Ï´Ù. ȹ° ¼¼ºÎ Á¤º¸, ±ÝÀ¶ °Å·¡¿Í °°Àº ¹Î°¨ÇÑ Á¤º¸°¡ ¿Â¶óÀÎÀ¸·Î ±³È¯µÇ±â ¶§¹®¿¡ µ¥ÀÌÅÍ À¯Ãâ ¹× ¹«´Ü ¾×¼¼½ºÀÇ À§ÇèÀÌ ÀÖÀ¸¸ç, DFM Ç÷§ÆûÀ» ´ë»óÀ¸·Î ÇÑ »çÀ̹ö °ø°ÝÀº ¾÷¹«¸¦ ¹æÇØÇÏ°í °ü·Ã ±â¾÷ÀÇ Áö¿¬ ¹× °æÁ¦Àû ¼Õ½ÇÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °ø±Þ¸Á¿¡ ´Ù¾çÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÅëÇյʿ¡ µû¶ó °ø°Ý ´ë»óÀÌ ´Ã¾î³²¿¡ µû¶ó ÀáÀçÀûÀÎ À§ÇùÀ¸·ÎºÎÅÍ º¸È£Çϱâ À§ÇÑ °·ÂÇÑ »çÀ̹ö º¸¾È Á¶Ä¡°¡ ÇÊ¿äÇÕ´Ï´Ù.
´õ ±¤¹üÀ§ÇÑ ³×Æ®¿öÅ©¿¡ ´ëÇÑ Á¢±Ù¼º
´õ ³ÐÀº ³×Æ®¿öÅ©¿¡ ´ëÇÑ Á¢±ÙÀº ÈÁÖ¿Í ¿î¼Û¾÷ü°¡ µðÁöÅÐ Ç÷§ÆûÀ» ÅëÇØ ´õ ³ÐÀº ¹üÀ§ÀÇ ÀáÀçÀû ÆÄÆ®³Ê ¹× ¸®¼Ò½º¿Í ¿¬°áµÇ´Â °ÍÀ» ÀǹÌÇÕ´Ï´Ù. ±â¼úÀ» È°¿ëÇÔÀ¸·Î½á DFM Ç÷§ÆûÀº Áö¸®Àû Á¦¾àÀ» ¶Ù¾î³Ñ¾î ¿î¼Û¾÷ü, ÈÁÖ, ºê·ÎÄ¿ ¹× ±âŸ ÀÌÇØ°ü°èÀÚÀÇ ¹æ´ëÇÑ ³×Æ®¿öÅ©¸¦ ÅëÇÕÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ È®ÀåµÈ ³×Æ®¿öÅ©´Â ȹ°°ú »ç¿ë °¡´ÉÇÑ ¿ë·®À» ÀÏÄ¡½Ãų ¶§ À¯¿¬¼º, È¿À²¼º ¹× È®À强À» Çâ»ó½ÃÄÑ ±Ã±ØÀûÀ¸·Î ºñ¿ëÀ» Àý°¨ÇÏ°í ¿î¿µ ¹Îø¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. ¶ÇÇÑ Âü°¡ÀÚµéÀº ½Ç½Ã°£ µ¥ÀÌÅÍ, ºÐ¼® ¹× °¡½Ã¼º¿¡ ¾×¼¼½º ÇÒ ¼ö ÀÖ¾î Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç °áÁ¤°ú ÃÖÀûÈµÈ ¹°·ù Àü·«À» ¼ö¸³ÇÒ ¼ö ÀÖ½À´Ï´Ù.
½ÃÀåÀÇ ÆÄÆíÈ
µðÁöÅРȹ° ¸ÅĪ(DFM) ½ÃÀå¿¡´Â À¯»çÇÑ ¼ºñ½º¸¦ Á¦°øÇÏ´Â ¼ö¸¹Àº Ç÷§ÆûÀÌ ³¸³ÇÏ°í ÀÖ¾î ½ÃÀåÀÇ ÆÄÆíÈ°¡ Å« À§ÇùÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÈÁÖ¿Í ¿î¼Û¾÷ü°¡ ÀûÀýÇÑ ¸ÅĪÀ» ã±â À§ÇØ ¿©·¯ Ç÷§ÆûÀ» Ž»öÇØ¾ß ÇÏ°í, ÀÌ´Â °Å·¡ ºñ¿ë Áõ°¡¿Í ¿î¿µ Åõ¸í¼º ÀúÇÏ·Î À̾îÁ® ºñÈ¿À²¼ºÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¼¼ºÐÈ µÈ ½ÃÀå¿¡¼´Â Ç¥ÁØÈ°¡ ÀÌ·ç¾îÁöÁö ¾Ê¾Æ ½ÃÀå ÁøÃâ±â¾÷ÀÌ ½Ã½ºÅÛÀ» ¿øÈ°ÇÏ°Ô ÅëÇÕÇϱⰡ ¾î·Æ½À´Ï´Ù. °á±¹ ÀÌ´Â DFM ¼Ö·ç¼ÇÀÇ È®À强°ú º¸±ÞÀ» ¹æÇØÇÏ°í, Çõ½ÅÀ» ÀúÇØÇÏ°í, µðÁöÅРȹ° »ê¾÷ÀÇ Àü¹ÝÀûÀÎ È¿À²¼ºÀ» Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù.
Ãʱ⿡´Â ¼¼°è °ø±Þ¸ÁÀÇ È¥¶õÀ¸·Î ÀÎÇØ ¹°µ¿·® º¯µ¿°ú ¿î¼Û ´É·ÂÀÇ Á¦¾à ¼Ó¿¡¼ ¹°·ù¸¦ È¿À²ÀûÀ¸·Î °ü¸®ÇÒ ¼ö ÀÖ´Â DFM ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇß½À´Ï´Ù. ±×·¯³ª °æÁ¦°¡ µÐÈµÇ°í ¿î¼Û ¼ö¿ä°¡ º¯µ¿ÇÔ¿¡ µû¶ó DFM Ç÷§ÆûÀº ¼ö¿ä ¹× °ø±ÞÀ» È¿°úÀûÀ¸·Î ¸ÅĪÇØ¾ß ÇÏ´Â °úÁ¦¿¡ Á÷¸éÇß½À´Ï´Ù. ¸¹Àº DFM ±â¾÷µéÀº º¯ÈÇÏ´Â ½ÃÀå ¿ªÇп¡ ÀûÀÀÇϱâ À§ÇØ ½Ç½Ã°£ ÃßÀû ¹× °ø±Þ¸Á °¡½Ã¼º°ú °°Àº Ãß°¡ ¼ºñ½º¸¦ Á¦°øÇÏ´Â ¹æÇâÀ¸·Î ÀüȯÇß½À´Ï´Ù. Àü¹ÝÀûÀ¸·Î Äڷγª19´Â DFM ±â¼úÀÇ Ã¤ÅÃÀ» °¡¼ÓÈÇßÁö¸¸ µ¿½Ã¿¡ °ø±Þ¸Á °ü¸®¿¡¼ ´õ ³ôÀº ź·Â¼º°ú À¯¿¬¼ºÀÇ Çʿ伺À» ºÎ°¢½ÃÄ×½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È À¥ ±â¹Ý ¼¼ºÐÈ°¡ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
½ÃÀå ¼¼ºÐÈ¿¡¼ À¥ ±â¹Ý ºÎ¹®ÀÇ ¼ºÀåÀº ÀÎÅÍ³Ý º¸±Þ·ü Áõ°¡¿Í DFM Ç÷§Æû¿¡ ½±°Ô Á¢±ÙÇÒ ¼ö ÀÖ´Â À¥ ±â¼úÀÇ ¹ßÀüÀ¸·Î ÀÎÇØ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. À¥ ±â¹Ý ¿îÀÓ ¸ÅĪ ¼Ö·ç¼ÇÀÌ Á¦°øÇÏ´Â Æí¸®ÇÔ°ú È¿À²¼ºÀº ÈÁÖ¿Í ¿î¼Û¾÷ü ¸ðµÎ¸¦ ²ø¾îµé¿© »ç¿ëÀÚ ±â¹ÝÀ» È®´ëÇß½À´Ï´Ù. À¥ ±â¹Ý DFM Ç÷§ÆûÀÇ È®À强°ú À¯¿¬¼ºÀº ¸ðµç ±Ô¸ðÀÇ ºñÁî´Ï½º¿¡ ÀûÇÕÇÏ¿© ½ÃÀå ¼ºÀå¿¡ ±â¿©ÇÏ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ½Ç½Ã°£ ÃßÀû ¹× ºÐ¼®°ú °°Àº ±â´ÉÀ» ÅëÇÕÇÏ¿© ¾÷¹«ÀÇ Åõ¸í¼º°ú ÀÇ»ç °áÁ¤À» °ÈÇÏ¿© äÅÃÀ» ´õ¿í ÃËÁøÇÕ´Ï´Ù.
Á¦3ÀÚ ¹°·ù ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Á¦3ÀÚ ¹°·ù(3PL) ºÎ¹®ÀÇ ¼ºÀåÀº ÁÖ·Î È¿À²ÀûÀÌ°í ºñ¿ë È¿À²ÀûÀΠȹ° °ü¸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ÈûÀÔ¾î ¼ºÀåÇÏ°í ÀÖÀ¸¸ç, 3PL ¾÷üµéÀº µðÁöÅÐ ±â¼úÀ» È°¿ëÇÏ¿© ¿î¿µÀ» °£¼ÒÈÇÏ°í, °æ·Î¸¦ ÃÖÀûÈÇϸç, »ç¿ë °¡´ÉÇÑ ¿î¼Û¾÷ü¿Í ȹ°À» º¸´Ù È¿À²ÀûÀ¸·Î ¸ÅĪÇÏ´Â µ¥ È°¿ëÇÏ°í ÀÖ½À´Ï´Ù. º¸´Ù È¿À²ÀûÀ¸·Î ¸ÅĪÇÒ ¼ö ÀÖµµ·Ï µðÁöÅÐ ±â¼úÀ» È°¿ëÇÏ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ DFM Ç÷§ÆûÀÇ µµÀÔÀ¸·Î 3PLÀº °¡½Ã¼º Çâ»ó, ½Ç½Ã°£ ÃßÀû, ÈÁÖ¿Í ¿î¼Û¾÷ü °£ÀÇ ¿øÈ°ÇÑ Ä¿¹Â´ÏÄÉÀ̼ÇÀ» ÅëÇØ Àüü °ø±Þ¸Á È¿À²¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, ±â¾÷µéÀÌ ÇÙ½É ¿ª·®¿¡ ÁýÁßÇϱâ À§ÇØ ¹°·ù ±â´ÉÀ» Á¡Á¡ ´õ ¸¹ÀÌ ¾Æ¿ô¼Ò½ÌÇÔ¿¡ µû¶ó 3PL ¼ºñ½º¿¡ ´ëÇÑ ¼ö¿ä´Â °è¼Ó Áõ°¡ÇÏ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, DFM ¼Ö·ç¼ÇÀÌ Á¦°øÇÏ´Â È®À强°ú À¯¿¬¼ºÀº 3PLÀÌ º¯ÈÇÏ´Â ½ÃÀå ¿ªÇÐ ¹× °í°´ ¼ö¿ä¿¡ ½Å¼ÓÇÏ°Ô ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÏ¿© ÀÌ ºÐ¾ßÀÇ ¼ºÀåÀ» ´õ¿í ÃËÁøÇÏ°í ÀÖ½À´Ï´Ù.
ºÏ¹Ì´Â °íµµ·Î ¹ß´ÞµÈ ¿î¼Û ÀÎÇÁ¶ó¿Í ¹°·ù ³×Æ®¿öÅ©°¡ µðÁöÅÐ ¼Ö·ç¼Ç µµÀÔÀ» À§ÇÑ ÅºÅºÇÑ ±â¹ÝÀ» Á¦°øÇÏ°í ÀÖ¾î ½ÃÀå¿¡¼ Å« ¼ºÀå¼¼¸¦ º¸ÀÌ°í ÀÖ½À´Ï´Ù. È¿À²ÀûÀΠȹ° °ü¸® ¹× ÃÖÀûÈ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ±â¾÷µéÀº ¿î¿µÀ» °£¼ÒÈÇÏ°í ºñ¿ëÀ» Àý°¨Çϱâ À§ÇØ DFM Ç÷§ÆûÀ» ã°í ÀÖ½À´Ï´Ù. ±â¼ú¿¡ Á¤ÅëÇÑ ±â¾÷ÀÇ Á¸Àç¿Í °·ÂÇÑ ±â¾÷ÀÌ Á¤½ÅÀº DFM ºÐ¾ßÀÇ Çõ½ÅÀ» ÃËÁøÇÏ°í ÀÖÀ¸¸ç, ¼ö¸¹Àº ½Å»ý ±â¾÷°ú »õ·Î¿î ÁøÀÔÀÚµéÀÌ µîÀåÇÏ°í ÀÖ½À´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº ±Þ¼ºÀåÇÏ´Â ÀüÀÚ»ó°Å·¡¿Í È¿À²ÀûÀΠȹ° °ü¸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä·Î ÀÎÇØ ÈÁÖ¿Í ¿î¼Û¾÷ü¸¦ ¸ÅĪÇÏ´Â µðÁöÅÐ Ç÷§ÆûÀÇ Ã¤ÅÃÀ» ÃËÁøÇϸç Å« ÆøÀÇ ¼ºÀå¼¼¸¦ º¸ÀÌ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Áß±¹, Àεµ, µ¿³²¾Æ½Ã¾Æ ±¹°¡µéÀÇ ±Þ¼ÓÇÑ µµ½ÃÈ¿Í »ê¾÷È·Î ÀÎÇØ ¹°·ù ¿î¿µÀÇ È¿À²È¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ IoT, AI, ºí·ÏüÀÎ µîÀÇ ±â¼ú ¹ßÀüÀº ÀÌ Áö¿ªÀÇ È¹° ¸ÅĪ ÇÁ·Î¼¼½ºÀÇ È¿À²¼º°ú Åõ¸í¼ºÀ» ³ôÀÌ°í ÀÖ½À´Ï´Ù. ¹«¿ª ÃËÁø°ú ÀÎÇÁ¶ó ±¸ÃàÀ» À§ÇÑ °¢±¹ Á¤ºÎÀÇ À̴ϼÅƼºêµµ ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ DFM ½ÃÀå È®´ë¿¡ ±â¿©ÇÏ°í ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Digital Freight Matching Market is accounted for $37.58 billion in 2023 and is expected to reach $284.01 billion by 2030 growing at a CAGR of 33.50% during the forecast period. Digital freight matching (DFM) is a transformative technology in the logistics and transportation industries. It leverages digital platforms and algorithms to efficiently connect shippers with carriers, matching available freight with trucking capacity in real-time. By utilizing data analytics, machine learning, and automation, DFM streamlines the traditionally manual process of matching shipments with carriers, leading to improved efficiency, reduced costs, and enhanced transparency throughout the supply chain. This technology enables better utilization of resources, reduces empty miles, and minimizes wait times, ultimately optimizing the logistics process for both shippers and carriers.
According to the U.S. Department of Commerce's Annual Retail Trade Survey (ARTS) in 2020, e-commerce sales in the U.S. rose by 43% in 2020 compared to 2019.
Efficiency and cost reduction
By leveraging digital platforms, companies can streamline the process of matching freight with available carriers, reducing idle time, and optimizing routes. This leads to improved efficiency as trucks spend less time empty or underutilized, ultimately reducing overall transportation costs. DFM solutions enable real-time tracking and monitoring, minimizing delays and ensuring timely deliveries. By automating many tasks traditionally done manually, such as paperwork and communication, DFM solutions further cut down operational costs while enhancing productivity across the supply chain. Additionally, the emphasis on efficiency and cost reduction in DFM translates into tangible benefits for both shippers and carriers, making it a crucial aspect of the modern logistics landscape.
Security concerns
Security concerns in this market revolve around data privacy, cyberattacks, and system vulnerabilities. With sensitive information, such as shipment details and financial transactions, being exchanged online, there's a risk of data breaches and unauthorized access. Cyberattacks targeting DFM platforms could disrupt operations, leading to delays and financial losses for the companies involved. Additionally, the integration of various stakeholders in the supply chain increases the attack surface, requiring robust cybersecurity measures to safeguard against potential threats.
Access to a wider network
Access to a wider network opportunity is the ability for shippers and carriers to connect with a broader range of potential partners and resources through digital platforms. By leveraging technology, DFM platforms can aggregate a vast network of carriers, shippers, brokers, and other stakeholders, transcending geographical limitations. This expanded network offers increased flexibility, efficiency, and scalability in matching freight with available capacity, ultimately driving down costs and enhancing operational agility. Moreover, it enables participants to access real-time data, analytics, and visibility, empowering informed decision-making and optimized logistics strategies.
Market fragmentation
Market fragmentation in the Digital Freight Matching (DFM) market poses a significant threat due to the proliferation of numerous platforms offering similar services. This fragmentation leads to inefficiencies as shippers and carriers must navigate multiple platforms to find suitable matches, resulting in increased transaction costs and reduced operational transparency. Moreover, fragmented markets lack standardization, making it challenging for participants to integrate their systems seamlessly. Ultimately, this hampers the scalability and widespread adoption of DFM solutions, potentially stifling innovation and limiting the overall effectiveness of the digital freight industry.
Initially, disruptions in global supply chains led to a surge in demand for DFM solutions to efficiently manage logistics amid fluctuating freight volumes and capacity constraints. However, as economies slowed down and transportation demand fluctuated, DFM platforms faced challenges in matching supply with demand effectively. Many DFM companies pivoted to offer additional services, such as real-time tracking and supply chain visibility, to adapt to changing market dynamics. Overall, while the pandemic accelerated the adoption of DFM technology, it also highlighted the need for greater resilience and flexibility in supply chain management.
The web-based segment is expected to be the largest during the forecast period
The growth of web-based segments in the market is fueled by increased internet penetration and advancements in web technologies which facilitated easier access to DFM platforms. The convenience and efficiency offered by web-based solutions for freight matching attract both shippers and carriers, leading to an expanding user base. The scalability and flexibility of web-based DFM platforms make them suitable for businesses of all sizes, contributing to market growth. Additionally, the integration of features like real-time tracking and analytics enhances operational transparency and decision-making, further driving adoption.
The 3rd party logistics segment is expected to have the highest CAGR during the forecast period
The growth of the 3rd Party Logistics (3PL) segment is primarily driven by the increasing demand for efficient and cost-effective freight management solutions. 3PL providers are leveraging digital technologies to streamline operations, optimize routes, and match shipments with available carriers more effectively. This adoption of DFM platforms allows 3PLs to offer enhanced visibility, real-time tracking, and seamless communication between shippers and carriers, thereby improving overall supply chain efficiency. Moreover, as businesses increasingly outsource their logistics functions to focus on core competencies, the demand for 3PL services continues to rise. Furthermore, he scalability and flexibility offered by DFM solutions enable 3PLs to adapt quickly to changing market dynamics and customer demands, further fueling their growth in this segment.
The North American region has experienced significant growth in the market due to the region's highly developed transportation infrastructure and logistics networks, providing a robust foundation for the adoption of digital solutions. The increasing demand for efficient freight management and optimization has driven companies to seek out DFM platforms to streamline operations and reduce costs. The presence of tech-savvy businesses and a strong entrepreneurial culture have fostered innovation in the DFM sector, leading to the emergence of numerous startups and new entrants.
The Asia-Pacific region has witnessed substantial growth due to the region's burgeoning e-commerce and efficient need for freight management solutions, driving the adoption of digital platforms for matching shippers with carriers. Additionally, the rapid urbanization and industrialization across countries like China, India, and Southeast Asian nations have spurred demand for streamlined logistics operations. Moreover, advancements in technology, such as IoT, AI, and blockchain, have enhanced the efficiency and transparency of freight matching processes in the region. Government initiatives aimed at improving trade facilitation and infrastructure development have also contributed to the expansion of the DFM market in Asia-Pacific.
Key players in the market
Some of the key players in Digital Freight Matching market include 123Loadboard, C.H.Robinson, Cargo Chief, Convoy, DAT Solutions, Delhivery, Flexport , Forto, Loadsmart, Motive Technologies, Samsara, Trucker Path, Uber Freight and uShip.
In March 2024, Delhivery has transformed its facility in Punjab's Moga into an all-woman-run hub, the leading integrated logistics service provider. The company plans to establish similar types of all-women-run facilities in other regions of the country, including Uttar Pradesh and Rajasthan.
In January 2024, Trucking industry software platform Trucker Path announced that it has tapped online lending marketplace Lendio to embed small business lending tools within its mobile app. Lendio, will offer Trucker Path's community of one million users a range of financing services, including asset or revenue-based financing, debt financing, lines of credit, and equipment financing.