½ÃÀ庸°í¼­
»óǰÄÚµå
1558357

±Ù¾È µð½ºÇ÷¹ÀÌ ½ÃÀå ¿¹Ãø(-2030³â) : ±¸¼º¿ä¼Òº°, ÇØ»óµµº°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®

Near-Eye Display Market Forecasts to 2030 - Global Analysis By Component, Resolution (Low Resolution, High Resolution and Ultra-High Resolution ), Technology, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é, ¼¼°è ±Ù¾È µð½ºÇ÷¹ÀÌ ½ÃÀåÀº 2024³â 31¾ï 7,000¸¸ ´Þ·¯ ±Ô¸ðÀ̸ç, 2030³â¿¡´Â 125¾ï 7,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¿¹Ãø ±â°£ µ¿¾È 25.8%ÀÇ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

±Ù¾È µð½ºÇ÷¹ÀÌ(NED)´Â »ç¿ëÀÚÀÇ ´« °¡±îÀÌ, º¸Åë ¸î ¼¾Æ¼¹ÌÅÍ À̳»¿¡ ¹èÄ¡Çϵµ·Ï ¼³°èµÈ ½Ã°¢ ±â¼úÀÔ´Ï´Ù. À̹ÌÁö¿Í Á¤º¸¸¦ »ç¿ëÀÚÀÇ ½Ã¾ß¿¡ Á÷Á¢ Åõ»çÇÏ¿© ¼ÒÇü ÀåÄ¡ÀÌÁö¸¸ ´ëÇü µð½ºÇ÷¹ÀÌ¿Í °°Àº Âø°¢À» ºÒ·¯ÀÏÀ¸Å°´Â NED´Â Áõ°­Çö½Ç(AR) ¾È°æ, °¡»óÇö½Ç(VR) Çìµå¼Â, Çìµå¾÷ µð½ºÇ÷¹ÀÌ(HUD)¿Í °°Àº ±â±â¿¡¼­ ÈçÈ÷ º¼ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µð½ºÇ÷¹ÀÌ´Â ·»Áî, µµÆÄ°ü, °Å¿ï°ú °°Àº ´Ù¾çÇÑ ±¤ÇÐ ±â¼úÀ» »ç¿ëÇÏ¿© À̹ÌÁö°¡ Æí¾ÈÇÑ ½Ãû °Å¸®¿¡¼­ ³ÐÀº ½Ã¾ß¸¦ Ä¿¹öÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù.

Áõ°­Çö½Ç(AR) ¼ö¿äÀÇ Áõ°¡

NED´Â AR ±â±âÀÇ ÇÙ½É ºÎǰÀ¸·Î, »ç¿ëÀÚ°¡ Çö½Ç ¼¼°è¿Í ¿Ïº®ÇÏ°Ô ÅëÇÕµÈ µðÁöÅÐ ¿À¹ö·¹À̸¦ º¼ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. °ÔÀÓ°ú ¿£ÅÍÅ×ÀÎ¸ÕÆ®¿¡¼­ ÀÇ·á ¹× ±³À°¿¡ À̸£±â±îÁö AR ¾ÖÇø®ÄÉÀ̼ÇÀÌ »ê¾÷ Àü¹Ý¿¡ °ÉÃÄ È®»êµÊ¿¡ µû¶ó °íǰÁúÀÇ ¸ôÀÔÇü µð½ºÇ÷¹ÀÌ¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó ÇØ»óµµ, ¹à±â, ½Ã¾ß°¢, ´ë±â ½Ã°£ ´ÜÃà¿¡ ÁßÁ¡À» µÐ NEDÀÇ ±â¼ú Çõ½ÅÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, OLED ¹× ¸¶ÀÌÅ©·ÎLED¿Í °°Àº ¸¶ÀÌÅ©·Î µð½ºÇ÷¹ÀÌÀÇ ¹ßÀü°ú Çâ»óµÈ ±¤ÇÐ ½Ã½ºÅÛÀº NED¸¦ ´õ¿í ÀÛ°í ¿¡³ÊÁö È¿À²ÀûÀÌ¸ç °¡º±°í Æí¾ÈÇÑ AR ¿þ¾î·¯ºí¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ¸¸µé°í ÀÖ½À´Ï´Ù.

»óÈ£¿î¿ë¼º ºÎÁ·

Near Eye Display(NED)ÀÇ »óÈ£¿î¿ë¼º ºÎÁ·Àº ±× º¸±Þ°ú ½Ç¿ë¼ºÀ» Å©°Ô ÀúÇØÇϰí ÀÖ½À´Ï´Ù. Áõ°­Çö½Ç°ú °¡»óÇö½Ç¿¡ ÇʼöÀûÀÎ ÀÌ µð½ºÇ÷¹ÀÌ´Â ´Ù¾çÇÑ Çϵå¿þ¾î ¹× ¼ÒÇÁÆ®¿þ¾î Ç÷§Æû¿¡ ¿øÈ°ÇÏ°Ô ÅëÇյǾî¾ß ÇÕ´Ï´Ù. ±×·¯³ª ÇöÀç NED ½Ã½ºÅÛÀº Æó¼âÀûÀÎ »ýÅÂ°è ³»¿¡¼­ ¿î¿µµÇ´Â °æ¿ì°¡ ¸¹¾Æ ¼­·Î ´Ù¸¥ Á¦Á¶¾÷üÀÇ ±â±â, ¼ÒÇÁÆ®¿þ¾î, ¾×¼¼¼­¸®¸¦ ¿¬µ¿ÇÏ´Â µ¥ ¾î·Á¿òÀÌ ÀÖ½À´Ï´Ù. ¼ÒºñÀÚµéÀº ¼±È£ÇÏ´Â Çϵå¿þ¾î¿Í ȣȯ °¡´ÉÇÑ ¼ÒÇÁÆ®¿þ¾î¸¦ °áÇÕÇÏ´Â µ¥ ¾î·Á¿òÀ» °ÞÀ¸¸ç, ÀÌ·¯ÇÑ ´ÜÆíÈ­´Â »ç¿ëÀÚ °æÇèÀ» Á¦ÇÑÇÏ°í ºÒ¸¸Á·°ú ±â´É ÀúÇÏ·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù.

½º¸¶Æ® Á¦Á¶¿¡ ´ëÇÑ ÅõÀÚ È®´ë

IoT, AI, ÀÚµ¿È­ µîÀÇ ±â¼úÀ» Ȱ¿ëÇÏ´Â ½º¸¶Æ® Á¦Á¶´Â NEDÀÇ °­Á¡ÀÎ ³ôÀº Á¤¹Ðµµ¿Í ½Ç½Ã°£ µ¥ÀÌÅÍ °¡½Ã¼ºÀ» ¿ä±¸ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ µð½ºÇ÷¹ÀÌ´Â ÀÛ¾÷ÀÚ¿¡°Ô Áß¿äÇÑ Á¤º¸¿¡ ´ëÇÑ Á¢±Ù¼ºÀ» ³ôÀ̰í, ¹°¸®Àû ȯ°æ¿¡ µðÁöÅÐ µ¥ÀÌÅ͸¦ ÁßøÇÏ¿© È¿À²¼ºÀ» °³¼±ÇÏ°í ½Ç¼ö¸¦ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. »ê¾÷°è°¡ ½º¸¶Æ® Á¦Á¶¿¡ ´ëÇÑ ÅõÀÚ¸¦ È®´ëÇÔ¿¡ µû¶ó ÷´Ü NED¿¡ ´ëÇÑ Çʿ伺ÀÌ ³ô¾ÆÁö¸é¼­ µð½ºÇ÷¹ÀÌÀÇ Ç°Áú, ÇØ»óµµ, ¿¡³ÊÁö È¿À² Çõ½ÅÀ» ÃßÁøÇϰí ÀÖ½À´Ï´Ù.

VR µð½ºÇ÷¹ÀÌÀÇ ´ë±â ½Ã°£ ÃÖ¼ÒÈ­

°¡»óÇö½Ç(VR) µð½ºÇ÷¹ÀÌÀÇ Áö¿¬À» ÃÖ¼ÒÈ­ÇÏ´Â °ÍÀº ¸ôÀÔ°¨ ÀÖ´Â °æÇèÀ» Á¦°øÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÏÁö¸¸, ƯÈ÷ ±Ù¾È µð½ºÇ÷¹ÀÌ(NED)ÀÇ °æ¿ì, »ç¿ëÀÚÀÇ ¹°¸®Àû ¿òÁ÷ÀÓ°ú ±×¿¡ »óÀÀÇÏ´Â ½Ã°¢Àû Çǵå¹é »çÀÌ¿¡ ¾à°£ÀÇ Áö¿¬ÀÌ ¹ß»ýÇÏ¸é ¸Ö¹Ì¸¦ À¯¹ßÇÒ ¼ö ÀÖ½À´Ï´Ù. »çÀÌ¿¡ ¾à°£ÀÇ Áö¿¬ÀÌ ¹ß»ýÇÏ¸é ¸Ö¹Ì¸¦ À¯¹ßÇÏ°í ¸ôÀÔ°¨À» ¶³¾î¶ß¸± ¼ö ÀÖ½À´Ï´Ù. ³·Àº Áö¿¬À» ±¸ÇöÇϱâ À§Çؼ­´Â ºü¸¥ ó¸®, ³ôÀº Àç»ý·ü, °í¼Ó µð½ºÇ÷¹ÀÌ ±â¼úÀÌ ÇÊ¿äÇÕ´Ï´Ù. ±×·¯³ª ÀÌ·¯ÇÑ ¿ä±¸»çÇ×Àº °¡º±°í ÄÄÆÑÆ®ÇÏ°Ô ¼³°èµÈ NED¿¡ ³»ÀçµÈ ¼ÒÇüÈ­ ¹× Àü·Â Á¦¾à°ú »óÃæµÇ´Â Ãø¸éÀÌ ÀÖ½À´Ï´Ù. °í¼º´É ÇÁ·Î¼¼½Ì Àåºñ´Â ¿­À» ¹ß»ý½Ã۰í Àü·ÂÀ» ¼ÒºñÇϱ⠶§¹®¿¡ ºÎÇǰ¡ Ä¿Á® Âø¿ë°¨ÀÌ ¶³¾îÁú ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ:

»çȸÀû °Å¸®µÎ±â¿Í ÀçÅñٹ«°¡ ÀÏ»óÈ­µÇ¸é¼­ °¡»ó Ä¿¹Â´ÏÄÉÀ̼ǰú ¸ôÀÔ°¨À» ³ô¿©ÁÖ´Â ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. Áõ°­Çö½Ç(AR) ¹× °¡»óÇö½Ç(VR) Çìµå¼ÂÀ» Æ÷ÇÔÇÑ ±Ù¾È µð½ºÇ÷¹ÀÌ´Â ÀçÅñٹ«, »ç±³ ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ®¿¡ ´ëÇÑ º¸´Ù ÀÎÅÍ·¢Æ¼ºêÇÑ ¹æ¹ýÀ» ã´Â »ç¶÷µéÀÇ ¿ä±¸·Î ÀÎÇØ äÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ ½Ã±â´Â µð½ºÇ÷¹ÀÌ ±â¼ú Çõ½Å¿¡µµ ¹ÚÂ÷¸¦ °¡ÇÏ¿© ÇØ»óµµ, ½Ã¾ß°¢ ¹× Æí¾ÈÇÔÀ» Çâ»ó½ÃÄ×½À´Ï´Ù. ±×·¯³ª ÆÒµ¥¹Í(¼¼°èÀû ´ëÀ¯Çà)À¸·Î ÀÎÇØ º¸´Ù Ä£¼÷ÇÏ°í »ç¿ëÀÚ Ä£È­ÀûÀÎ ±â±âÀÇ Çʿ伺ÀÌ ºÎ°¢µÇ¾ú°í, Á¦Á¶¾÷üµéÀº ´õ ³ÐÀº ¼ÒºñÀÚ ½ÃÀåÀ» À§ÇØ Á¦Ç°À» °³¼±ÇØ¾ß ÇÏ´Â »óȲ¿¡ Á÷¸éÇÏ°Ô µÇ¾ú½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È À̹ÌÁö »ý¼º±â ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Áõ°­Çö½Ç(AR) ¹× °¡»óÇö½Ç(VR) Çìµå¼Â°ú °°Àº ±â±âÀÇ ½Ã°¢Àû ǰÁú°ú ¸ôÀÔ°¨ÀÌ Çâ»óµÊ¿¡ µû¶ó À̹ÌÁö »ý¼º±â ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ À̹ÌÁö »ý¼º±â´Â °í±Þ ¾Ë°í¸®Áò°ú ¸Ó½Å·¯´× ±â¼úÀ» »ç¿ëÇÏ¿© »ç¿ëÀÚÀÇ ´«¿¡ Á÷Á¢ ¶Ç´Â ¸Å¿ì ±ÙÁ¢ÇÑ À§Ä¡¿¡ Åõ»çµÇ´Â °íÇØ»óµµÀÇ »ç½ÇÀûÀÎ À̹ÌÁö¸¦ »ý¼ºÇÕ´Ï´Ù. ÀÌ ºÐ¾ßÀÇ Çõ½Å¿¡´Â ¶óÀÌÆ®ÇÊµå µð½ºÇ÷¹ÀÌ ÃÖÀûÈ­, Àç»ý·ü Çâ»ó, »ö»ó Á¤È®µµ ¹× ´ëºñ °³¼± µîÀÌ Æ÷ÇԵ˴ϴÙ. ÀÌ·¯ÇÑ ¹ßÀüÀº °¡»ó ȯ°æÀ» ´õ¿í ¸Å·ÂÀûÀ¸·Î ¸¸µé »Ó¸¸ ¾Æ´Ï¶ó ´«ÀÇ ÇǷθ¦ ÁÙÀÌ°í »ç¿ëÀÚÀÇ Àü¹ÝÀûÀÎ Æí¾ÈÇÔÀ» Çâ»ó½Ãŵ´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È Çìµå¾÷ µð½ºÇ÷¹ÀÌ ºÐ¾ß´Â °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Çìµå¾÷ µð½ºÇ÷¹ÀÌ ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, HUD´Â ±âÁ¸¿¡ ÀÚµ¿Â÷¿¡¼­ ¾Õ À¯¸®¿¡ Áß¿äÇÑ Á¤º¸¸¦ Åõ»çÇϱâ À§ÇØ »ç¿ëµÇ¾î ¿ÔÀ¸³ª, ÇöÀç´Â NED¿ëÀ¸·Î °³¼±µÇ¾î »ç¿ëÀÚÀÇ ½Ã¼±¿¡ Á÷Á¢ÀûÀ¸·Î ¸ôÀÔ°¨ ÀÖ´Â °íÇØ»óµµ ºñÁÖ¾óÀ» Á¦°øÇÏ°Ô µÇ¾ú½À´Ï´Ù. Á¦°øÇϵµ·Ï °³¼±µÇ¾ú½À´Ï´Ù. Áõ°­Çö½Ç(AR) ¹× °¡»óÇö½Ç(VR) µîÀÇ ¾ÖÇø®ÄÉÀ̼ǿ¡¼­ º¸´Ù dzºÎÇϰí Á÷°üÀûÀÎ °æÇèÀ» Á¦°øÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ °³¹ßÀº »ç¿ëÀÚÀÇ ½Ã¾ß¸¦ ¹æÇØÇÏÁö ¾Ê°í ³»ºñ°ÔÀ̼Ç, ¾Ë¸², ÀÎÅÍ·¢Æ¼ºê ¿ä¼Ò µîÀÇ Á¤º¸¸¦ º¸´Ù È¿°úÀûÀ¸·Î Åõ»çÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. Á¶Á÷ÀÌ ¿ø°Ý ±Ù¹« ¸ðµ¨À» äÅÃÇÔ¿¡ µû¶ó °í±Þ °¡»ó Ä¿¹Â´ÏÄÉÀÌ¼Ç µµ±¸¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí Áõ°­Çö½Ç(AR) ¹× °¡»óÇö½Ç(VR) Çìµå¼Â°ú °°Àº ±â¼úÀ» Æ÷ÇÔÇÑ ±Ù¾È µð½ºÇ÷¹ÀÌ¿¡ ´ëÇÑ °ü½ÉÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀåÄ¡´Â ¹°¸®Àû »óÈ£ ÀÛ¿ë°ú µðÁöÅÐ »óÈ£ ÀÛ¿ëÀÇ °£±ØÀ» ¸Þ¿ì´Â ¸ôÀÔÇü °æÇèÀ» Á¦°øÇÔÀ¸·Î½á ¿ø°Ý Çù¾÷À» °­È­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µð½ºÇ÷¹ÀÌÀÇ »ç¿ë Áõ°¡´Â º¸´Ù È¿°úÀûÀÎ °¡»ó ȸÀÇ, ±³À° ¼¼¼Ç ¹× °øµ¿ ÇÁ·ÎÁ§Æ®¸¦ ÃËÁøÇÏ¿© ½ÃÀå ¼ºÀåÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ±â¾÷µéÀÌ »ý»ê¼º°ú ¿¬°á¼ºÀ» Çâ»ó½Ã۱â À§ÇØ ÀÌ·¯ÇÑ ±â¼ú¿¡ ÅõÀÚÇÔ¿¡ µû¶ó ºÏ¹Ì¿¡¼­ ±Ù¾È µð½ºÇ÷¹ÀÌ ºÐ¾ß´Â Çõ½Å°ú È®ÀåÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

À¯·´ Áö¿ªÀº ¿¹Ãø ±â°£ µ¿¾È ¼öÀͼº ³ôÀº ¼ºÀåÀ» À¯ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´¿¡¼­´Â Á¤ºÎ ±ÔÁ¦°¡ ±Ù¾È µð½ºÇ÷¹ÀÌ ±â¼úÀÇ °³¹ß ¹× äÅÃÀ» Å©°Ô ÃËÁøÇϰí ÀÖ½À´Ï´Ù. À¯·´¿¬ÇÕ(EU)Àº ¼ÒºñÀÚÀÇ ¾ÈÀü°ú µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¸¦ º¸ÀåÇϱâ À§ÇØ ¾ö°ÝÇÑ ±âÁØÀ» ¸¶·ÃÇϰí ÀÖÀ¸¸ç, ÀÌ´Â ±â¾÷ÀÇ ±â¼ú Çõ½Å°ú ³ôÀº ±âÁØ Áؼö¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÏ¹Ý µ¥ÀÌÅÍ º¸È£ ±ÔÁ¤(GDPR)°ú EUÀÇ µðÁöÅÐ ¼­ºñ½º¹ý(DSA)°ú °°Àº ±ÔÁ¦´Â ±â¼ú °³¹ßÀ» À§ÇÑ ¾ÈÀüÇÑ È¯°æÀ» Á¶¼ºÇÏ°í ±Ù¾È µð½ºÇ÷¹ÀÌ ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ¿Í ¿¬±¸¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±ÔÁ¦´Â ¶ÇÇÑ »óÈ£ ¿î¿ë¼º°ú Á¢±Ù¼ºÀ» ÃËÁøÇÏ°í ½ÅÁ¦Ç°ÀÌ Æ÷°ýÀûÀÌ°í »ç¿ëÀÚ Ä£È­ÀûÀÓÀ» º¸ÀåÇÕ´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º:

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ °³¿ä
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ SWOT ºÐ¼®(ÃÖ´ë 3°³»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤Ä¡, ¿¹Ãø, CAGR(ÁÖ : Ÿ´ç¼º °ËÅä¿¡ µû¸¥)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù¹ý
  • Á¶»ç Á¤º¸ Ãâó
    • 1Â÷ Á¶»ç Á¤º¸ Ãâó
    • 2Â÷ Á¶»ç Á¤º¸ Ãâó
    • °¡Á¤

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ±¸¸ÅÀÚÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü¿©¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ÀÇ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ±Ù¾È µð½ºÇ÷¹ÀÌ ½ÃÀå : ±¸¼º¿ä¼Òº°

  • À̹ÌÁö »ý¼º±â
  • ±¤°áÇÕ±â
  • ±âŸ ±¸¼º¿ä¼Ò

Á¦6Àå ¼¼°èÀÇ ±Ù¾È µð½ºÇ÷¹ÀÌ ½ÃÀå : ÇØ»óµµº°

  • ÀúÇØ»óµµ(1080p ¹Ì¸¸)
  • °íÇØ»óµµ(1080p-4K)
  • ÃʰíÇØ»óµµ(4K ÀÌ»ó)

Á¦7Àå ¼¼°èÀÇ ±Ù¾È µð½ºÇ÷¹ÀÌ ½ÃÀå : ±â¼úº°

  • ¾×Ƽºê ¸ÅÆ®¸¯½º À¯±â ¹ß±¤ ´ÙÀÌ¿Àµå
  • µðÁöÅÐ ±¤Ã³¸®
  • ½Ç¸®ÄÜ»ó ¾×Á¤
  • ¹Ì¼Ò ¹ß±¤ ´ÙÀÌ¿Àµå
  • ½Ç¸®ÄÜ»ó À¯±â ¹ß±¤ ´ÙÀÌ¿Àµå
  • ±âŸ ±â¼ú

Á¦8Àå ¼¼°èÀÇ ±Ù¾È µð½ºÇ÷¹ÀÌ ½ÃÀå : ¿ëµµº°

  • Çìµå ¸¶¿îÆ® µð½ºÇ÷¹ÀÌ
  • Çìµå¾÷ µð½ºÇ÷¹ÀÌ
  • ½º¸¶Æ® ±Û·¡½º

Á¦9Àå ¼¼°èÀÇ ±Ù¾È µð½ºÇ÷¹ÀÌ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • Ç×°ø¿ìÁÖ ¹× ¹æÀ§
  • ÀÚµ¿Â÷
  • °¡Àü
  • ÇコÄɾî
  • ±âŸ ÃÖÁ¾»ç¿ëÀÚ

Á¦10Àå ¼¼°èÀÇ ±Ù¾È µð½ºÇ÷¹ÀÌ ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦12Àå ±â¾÷ °³¿ä

  • BOE Technology Group Co., Ltd
  • eMagin Corporation
  • Exalos AG
  • Himax Technologies, Inc
  • Infineon Technologies AG
  • Kopin Corporation
  • MicroVision, Inc
  • Sony Group Corporation
  • STMicroelectronics N.V
  • Syndiant, Inc
ksm 24.10.07

According to Stratistics MRC, the Global Near-Eye Display Market is accounted for $3.17 billion in 2024 and is expected to reach $12.57 billion by 2030 growing at a CAGR of 25.8% during the forecast period. A Near-Eye Display (NED) is a visual technology designed to be positioned close to the user's eyes, typically within a few centimeters. It projects images or information directly into the user's field of view, creating the illusion of a large display while using a compact device. NEDs are commonly found in devices like augmented reality (AR) glasses, virtual reality (VR) headsets, and heads-up displays (HUDs). These displays use various optical techniques, such as lenses, waveguides, or mirrors, to ensure that the image appears at a comfortable viewing distance and covers a wide field of view.

Market Dynamics:

Driver:

Increasing demand for augmented reality

NEDs are critical components in AR devices, enabling users to see digital overlays seamlessly integrated with the real world. As AR applications expand across industries-from gaming and entertainment to healthcare and education-there's an increasing need for high-quality, immersive displays. This has driven innovations in NEDs, focusing on improving resolution, brightness, field of view, and reducing latency. Moreover, advancements in microdisplays, such as OLED and microLED, along with enhanced optical systems, are making NEDs more compact and energy-efficient, essential for lightweight and comfortable AR wearables.

Restraint:

Lack of interoperability

The lack of interoperability in near-eye displays (NEDs) significantly hampers their widespread adoption and utility. These displays, integral to augmented and virtual reality, require seamless integration across various hardware and software platforms. However, current NED systems often operate within closed ecosystems, making it difficult for devices, software, and accessories from different manufacturers to work together. This fragmentation limits the user experience, as consumers face challenges in combining their preferred hardware with compatible software, leading to frustration and reduced functionality.

Opportunity:

Growing investment in smart manufacturing

Smart manufacturing, which leverages technologies like IoT, AI, and automation, demands high precision and real-time data visualization, which NEDs excel at providing. These displays offer workers enhanced access to critical information, overlaying digital data onto the physical environment, thereby improving efficiency and reducing errors. As industries invest more in smart manufacturing, the need for advanced NEDs grows, pushing innovation in display quality, resolution, and energy efficiency.

Threat:

Minimizing latency for VR displays

Minimizing latency in Virtual Reality (VR) displays is crucial for creating an immersive experience, but it also poses significant challenges, particularly for Near-Eye Displays (NEDs). In VR, even slight delays between a user's physical movements and the corresponding visual feedback can cause motion sickness and break the sense of immersion. Achieving low latency requires rapid processing, high refresh rates, and fast display technologies. However, these demands conflict with the miniaturization and power constraints inherent in NEDs, which are designed to be lightweight and compact. High-performance processing units generate heat and consume power, which can make the devices bulkier and uncomfortable to wear.

Covid-19 Impact:

With social distancing and remote work becoming the norm, there was a surge in demand for technologies that could enhance virtual communication and immersive experiences. Near-eye displays, including augmented reality (AR) and virtual reality (VR) headsets, witnessed increased adoption as people sought more interactive ways to work, socialize, and entertain themselves from home. This period also spurred innovation in display technologies, leading to improvements in resolution, field of view, and comfort. However, the pandemic highlighted the need for more accessible and user-friendly devices, pushing manufacturers to refine their products for broader consumer markets.

The Image Generators segment is expected to be the largest during the forecast period

Image Generators segment is expected to be the largest during the forecast period by enhancing visual quality and immersion in devices like augmented reality (AR) and virtual reality (VR) headsets. These generators, using advanced algorithms and machine learning techniques, create high-resolution, lifelike images that are projected directly onto or very close to the user's eyes. Innovations in this field include optimizing light field displays, increasing refresh rates, and improving color accuracy and contrast. This progress not only makes virtual environments more engaging but also reduces eye strain and enhances overall user comfort.

The Heads-Up Displays segment is expected to have the highest CAGR during the forecast period

Heads-Up Displays segment is expected to have the highest CAGR during the forecast period. HUDs, traditionally used in vehicles to project critical information onto the windshield, are now being refined for NEDs to deliver immersive, high-resolution visuals directly in the user's line of sight. This enhancement allows for more seamless interaction with digital content, overlaying data on the real world with greater precision and clarity. Advanced HUDs in NEDs incorporate improved optics, high-brightness displays, and better spatial awareness, enabling applications like augmented reality (AR) and virtual reality (VR) to offer richer, more intuitive experiences. These developments make it possible to project information such as navigation, notifications, and interactive elements more effectively, without obstructing the user's view.

Region with largest share:

North America region dominated the largest share over the forecast period. As organizations increasingly adopt remote work models, the demand for advanced virtual communication tools has surged, leading to greater interest in Near-Eye Displays, which include technologies like augmented reality (AR) and virtual reality (VR) headsets. These devices enhance remote collaboration by providing immersive experiences that bridge the gap between physical and digital interactions. The increased use of these displays facilitates more effective virtual meetings, training sessions, and collaborative projects, thereby driving market growth. As companies invest in these technologies to improve productivity and connectivity, the Near-Eye Display sector is experiencing accelerated innovation and expansion in North America.

Region with highest CAGR:

Europe region is poised to hold profitable growth during the extrapolated period. In Europe, government regulations are significantly boosting the development and adoption of near-eye display technologies. The European Union has implemented strict standards to ensure consumer safety and data privacy, which has pushed companies to innovate and meet these high standards. Regulations like the General Data Protection Regulation (GDPR) and the European Union's Digital Services Act (DSA) are fostering a secure environment for technology development, encouraging investment and research in near-eye display technologies. These regulations also promote interoperability and accessibility, ensuring that new products are inclusive and user-friendly.

Key players in the market

Some of the key players in Near-Eye Display market include BOE Technology Group Co., Ltd, eMagin Corporation, Exalos AG, Himax Technologies, Inc, Infineon Technologies AG, Kopin Corporation, MicroVision, Inc, Sony Group Corporation, STMicroelectronics N.V and Syndiant, Inc.

Key Developments:

In June 2024, Kopin Corporation introduced its latest microdisplay technology, the Lightning 2. This display offers a resolution of 2,000 x 2,000 pixels per eye and is designed for lightweight AR and VR devices. The Lightning 2 emphasizes low power consumption and high brightness, making it suitable for various applications.

In August 2023, Sony announced the launch of its ECX344A OLED microdisplay, designed for virtual reality (VR) and augmented reality (AR) applications. This 1.3-inch microdisplay features a 4K resolution and a refresh rate of 90Hz, ensuring smooth and lifelike visuals. The ECX344A utilizes a unique miniaturization process, allowing for high brightness levels of up to 5,000 cd/m2 and a wide color gamut covering 96% of the DCI-P3 color space.

In January 2022, TriLite Technologies GmbH launched Trixel 3-the smallest laser beam scanner light engine based on Infineon's 2D MEMS mirror. The tiny module targets the AR glasses product as it is the key component for AR smart glasses that offer comfortable all-day wear.

In January 2022, Sony Corporation released OLED Microdisplay for EVF applications in cameras and HMDs. This microdisplay can be applied in interchangeable lens mirrorless cameras viewfinders. It has achieved high image quality and a larger size to be employed in AR/VR wearable devices.

In January 2022, Kopin Corporation partnered with RealWear by supplying the Golden Pearl display module for RealWear's recently launched RealWear Navigator 500 wearable device. The updated Golden Pearl features a 0.32", 24-bit full-color, high-brightness LCD microdisplay for easy outdoor/sunlight use and comfortable long-term viewing.

In January 2022, JBD Xianyao Display Technology partnered with tooz technologies to develop new-generation optical engines for smart glasses, combining the color filter-integrated MicroLED display engine of JBD Xianyao Display Technology and the curved waveguide of tooz technologies.

Components Covered:

  • Image Generators
  • Optical Combiners
  • Other Components

Resolutions Covered:

  • Low Resolution (Below 1080p)
  • High Resolution (1080p to 4K)
  • Ultra-High Resolution (Above 4K)

Technologies Covered:

  • Active-matrix Organic Light-emitting Diode
  • Digital Light Processing
  • Liquid Crystal on Silicon
  • Microscopic Light-emitting Diode
  • Organic Light-emitting Diode on Silicon
  • Other Technologies

Applications Covered:

  • Head-Mounted Displays
  • Heads-Up Displays
  • Smart Glasses

End Users Covered:

  • Aerospace & Defense
  • Automotive
  • Consumer Electronics
  • Healthcare
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Near-Eye Display Market, By Component

  • 5.1 Introduction
  • 5.2 Image Generators
  • 5.3 Optical Combiners
  • 5.4 Other Components

6 Global Near-Eye Display Market, By Resolution

  • 6.1 Introduction
  • 6.2 Low Resolution (Below 1080p)
  • 6.3 High Resolution (1080p to 4K)
  • 6.4 Ultra-High Resolution (Above 4K)

7 Global Near-Eye Display Market, By Technology

  • 7.1 Introduction
  • 7.2 Active-matrix Organic Light-emitting Diode
  • 7.3 Digital Light Processing
  • 7.4 Liquid Crystal on Silicon
  • 7.5 Microscopic Light-emitting Diode
  • 7.6 Organic Light-emitting Diode on Silicon
  • 7.7 Other Technologies

8 Global Near-Eye Display Market, By Application

  • 8.1 Introduction
  • 8.2 Head-Mounted Displays
  • 8.3 Heads-Up Displays
  • 8.4 Smart Glasses

9 Global Near-Eye Display Market, By End User

  • 9.1 Introduction
  • 9.2 Aerospace & Defense
  • 9.3 Automotive
  • 9.4 Consumer Electronics
  • 9.5 Healthcare
  • 9.6 Other End Users

10 Global Near-Eye Display Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 BOE Technology Group Co., Ltd
  • 12.2 eMagin Corporation
  • 12.3 Exalos AG
  • 12.4 Himax Technologies, Inc
  • 12.5 Infineon Technologies AG
  • 12.6 Kopin Corporation
  • 12.7 MicroVision, Inc
  • 12.8 Sony Group Corporation
  • 12.9 STMicroelectronics N.V
  • 12.10 Syndiant, Inc
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦