½ÃÀ庸°í¼­
»óǰÄÚµå
1530706

¼¼°èÀÇ Àü·Â ¹ÝµµÃ¼ ½ÃÀå Àü¸Á(-2030³â) : ºÎǰº°, Àç·áº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ½ÃÀå ºÐ¼®

Power Semiconductor Market Forecasts to 2030 - Global Analysis By Component (Power Discrete, Power Integrated Circuits and Power Modules), Material (Gallium Nitride (GaN), Silicon Carbide (SiC) and Other Materials), End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é 2024³â ¼¼°è Àü·Â ¹ÝµµÃ¼ ½ÃÀåÀº 762¾ï 5,000¸¸ ´Þ·¯¿¡ À̸£°í, ¿¹Ãø ±â°£ µ¿¾È 8.5%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î 2030³â¿¡´Â 1,244¾ï 1,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Àü·Â ¹ÝµµÃ¼´Â °íÀü·ù ¹× °íÀü¾ÐÀ» È¿À²ÀûÀ¸·Î ó¸®Çϵµ·Ï ¼³°èµÈ ÀüÀÚ ÀåÄ¡ÀÔ´Ï´Ù. ÀúÀü·Â ¿ëµµ¿¡ »ç¿ëµÇ´Â ¼ÒÇü ½ÅÈ£ ¹ÝµµÃ¼¿Í ´Þ¸® Àü·Â ¹ÝµµÃ¼´Â °íÀü¾Ð ¹× °íÀü·ù Á¤°Ý¿¡ ÃÖÀûÈ­µÇ¾î ÀÖÀ¸¸ç, ¸¹Àº °æ¿ì »ó´çÇÑ ¾çÀÇ Àü·ÂÀ» ½ºÀ§ÄªÇϰųª Á¶Á¤ÇÒ ¼ö ÀÖ½À´Ï´Ù. °¢ À¯ÇüÀº ½ºÀ§Äª ¼Óµµ, Àü¾Ð Â÷´Ü ´É·Â ¹× È¿À²°ú °°Àº ¿ä¼ÒÀÇ ±ÕÇüÀ» À¯ÁöÇϸ鼭 ´Ù¾çÇÑ Àü·Â °ü¸® ¿ä±¸¿¡ ÀûÇÕÇÑ Æ¯Á¤ Ư¼ºÀ» °¡Áö°í ÀÖ½À´Ï´Ù.

Shopify¿¡ µû¸£¸é ½º¸¶Æ®Æù ÆÇ¸Å ¼öÀÍÀº 2021³â 4,810¾ï ´Þ·¯·Î Á¤Á¡À» Âï°í 2026³â¿¡´Â 5,000¾ï ´Þ·¯¸¦ ³Ñ¾î¼³ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹ÀÇ ½Å¿¡³ÊÁö ÀÚµ¿Â÷ »ê¾÷ ¹ßÀü °èȹ(2021-2035)¿¡ µû¸£¸é 2025³â±îÁö Àü±âÂ÷ ½ÃÀå Á¡À¯À²Àº 25%¸¦ ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î Àü·Â ¹ÝµµÃ¼ ½ÃÀåÀÌ Å©°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ÆÄ¿öÀÏ·ºÆ®·Î´Ð½º´Â Àç»ý ¿¡³ÊÁö ½Ã½ºÅÛ, Àü±âÀÚµ¿Â÷, »ê¾÷ Àåºñ, ¼ÒºñÀÚ ÀüÀÚÁ¦Ç° µî ´Ù¾çÇÑ ¿ëµµ¿¡¼­ Àü·Â º¯È¯ ¹× °ü¸®¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ž籤 ¹× dz·Â ¹ßÀü°ú °°Àº Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö¿øÀ¸·ÎÀÇ ÀüȯÀº Àü·Â ¹ÝµµÃ¼°¡ ÇʼöÀûÀÎ È¿À²ÀûÀÎ Àü·Â º¯È¯ ±â¼úÀ» ÇÊ¿ä·Î ÇÕ´Ï´Ù. ¶ÇÇÑ, Àü±âÀÚµ¿Â÷ÀÇ º¸±ÞÀº È¿À²ÀûÀÎ ¿¡³ÊÁö °ü¸®¿Í ¸ðÅÍ Á¦¾î¸¦ À§ÇÑ Ã·´Ü Àü·Â ¹ÝµµÃ¼ ¼Ö·ç¼ÇÀ» ¿ä±¸Çϰí ÀÖ½À´Ï´Ù.

³ôÀº Ãʱâ ÅõÀÚ ºñ¿ë

Àü·Â ¹ÝµµÃ¼ »ê¾÷Àº ³ôÀº Ãʱâ ÅõÀÚ ºñ¿ëÀ¸·Î ÀÎÇØ ±â¼ú Çõ½Å°ú ½ÃÀå ÁøÀÔÀ» °¡·Î¸·´Â Å« À庮¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºñ¿ëÀº ÁÖ·Î ¿¬±¸°³¹ß, Á¦Á¶½Ã¼³(ÆÕ), Àåºñ µî ¹ÝµµÃ¼ Á¦Á¶ °øÁ¤ÀÌ º¹ÀâÇϰí ÀÚº» Áý¾àÀûÀ̱⠶§¹®¿¡ ¹ß»ýÇÕ´Ï´Ù. ÃÖ÷´Ü ÆÕÀ» °Ç¼³Çϰí À¯ÁöÇÏ´Â µ¥´Â ¼ö½Ê¾ï ´Þ·¯¿¡ ´ÞÇÏ´Â ¸·´ëÇÑ ÀÚ±ÝÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ ½Å±Ô ÁøÃâ±â¾÷À̳ª Áß¼Ò±â¾÷ÀÌ ±âÁ¸ ´ë±â¾÷°ú °æÀïÇÏ´Â µ¥ ¾î·Á¿òÀÌ ÀÖ½À´Ï´Ù. ±×·¯³ª ÀÌ·¯ÇÑ ÀçÁ¤Àû À庮Àº ½ÃÀå ÁøÀÔ À庮À» ³ô¿© Áß¼Ò±â¾÷ÀÌ »ç¾÷À» È®ÀåÇϰųª Â÷¼¼´ë ¹ÝµµÃ¼ ±â¼ú ¿¬±¸¿¡ ÅõÀÚÇÏ´Â °ÍÀ» ¹æÇØÇϰí ÀÖ½À´Ï´Ù.

¿¡³ÊÁö È¿À²¼º¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

¿¡³ÊÁö È¿À²¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â Àü·Â ¹ÝµµÃ¼ÀÇ ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ÝµµÃ¼´Â Àü·Â º¯È¯ ¹× °ü¸® ½Ã½ºÅÛÀÇ È¿À²¼ºÀ» °³¼±ÇÏ°í ¿¡³ÊÁö ¼Òºñ¿Í ¿î¿µ ºñ¿ëÀ» Àý°¨ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä ÃËÁø¿äÀÎÀ¸·Î´Â Àü±âÀÚµ¿Â÷ÀÇ ±Þ¼ÓÇÑ º¸±Þ, Àç»ý °¡´É ¿¡³ÊÁö ÀÎÇÁ¶óÀÇ È®´ë, ½º¸¶Æ® ±×¸®µå ±â¼úÀÇ º¸±Þ µîÀ» µé ¼ö ÀÖ½À´Ï´Ù. Àü·Â ¹ÝµµÃ¼´Â Àü·Â º¯È¯ ¹× Á¦¾î¿¡ ÀÖ¾î ´õ ³ôÀº È¿À²À» °¡´ÉÇÏ°Ô Çϰí, ¼ÛÀü ¹× »ç¿ë ½Ã ¿¡³ÊÁö ¼Õ½ÇÀ» ÃÖ¼ÒÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. Àü ¼¼°èÀûÀ¸·Î Áö¼Ó°¡´É¼º°ú ź¼Ò ¹èÃâ·® °¨¼Ò¸¦ ¿ì¼±½ÃÇÏ´Â Ãß¼¼¿¡ µû¶ó ÷´Ü Àü·Â ¹ÝµµÃ¼ ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä´Â Áö¼ÓÀûÀ¸·Î Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÅëÇÕ ¹× ȣȯ¼º ¹®Á¦

Àü·Â ¹ÝµµÃ¼ÀÇ ÅëÇÕ ¹× ȣȯ¼º ¹®Á¦´Â ¼­·Î ´Ù¸¥ ¹ÝµµÃ¼ ±â¼ú ¹× Àç·á¸¦ ´ÜÀÏ Ä¨ ¶Ç´Â ´ÜÀÏ ½Ã½ºÅÛ ³»¿¡¼­ °áÇÕÇØ¾ß ÇÒ Çʿ伺À¸·Î ÀÎÇØ ¹ß»ýÇÏ´Â ¹®Á¦¸¦ ¸»Çϸç, MOSFET ¹× IGBT¿Í °°Àº Àü·Â ¹ÝµµÃ¼ ¼ÒÀÚ´Â Àç»ý ¿¡³ÊÁö ½Ã½ºÅÛ¿¡¼­ Àü±âÀÚµ¿Â÷¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ¿ëµµ¿¡¼­ È¿À²ÀûÀÎ Àü·Â º¯È¯ ¹× Á¦¾î¿¡ ÇʼöÀûÀÌ´Ù, ´Ù¾çÇÑ ¿ëµµ¿¡¼­ È¿À²ÀûÀÎ Àü·Â º¯È¯ ¹× Á¦¾î¿¡ ÇʼöÀûÀÎ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ±×·¯³ª ÀÌ·¯ÇÑ ¼ÒÀÚ¸¦ ÁýÀûÈ­ÇÏ´Â °ÍÀº ±â¼úÀûÀ¸·Î Å« Àå¾Ö¹°ÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ¼­·Î ´Ù¸¥ ¹ÝµµÃ¼ Àç·á¿Í ±â¼ú °£ÀÇ Àü±âÀû Ư¼º, ¿­Àû Ư¼º ¹× Á¦Á¶ °øÁ¤ÀÇ Â÷ÀÌ·Î ÀÎÇØ ȣȯ¼º ¹®Á¦°¡ ¹ß»ýÇÕ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

Äڷγª19 »çÅ´ Àü·Â ¹ÝµµÃ¼ »ê¾÷¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. Ãʱ⿡´Â ¼¼°è °ø±Þ¸ÁÀÇ È¥¶õÀ¸·Î ÀÎÇØ ¹ÝµµÃ¼ Á¦Á¶ ¹× À¯ÅëÀÌ Áö¿¬µÇ¾î °ø±Þ ºÎÁ·°ú °¡°Ý º¯µ¿ÀÌ ¹ß»ýÇß½À´Ï´Ù. Á¦Á¶¾÷üµéÀÌ Àη ºÎÁ·°ú ¹°·ù ¹®Á¦·Î ¾î·Á¿òÀ» °ÞÀ¸¸é¼­ °øÀå °¡µ¿ Áߴܰú »ý»ê ´É·Â °¨¼Ò·Î ÀÎÇØ ÀÌ·¯ÇÑ »óȲÀº ´õ¿í ¾ÇÈ­µÇ¾ú½À´Ï´Ù. Àü·Â ¹ÝµµÃ¼ ºÐ¾ßÀÇ ±â¾÷µéÀº µðÁöÅÐ Çõ½Å ³ë·ÂÀ» °¡¼ÓÈ­Çϰí, ¿ø°Ý ±Ù¹« Á¤Ã¥À» ½ÃÇàÇϰí, °ø±Þ¸Á ¼Ò½º¸¦ ´Ù¾çÈ­ÇÏ¿© ¹Ì·¡ÀÇ À§ÇèÀ» ÁÙÀ̱â À§ÇØ ÀûÀÀÇØ¾ß Çß½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È Àü·Â ÁýÀû ȸ·Î ºÐ¾ß°¡ °¡Àå Å« ºÐ¾ß°¡ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Àü·Â ÁýÀûȸ·Î ºÐ¾ß´Â ¿©·¯ ±â´ÉÀ» ÇϳªÀÇ Ä¨¿¡ ÅëÇÕÇÏ¿© ´Ù¾çÇÑ ¿ëµµÀÇ È¿À²¼º°ú ¼º´ÉÀ» Çâ»ó½ÃÄÑ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´ÙÀÌ¿Àµå³ª Æ®·£Áö½ºÅÍ¿Í °°Àº °³º° Àü·Â ºÎǰ°ú ´Þ¸® Àü·Â IC´Â Á¦¾î, ±¸µ¿ ¹× º¸È£ ȸ·Î¸¦ MOSFET ¹× IGBT¿Í °°Àº Àü·Â ½ºÀ§Äª ÀåÄ¡¿Í ÅëÇÕÇÕ´Ï´Ù. ¶ÇÇÑ, Àü·Â IC´Â ÃÖÀûÈ­µÈ ȸ·Î ¼³°è¿Í »óÈ£ ¿¬°á °¨¼Ò¸¦ ÅëÇØ ´õ ³ªÀº ¿­ °ü¸®¿Í ³ôÀº ½Å·Ú¼ºÀ» Á¦°øÇÕ´Ï´Ù. ¿¡³ÊÁö È¿À²ÀûÀÎ ¼ÒÇü ÀüÀÚÁ¦Ç°¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó, Àü·Â IC´Â ´Ù¾çÇÑ ÀüÀÚ Á¦Ç° ¹× ½Ã½ºÅÛ¿¡¼­ ÆûÆÑÅÍ ¼ÒÇüÈ­, ¿¡³ÊÁö È¿À² °³¼± ¹× ¼º´É Çâ»ó¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ½Ç¸®ÄÜ Ä«¹ÙÀ̵å(SiC) ºÎ¹®ÀÌ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

SiC(½Ç¸®ÄÜ Ä«¹ÙÀ̵å) ºÎ¹®Àº ±âÁ¸ ½Ç¸®ÄÜ¿¡ ºñÇØ ¿ì¼öÇÑ Àç·á Ư¼ºÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµÇ¸ç, SiC µð¹ÙÀ̽º´Â ³ôÀº Àý¿¬ ÆÄ±« Àü°è °­µµ¸¦ °¡Áö°í ÀÖ¾î È¿À²À» À¯ÁöÇϸ鼭 ´õ ³ôÀº Àü¾Ð°ú ¿Âµµ¿¡¼­ ÀÛµ¿ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Æ¯¼ºÀ¸·Î ÀÎÇØ Àüµµ ¼Õ½ÇÀÌ °¨¼ÒÇÏ¿© Àü·Â ÀüÀÚ ½Ã½ºÅÛÀÇ ¼ÒÇüÈ­ ¹× °íÈ¿À²È­¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¶ÇÇÑ, SiC´Â ¿­ÀüµµÀ²ÀÌ ³ô¾Æ ¹æ¿­¼ºÀÌ Çâ»óµÇ¾î °íÀü·Â ÀÛµ¿ ½Ã ½Å·Ú¼º°ú ¼º´ÉÀÌ ´õ¿í Çâ»óµË´Ï´Ù. Á¦Á¶¾÷üµéÀÌ »ý»ê °øÁ¤À» °³¼±ÇÏ°í ºñ¿ëÀ» Àý°¨ÇÔ¿¡ µû¶ó SiC ¹ÝµµÃ¼ÀÇ º¸±ÞÀÌ °¡¼ÓÈ­µÇ¾î Àü·ÂÀüÀÚ ºÐ¾ßÀÇ ±â¼ú Çõ½ÅÀ» ÃËÁøÇÏ°í ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº ±â¼ú·ÎÀÇ Àüȯ¿¡ ±â¿©ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¾Æ½Ã¾ÆÅÂÆò¾çÀº ¿Ü»ð ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. µµ½Ã°¡ È®ÀåµÇ°í Çö´ëÈ­µÊ¿¡ µû¶ó ½º¸¶Æ® ±×¸®µå, Àü±âÀÚµ¿Â÷, »ê¾÷ ÀÚµ¿È­ µî ´Ù¾çÇÑ ¿ëµµ¿¡¼­ È¿À²ÀûÀÎ Àü·Â °ü¸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. Àü·Â ¹ÝµµÃ¼´Â ÀÌ Áö¿ª Àüü¿¡¼­ µµ½Ã ¿¡³ÊÁö ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¿¡³ÊÁö È¿À²À» ³ôÀ̰í, ź¼Ò ¹èÃâ·®À» ÁÙÀ̸ç, ¾ÈÁ¤ÀûÀÎ Àü·Â °ø±ÞÀ» º¸ÀåÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µµ½Ã ÀÎÇÁ¶ó¿¡ »ç¹°ÀÎÅͳÝ(IoT) ¹× ÀΰøÁö´É(AI)°ú °°Àº ÷´Ü ±â¼úÀÇ ÅëÇÕÀº ÀÌ Áö¿ª Àüü¿¡¼­ º¹ÀâÇÑ µ¥ÀÌÅÍ Ã³¸®¿Í ½Ç½Ã°£ ÀÇ»ç°áÁ¤À» ó¸®ÇÒ ¼ö ÀÖ´Â °ß°íÇÑ ¹ÝµµÃ¼ µð¹ÙÀ̽º¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í ÁõÆø½Ã۰í ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È À¯·´ÀÌ À¯¸®ÇÑ ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. º¸´Ù ¾ö°ÝÇÑ È¯°æ ±âÁذú ¾ß½ÉÂù ±âÈÄ ¸ñÇ¥¿¡ µû¶ó °¢±¹ Á¤ºÎ´Â Àü·Â ¹ÝµµÃ¼¸¦ Æ÷ÇÔÇÑ ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº ±â¼úÀÇ Áö¿ªÀû äÅÃÀ» Àå·ÁÇϰí Àǹ«È­Çϵµ·Ï Àå·ÁÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±ÔÁ¦´Â º¸´Ù È¿À²ÀûÀ̰í Áö¼Ó °¡´ÉÇÑ ¹ÝµµÃ¼ ¼Ö·ç¼Ç °³¹ß¿¡ ´ëÇÑ Çõ½Å°ú ÅõÀÚ¸¦ ÃËÁøÇÕ´Ï´Ù. ¶ÇÇÑ, Á¤ºÎ°¡ Á¦°øÇÏ´Â ÀçÁ¤ Áö¿ø°ú ¿¬±¸ º¸Á¶±ÝÀº »ê¾÷°è¿Í ¿¬±¸ ±â°üÀÇ Çù·ÂÀ» ÃËÁøÇϰí Áö¿ª ÀüüÀÇ ±â¼ú ¹ßÀüÀ» À§ÇÑ ÅºÅºÇÑ »ýŰ踦 Á¶¼ºÇϰí ÀÖ½À´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ Á¦°ø:

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.
  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(ÃÖ´ë 3°³»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤Ä¡, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¶ó ´Ù¸§)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç Á¤º¸¿ø
    • 1Â÷ Á¶»ç Á¤º¸¿ø
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå PorterÀÇ Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ¹ÙÀ̾îÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ Àü·Â ¹ÝµµÃ¼ ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • ÆÄ¿ö µð½ºÅ©¸®Æ®
  • ÆÄ¿ö ÁýÀûȸ·Î
  • ÆÄ¿ö ¸ðµâ

Á¦6Àå ¼¼°èÀÇ Àü·Â ¹ÝµµÃ¼ ½ÃÀå : Àç·áº°

  • ÁúÈ­°¥·ý(GaN)
  • ½Ç¸®ÄÜ Ä«¹ÙÀ̵å(SiC)
  • ±âŸ Àç·á

Á¦7Àå ¼¼°èÀÇ Àü·Â ¹ÝµµÃ¼ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • Ç×°ø¿ìÁÖ ¹× ¹æÀ§
  • ÀÚµ¿Â÷
  • °¡Àü
  • ÇコÄɾî
  • ±âŸ ÃÖÁ¾»ç¿ëÀÚ

Á¦8Àå ¼¼°èÀÇ Àü·Â ¹ÝµµÃ¼ ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦9Àå ÁÖ¿ä ¹ßÀü

  • °è¾à/ÆÄÆ®³Ê½Ê/Çù¾÷/ÇÕÀÛÅõÀÚ(JV)
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦10Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Analog Devices, Inc
  • Fairchild Semiconductor International, Inc
  • Fuji Electric Co., Ltd
  • Infineon Technologies AG
  • Magnachip Semiconductor Corporation
  • Mitsubishi Electric Corporation
  • NXP Semiconductors N.V.
  • Renesas Electronics Corporation
  • Semikron International GmbH
  • Silicon Laboratories Inc
  • STMicroelectronics N.V.
  • Toshiba Corporation
LSH 24.08.22

According to Stratistics MRC, the Global Power Semiconductor Market is accounted for $76.25 billion in 2024 and is expected to reach $124.41 billion by 2030 growing at a CAGR of 8.5% during the forecast period. Power semiconductors are electronic devices designed to handle large electrical currents and voltages efficiently. Unlike small-signal semiconductors used in low-power applications, power semiconductors are optimized for high voltage and current ratings, often capable of switching or regulating substantial amounts of electrical power. Each type has specific characteristics suited for different power management needs, balancing factors like switching speed, voltage blocking capability, and efficiency.

According to Shopify, income from smartphone sales peaked at USD 481 billion in 2021 and is predicted to surpass USD 500 billion by 2026. According to China's Development Plan for the New Energy Automobile Industry (2021-2035), EVs could include a 25% market share by 2025.

Market Dynamics:

Driver:

Rise in demand for power electronics

The increasing demand for power electronics is substantially boosting the power semiconductor market. Power electronics play a crucial role in converting and managing electrical power in various applications, including renewable energy systems, electric vehicles, industrial equipment and consumer electronics. The global shift towards sustainable energy sources such as solar and wind power requires efficient power conversion technologies, where power semiconductors are integral. Additionally, the proliferation of electric vehicles necessitates advanced power semiconductor solutions for efficient energy management and motor control.

Restraint:

High initial investment costs

The power semiconductor industry faces significant barriers due to high initial investment costs, which impede innovation and market entry. These costs primarily stem from the complex and capital-intensive nature of semiconductor manufacturing processes, including research and development, fabrication facilities (fabs), and equipment. Building and maintaining cutting-edge fabs require substantial financial resources, often in the billions of dollars, making it difficult for new players or smaller companies to compete with established giants in the industry. However, these financial barriers create a high threshold for entry into the market and inhibit smaller firms from scaling up operations or investing in research for next-generation semiconductor technologies.

Opportunity:

Increasing demand for energy efficiency

The increasing demand for energy efficiency has propelled the growth of power semiconductors. These semiconductors play a crucial role in improving the efficiency of power conversion and management systems, thereby reducing energy consumption and operational costs. Key drivers include the rapid adoption of electric vehicles, the expansion of renewable energy infrastructure, and the proliferation of smart grid technologies. Power semiconductors enable higher efficiency in converting and controlling electrical power, minimizing energy losses during transmission and utilization. As global initiatives prioritize sustainability and carbon footprint reduction, the demand for advanced power semiconductor technologies is expected to continue growing.

Threat:

Integration and compatibility issues

Integration and compatibility issues in power semiconductors refer to challenges arising from the need to combine different semiconductor technologies or materials on a single chip or within a single system. Power semiconductor devices, such as MOSFETs and IGBTs, are crucial for efficient power conversion and control in various applications from renewable energy systems to electric vehicles. However, integrating these devices poses significant technical hurdles. Compatibility issues arise due to differences in electrical characteristics, thermal properties, and manufacturing processes between different semiconductor materials and technologies.

Covid-19 Impact:

The COVID-19 pandemic significantly impacted the power semiconductor industry. Initially, disruptions in the global supply chain caused delays in manufacturing and distribution of semiconductors, leading to shortages and price fluctuations. This was exacerbated by factory shutdowns and reduced production capacities as manufacturers struggled with labor shortages and logistical challenges. Companies in the power semiconductor sector had to adapt by accelerating digital transformation efforts, implementing remote work policies, and diversifying supply chain sources to mitigate future risks.

The Power Integrated Circuits segment is expected to be the largest during the forecast period

Power Integrated Circuits segment is expected to be the largest during the forecast period by combining multiple functionalities onto a single chip to enhance efficiency and performance in various applications. Unlike discrete power components, such as diodes and transistors, Power ICs integrate control, drive, and protection circuitry with power switching devices like MOSFETs or IGBTs. Power ICs also facilitate better thermal management and higher reliability due to optimized circuit design and reduced interconnects. As the demand for energy-efficient and compact electronic devices grows, Power ICs play a crucial role in enabling smaller form factors, improved energy efficiency, and enhanced performance across a wide range of electronic products and systems.

The Silicon Carbide (SiC) segment is expected to have the highest CAGR during the forecast period

Silicon Carbide (SiC) segment is expected to have the highest CAGR during the forecast period due to its superior material properties compared to traditional silicon. SiC devices offer higher breakdown electric field strength, enabling them to operate at higher voltages and temperatures while maintaining efficiency. This characteristic results in reduced conduction losses, allowing for smaller, more efficient power electronic systems. Additionally, SiC's higher thermal conductivity enhances heat dissipation, further improving reliability and performance under high-power operation. As manufacturers continue to refine production processes and reduce costs, the widespread adoption of SiC semiconductors is expected to accelerate, driving innovation in power electronics and contributing to the transition towards more energy-efficient technologies.

Region with largest share:

Asia Pacific region commanded the largest market share over the extrapolated period. As cities expand and modernize, there is a burgeoning need for efficient power management solutions in various applications such as smart grids, electric vehicles, and industrial automation. Power semiconductors play a crucial role in enhancing energy efficiency, reducing carbon footprints, and ensuring reliable power delivery amidst increasing urban energy demands throughout the region. Moreover, the integration of advanced technologies like Internet of Things (IoT) and artificial intelligence (AI) in urban infrastructure further amplifies the requirement for robust semiconductor devices capable of handling complex data processing and real-time decision-making across the region.

Region with highest CAGR:

During the projected time frame, Europe region is estimated to witness lucrative growth. Stricter environmental standards and ambitious climate goals have pushed governments to incentivize and mandate the regional adoption of energy-efficient technologies, including power semiconductors. These regulations drive innovation and investment in the development of more efficient and sustainable semiconductor solutions. Moreover, financial support and research grants provided by governments encourage collaboration between industry players and research institutions, fostering a robust ecosystem for technological advancement across the region.

Key players in the market

Some of the key players in Power Semiconductor market include Analog Devices, Inc, Fairchild Semiconductor International, Inc, Fuji Electric Co., Ltd, Infineon Technologies AG, Magnachip Semiconductor Corporation, Mitsubishi Electric Corporation, NXP Semiconductors N.V., Renesas Electronics Corporation, Semikron International GmbH, Silicon Laboratories Inc, STMicroelectronics N.V. and Toshiba Corporation.

Key Developments:

In October 2023, Kia Corporation and Hyundai Motor Company announced a deliberate collaboration with Infineon Technologies AG, a universal semiconductor lead, in order to secure power semiconductors in support of the rising electric vehicle demand across the globe. As per the deal, Kia and Hyundai will buy core power semiconductors for automobiles, such as insulated-gate bipolar transistor (IGBT), diode, and silicon carbide (SiC) power modules.

In June 2023, Mitsubishi Electric Corporation announced that the company would begin shipping samples of its new NX-type full-SiC (silicon carbide) power semiconductor module for industrial equipment.

In May 2023, Toshiba Electronics Europe launched a new 150V N-channel power MOSFET based upon their latest generation U-MOS X-H Trench process. The TPH9R00CQ5 is specifically designed for high-performance switching power supplies such as those used in communication base stations and other industrial applications.

Components Covered:

  • Power Discrete
  • Power Integrated Circuits
  • Power Modules

Materials Covered:

  • Gallium Nitride (GaN)
  • Silicon Carbide (SiC)
  • Other Materials

End Users Covered:

  • Aerospace & Defense
  • Automotives
  • Consumer Electronics
  • Healthcare
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 End User Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Power Semiconductor Market, By Component

  • 5.1 Introduction
  • 5.2 Power Discrete
  • 5.3 Power Integrated Circuits
  • 5.4 Power Modules

6 Global Power Semiconductor Market, By Material

  • 6.1 Introduction
  • 6.2 Gallium Nitride (GaN)
  • 6.3 Silicon Carbide (SiC)
  • 6.4 Other Materials

7 Global Power Semiconductor Market, By End User

  • 7.1 Introduction
  • 7.2 Aerospace & Defense
  • 7.3 Automotives
  • 7.4 Consumer Electronics
  • 7.5 Healthcare
  • 7.6 Other End Users

8 Global Power Semiconductor Market, By Geography

  • 8.1 Introduction
  • 8.2 North America
    • 8.2.1 US
    • 8.2.2 Canada
    • 8.2.3 Mexico
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 Italy
    • 8.3.4 France
    • 8.3.5 Spain
    • 8.3.6 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 Japan
    • 8.4.2 China
    • 8.4.3 India
    • 8.4.4 Australia
    • 8.4.5 New Zealand
    • 8.4.6 South Korea
    • 8.4.7 Rest of Asia Pacific
  • 8.5 South America
    • 8.5.1 Argentina
    • 8.5.2 Brazil
    • 8.5.3 Chile
    • 8.5.4 Rest of South America
  • 8.6 Middle East & Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 UAE
    • 8.6.3 Qatar
    • 8.6.4 South Africa
    • 8.6.5 Rest of Middle East & Africa

9 Key Developments

  • 9.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 9.2 Acquisitions & Mergers
  • 9.3 New Product Launch
  • 9.4 Expansions
  • 9.5 Other Key Strategies

10 Company Profiling

  • 10.1 Analog Devices, Inc
  • 10.2 Fairchild Semiconductor International, Inc
  • 10.3 Fuji Electric Co., Ltd
  • 10.4 Infineon Technologies AG
  • 10.5 Magnachip Semiconductor Corporation
  • 10.6 Mitsubishi Electric Corporation
  • 10.7 NXP Semiconductors N.V.
  • 10.8 Renesas Electronics Corporation
  • 10.9 Semikron International GmbH
  • 10.10 Silicon Laboratories Inc
  • 10.11 STMicroelectronics N.V.
  • 10.12 Toshiba Corporation
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦