![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1662677
¹ÝµµÃ¼ ¼öÀ² ºÐ¼® µµ±¸ ½ÃÀå ¿¹Ãø( -2030³â) : À¯Çüº°, ±¸¼º¿ä¼Òº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®Semiconductor Yield Analytics Tools Market Forecasts to 2030 - Global Analysis By Type (Wafer Inspection Tools, Process Control Tools, Data Analysis Tools and Other Types), Component, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é, ¼¼°è ¹ÝµµÃ¼ ¼öÀ² ºÐ¼® µµ±¸ ½ÃÀåÀº 2024³â¿¡ 9¾ï ´Þ·¯·Î ¿¹Ãø ±â°£ µ¿¾È ¿¬Æò±Õ 11.1%ÀÇ ¼ºÀå·üÀ» ±â·ÏÇÏ¿© 2030³â¿¡´Â 18¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¹ÝµµÃ¼ ¼öÀ² ºÐ¼® µµ±¸´Â ¹ÝµµÃ¼ Á¦Á¶ »ê¾÷¿¡¼ »ç¿ëµÇ´Â ¼ÒÇÁÆ®¿þ¾î ½Ã½ºÅÛÀ¸·Î, Á¦Á¶ ÁßÀÎ ¹ÝµµÃ¼ ¼ÒÀÚÀÇ ¼öÀ²À» ¸ð´ÏÅ͸µÇÏ°í °³¼±ÇÏ´Â µ¥ »ç¿ëµË´Ï´Ù. ¼öÀ²Àº ¹ÝµµÃ¼ ¹èÄ¡ ¶Ç´Â ¿þÀÌÆÛ¿¡¼ »ý»êµÇ´Â ±â´É¼º ĨÀÇ ºñÀ²À» ÀǹÌÇϸç, ³ôÀº ¼öÀ²Àº ºñ¿ë È¿À²¼º°ú ¼öÀͼº¿¡ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸Àº ¿þÀÌÆÛ Á¦Á¶, Å×½ºÆ®, ÆÐŰ¡À» Æ÷ÇÔÇÑ ¹ÝµµÃ¼ Á¦Á¶ °øÁ¤ÀÇ ¿©·¯ ´Ü°è¿¡¼ µ¥ÀÌÅ͸¦ ¼öÁýÇϰí ó¸®ÇÏ¿© °áÇÔ, ºñÈ¿À², ¼öÀ²¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ÆÐÅÏÀ» ½Äº°ÇÕ´Ï´Ù.
¹ÝµµÃ¼ Á¦Á¶ÀÇ º¹À⼺
¹ÝµµÃ¼ Á¦Á¶ °øÁ¤ÀÇ º¹À⼺Àº ¼öÀ² ºÐ¼® µµ±¸ÀÇ Áß¿äÇÑ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. Ĩ ¼³°è°¡ ´õ¿í Á¤±³ÇØÁö°í, ´õ ÀÛÀº ³ëµå, ´ÙÃþ ¾ÆÅ°ÅØÃ³, ´Ù¾çÇÑ Àç·á°¡ ÅëÇյʿ¡ µû¶ó Á¦Á¶ °áÇÔÀÇ À§ÇèÀÌ Áõ°¡ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ º¹À⼺À¸·Î ÀÎÇØ ÃÖÀûÀÇ ¼öÀ²À» º¸ÀåÇϰí Á¦Á¶ »çÀÌŬ Ãʱ⿡ ¹®Á¦¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖ´Â °·ÂÇÑ ºÐ¼® µµ±¸°¡ ÇÊ¿äÇÕ´Ï´Ù. ¶ÇÇÑ, AI, IoT, 5G¿Í °°Àº ÷´Ü ±â¼úÀÇ ºÎ»óÀ¸·Î ÀÎÇØ ¾ö°ÝÇÑ Ç°Áú ±âÁØÀ» °®Ãá ¹ÝµµÃ¼¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ¸é¼ ½ÃÀå ¼ºÀå¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù.
³ôÀº µµÀÔ ºñ¿ë
¹ÝµµÃ¼ ¼öÀ² ºÐ¼® µµ±¸´Â ¼ÒÇÁÆ®¿þ¾î, Çϵå¿þ¾î ¹× ÀÎÇÁ¶ó¿¡ ¸¹Àº ÅõÀÚ¸¦ ÇÊ¿ä·Î Çϱ⠶§¹®¿¡ Áß¼Ò Á¦Á¶¾÷ü¿¡°Ô´Â À庮ÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¾÷µ¥ÀÌÆ®, ¶óÀ̼±½º, ±â¼ú Áö¿ø°ú °ü·ÃµÈ Áö¼ÓÀûÀÎ ºñ¿ëÀ¸·Î ÀÎÇØ °æÁ¦Àû ºÎ´ãÀÌ ´õ¿í °¡Áߵǰí ÀÖ½À´Ï´Ù. ±â¾÷Àº ¶ÇÇÑ ÀÌ·¯ÇÑ µµ±¸¸¦ È¿°úÀûÀ¸·Î »ç¿ëÇϱâ À§ÇØ Á÷¿ø ±³À°¿¡ ÅõÀÚÇØ¾ß Çϸç, ÀÌ´Â Àüü ºñ¿ëÀ» Áõ°¡½Ãŵ´Ï´Ù. ÀÌ·¯ÇÑ ³ôÀº ºñ¿ëÀ¸·Î ÀÎÇØ ÁÖ·Î ´ë±â¾÷ÀÇ µµÀÔÀÌ Á¦ÇѵǾî Áß¼Ò±â¾÷Àº °æÀï¿¡¼ ºÒ¸®ÇÑ À§Ä¡¿¡ ³õ¿© ½ÃÀå ¼ºÀåÀ» ÀúÇØÇϰí ÀÖ½À´Ï´Ù.
µ¥ÀÌÅÍ ±â¹Ý ÀÇ»ç°áÁ¤¿¡ ´ëÇÑ °ü½É Áõ°¡
Á¦Á¶¾÷üµéÀº ºòµ¥ÀÌÅÍ ºÐ¼®°ú ¸Ó½Å·¯´×À» Ȱ¿ëÇÏ¿© »ý»ê °øÁ¤À» ÃÖÀûÈÇÏ°í ¼öÀ²À» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸´Â ¹æ´ëÇÑ »ý»ê µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© ½Ç¿ëÀûÀÎ ÀλçÀÌÆ®¸¦ Á¦°øÇÔÀ¸·Î½á º¸´Ù ºü¸£°í Á¤È®ÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ¶ÇÇÑ, ±â¾÷ÀÌ ³¶ºñ¸¦ ÁÙÀÌ°í ¾÷¹« È¿À²¼ºÀ» ³ôÀ̱â À§ÇØ ³ë·ÂÇÏ´Â °¡¿îµ¥, ¼öÀ² ºÐ¼® µµ±¸´Â ÇʼöÀûÀÎ ÀÚ»êÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â Àδõ½ºÆ®¸® 4.0 ±â¼úÀÇ ÅëÇÕÀÌ ÁøÇàµÇ¸é¼ ºÐ¼® ¼Ö·ç¼ÇÀÇ Çõ½ÅÀ» À§ÇÑ ºñ¿ÁÇÑ Åä¾çÀÌ Çü¼ºµÇ°í Àֱ⠶§¹®¿¡ ´õ¿í °¡¼Óȵǰí ÀÖ½À´Ï´Ù.
¼÷·ÃµÈ Àü¹®°¡ ºÎÁ·
¹ÝµµÃ¼ ¼öÀ² ºÐ¼® µµ±¸´Â µ¥ÀÌÅÍ °úÇÐ, ±â°è ÇнÀ, ¹ÝµµÃ¼ °øÁ¤¿¡ ´ëÇÑ Àü¹® Áö½ÄÀÌ ÇÊ¿äÇϸç, ÀÌ´Â Àü¹®ÀûÀÌ°í ¼ö¿ä°¡ ¸¹Àº ±â¼úÀÔ´Ï´Ù. Àü¹® ºÐ¾ßÀÇ ¼¼°è Àη ºÎÁ·Àº ÀÌ ¹®Á¦¸¦ ½ÉȽÃÄÑ ±â¾÷ÀÌ À¯´ÉÇÑ ÆÀÀ» ±¸ÃàÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àη ºÎÁ·Àº µµ±¸ÀÇ ÃÖÀû Ȱ¿ëÀ» ¹æÇØÇÏ°í ¼öÀ² Çâ»ó È¿°ú¸¦ ¶³¾î¶ß¸± ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ½ÃÀåÀ» ÀúÇØÇÏ´Â ÀÌ·¯ÇÑ ±â¼ú ºÎÁ·À» ÇØ°áÇϱâ À§ÇØ ±³À° ÇÁ·Î±×·¥À̳ª Çмú ±â°ü°úÀÇ Á¦ÈÞ¿¡ ÅõÀÚÇØ¾ß ÇÕ´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
ºÀ¼â¿Í ±ÔÁ¦·Î ÀÎÇØ ÀÌ·¯ÇÑ µµ±¸ÀÇ Á¦Á¶ ¹× ¹èÆ÷°¡ Áö¿¬µÇ¾î äÅ÷ü¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ±×·¯³ª ÆÒµ¥¹ÍÀº »ý»ê ¿¬¼Ó¼ºÀ» À¯ÁöÇϱâ À§ÇÑ ÀÚµ¿È ¹× µ¥ÀÌÅÍ ±â¹Ý ÀÇ»ç°áÁ¤ÀÇ Á߿伺µµ ºÎ°¢½ÃÄ×½À´Ï´Ù. ±× °á°ú, ¸¹Àº ±â¾÷µéÀÌ µðÁöÅÐ Àüȯ¿¡ ¹ÚÂ÷¸¦ °¡ÇÏ¸é¼ ÆÒµ¥¹Í ÀÌÈÄ ºÐ¼® µµ±¸¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çß½À´Ï´Ù. ȸº¹±â¿¡´Â ȸº¹·Â ÀÖ´Â °ø±Þ¸Á ±¸Ãà°ú ÇÁ·Î¼¼½º È¿À²¼º Çâ»ó¿¡ ´Ù½Ã ÇÑ ¹ø ÃÊÁ¡À» ¸ÂÃß¸é¼ ¼öÀ² ºÐ¼® ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀ» ´õ¿í ÃËÁøÇß½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¿þÀÌÆÛ °Ë»ç µµ±¸ ºÎ¹®ÀÌ °¡Àå Å« ½ÃÀåÀ¸·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿þÀÌÆÛ °Ë»ç µµ±¸ ºÎ¹®Àº »ý»ê °øÁ¤ÀÇ Ãʱ⠴ܰ迡¼ °áÇÔÀ» ½Äº°ÇÏ°í ¿ÏÈÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϱ⠶§¹®¿¡ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸´Â ƯÈ÷ ÷´Ü ³ëµå Á¦Á¶¿¡¼ ³ôÀº ǰÁú ±âÁØÀ» À¯ÁöÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ¿þÀÌÆÛ °Ë»çÀÇ ÀÚµ¿È°¡ ÁøÇàµÊ¿¡ µû¶ó Á¤È®µµ¿Í È¿À²¼ºÀÌ Çâ»óµÇ¾î ÃֽŠ¹ÝµµÃ¼ Á¦Á¶¿¡ ÇʼöÀûÀÎ ¿ä¼Ò°¡ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±¤ÇÐ½Ä ¹× ÀüÀÚºö½Ä µî °Ë»ç ±â¼úÀÇ ¹ßÀüÀ¸·Î °áÇÔ °ËÃâ ´É·ÂÀÌ Å©°Ô Çâ»óµÇ°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È °áÇÔ µ¥ÀÌÅÍ ºÐ¼® ºÎ¹®ÀÌ °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
°áÇÔ µ¥ÀÌÅÍ ºÐ¼® ºÎ¹®Àº °áÇÔ µ¿Çâ°ú ±Ùº» ¿øÀο¡ ´ëÇÑ ½Ç¿ëÀûÀÎ ÀλçÀÌÆ®¸¦ Á¦°øÇÏ´Â ´É·ÂÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸´Â °í±Þ ¾Ë°í¸®Áò°ú ¸Ó½Å·¯´×À» Ȱ¿ëÇÏ¿© ´ë±Ô¸ð µ¥ÀÌÅͼ¼Æ®¸¦ ó¸®Çϰí, Á¦Á¶¾÷ü°¡ ÀáÀçÀûÀÎ ¼öÀ² ¼Õ½ÇÀ» ¿¹ÃøÇÏ°í ¿¹¹æÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. ¿¹Ãø ºÐ¼®°ú ½Ç½Ã°£ ¸ð´ÏÅ͸µÀ¸·ÎÀÇ ÀüȯÀº °áÇÔ µ¥ÀÌÅÍ ºÐ¼® ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¹ÝµµÃ¼ Á¦Á¶°¡ º¹ÀâÇØÁü¿¡ µû¶ó Á¤È®Çϰí È¿À²ÀûÀÎ °áÇÔ °ü¸®ÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â °ßÁ¶ÇÑ ¹ÝµµÃ¼ »ê¾÷¿¡ ÈûÀÔ¾î °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¹Ì±¹¿¡´Â ÁÖ¿ä ¹ÝµµÃ¼ Á¦Á¶¾÷ü¿Í ±â¼ú ±â¾÷ÀÌ Á¸ÀçÇϱ⠶§¹®¿¡ ÷´Ü ºÐ¼® µµ±¸ÀÇ Çõ½Å°ú µµÀÔÀÌ ÃËÁøµÉ °ÍÀÔ´Ï´Ù. ¿¬±¸°³¹ß¿¡ ´ëÇÑ È°¹ßÇÑ ÅõÀÚ¿Í ¹ÝµµÃ¼ »ý»ê¿¡ ´ëÇÑ Á¤ºÎÀÇ Áö¿øÀº ÀÌ Áö¿ªÀÇ ½ÃÀå Á¡À¯À²À» ´õ¿í ³ôÀ̰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, AI, Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ, ÀÚÀ²ÁÖÇàÂ÷ µîÀ» À§ÇÑ °í¼º´É Ĩ¿¡ ´ëÇÑ ¼ö¿äµµ ÀÌ Áö¿ªÀÇ °Á¡¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº ¹ÝµµÃ¼ Á¦Á¶ »ê¾÷ÀÇ ±Þ°ÝÇÑ ¼ºÀåÀ¸·Î ÀÎÇØ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áß±¹, ´ë¸¸, Çѱ¹ µîÀº ¹ÝµµÃ¼ Á¦Á¶ÀÇ ÁÖ¿ä °ÅÁ¡À¸·Î¼ ¼öÀ² ºÐ¼® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÷´Ü Á¦Á¶ ±â¼úÀÇ µµÀÔ°ú ÇöÁö ¹ÝµµÃ¼ »ê¾÷À» À°¼ºÇϱâ À§ÇÑ Á¤ºÎÀÇ ³ë·ÂÀº ¼ºÀåÀ» ´õ¿í °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ Áö¿ªÀÇ ¼ÒºñÀÚ °¡Àü ¹× ÀÚµ¿Â÷ ºÎ¹®ÀÇ È®ÀåÀº °íǰÁú ¹ÝµµÃ¼¿¡ ´ëÇÑ °·ÂÇÑ ¼ö¿ä¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Semiconductor Yield Analytics Tools Market is accounted for $0.9 billion in 2024 and is expected to reach $1.8 billion by 2030 growing at a CAGR of 11.1% during the forecast period. Semiconductor yield analytics tools are software systems used in the semiconductor manufacturing industry to monitor and improve the yield of semiconductor devices during production. Yield refers to the percentage of functional chips produced from a batch or wafer of semiconductors, and high yield is crucial for cost efficiency and profitability. These tools gather and process data from various stages of the semiconductor manufacturing process, including wafer fabrication, testing, and packaging, to identify defects, inefficiencies, and patterns affecting yield.
Increasing complexity of semiconductor manufacturing
The growing intricacy of semiconductor manufacturing processes is a significant driver for yield analytics tools. As chip designs become more advanced, incorporating smaller nodes, multi-layer architectures, and diverse materials, the risk of production defects increases. This complexity necessitates robust analytical tools to ensure optimal yield and identify issues early in the production cycle. Moreover, the rise of advanced technologies like AI, IoT, and 5G has led to higher demand for semiconductors with stringent quality standards encouraging the market growth.
High cost of implementation
Semiconductor yield analytics tools require substantial investment in software, hardware, and infrastructure, which can be a barrier for smaller manufacturers. Additionally, ongoing costs related to updates, licenses, and technical support further add to the financial burden. Companies must also invest in training employees to effectively use these tools, adding to the overall expenses. This high cost limits adoption primarily to large-scale enterprises, leaving smaller players at a competitive disadvantage hampering the market growth.
Growing focus on data-driven decision making
Manufacturers are leveraging big data analytics and machine learning to optimize production processes and improve yield. These tools provide actionable insights by analyzing vast amounts of production data, enabling faster and more accurate decision-making. Furthermore, as companies strive to reduce waste and enhance operational efficiency, yield analytics tools have become a vital asset. This trend is supported by the growing integration of Industry 4.0 technologies, creating a fertile ground for innovation in analytics solutions.
Shortage of skilled professionals
Semiconductor yield analytics tools require expertise in data science, machine learning, and semiconductor processes, which are specialized and in-demand skills. The global talent gap in stem fields exacerbates this issue, making it difficult for companies to build competent teams. This shortage can lead to suboptimal tool utilization, reducing their effectiveness in improving yield. Companies must invest in training programs and partnerships with academic institutions to address this skills deficit impeding the market.
Covid-19 Impact
Lockdowns and restrictions led to delays in manufacturing and deployment of these tools, affecting their adoption rate. However, the pandemic also highlighted the importance of automation and data-driven decision-making in maintaining production continuity. As a result, many companies accelerated their digital transformation efforts, boosting demand for analytics tools post-pandemic. The recovery phase saw a renewed focus on building resilient supply chains and enhancing process efficiency, further driving the adoption of yield analytics solutions.
The wafer inspection tools segment is expected to be the largest during the forecast period
The wafer inspection tools segment is expected to account for the largest market share during the forecast period due to its critical role in identifying and mitigating defects early in the production process. These tools are essential for maintaining high-quality standards, particularly in advanced node manufacturing. The increasing adoption of automation in wafer inspection enhances its accuracy and efficiency, making it indispensable for modern semiconductor fabrication. Furthermore, advancements in inspection technologies, such as optical and e-beam methods, have significantly improved defect detection capabilities.
The defect data analysis segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the defect data analysis segment is predicted to witness the highest growth rate due to its ability to provide actionable insights into defect trends and root causes. These tools leverage advanced algorithms and machine learning to process large datasets, enabling manufacturers to predict and prevent potential yield losses. The shift towards predictive analytics and real-time monitoring is further propelling the adoption of defect data analysis solutions. As semiconductor manufacturing becomes increasingly complex, the need for precise and efficient defect management is growing.
During the forecast period, the North America region is expected to hold the largest market share driven by its robust semiconductor industry. The presence of leading semiconductor manufacturers and technology companies in the U.S. fosters innovation and adoption of advanced analytics tools. Strong investments in R&D and government support for semiconductor production further boost the region's market share. Additionally, the demand for high-performance chips for applications like AI, cloud computing, and autonomous vehicles contributes to the region's dominance.
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR fuelled by its rapidly growing semiconductor manufacturing industry. Countries like China, Taiwan, and South Korea are major hubs for semiconductor production, driving demand for yield analytics solutions. The increasing adoption of advanced manufacturing technologies and government initiatives to boost local semiconductor industries further accelerate growth. Additionally, the region's expanding consumer electronics and automotive sectors create a strong demand for high-quality semiconductors.
Key players in the market
Some of the key players in Semiconductor Yield Analytics Tools market ANSYS, Inc., Applied Materials, Inc, DR YIELD Software & Solutions GmbH, Galaxy Semiconductor Inc., JMP Statistical Discovery LLC, KLA Corporation, Minitab, LLC, Nova, Onto Innovation Inc., PDF Solutions, Inc., Siemens AG, Skyverse, Synopsys, Inc, Test Research Inc, XDM Technology Co., Ltd. and yieldWerx.
In July 2024, Bohemia Interactive announced to partner with Enjoy Studio via their Bohemia Incubator publishing label and unveil the development of their highly-anticipated project "SkyVerse". This innovative title offers a novel take on the RPG and sandbox survival genres.
In May 2024, Siemens Energy and Danish state-owned Energinet announced a EUR 1.4 billion framework agreement to renew Denmark's energy infrastructure. To accelerate the green energy transition, Siemens Energy has been chosen by Energinet to deliver transformers and switchgears.