![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1700170
¼¼°èÀÇ ¼±ÅÃÀû Ã˸Šȯ¿ø ½ÃÀå ¿¹Ãø(-2032³â) : ȯ¿øÁ¦ À¯Çü, Ã˸ŠÀ¯Çü, ÄÄÆ÷³ÍÆ®, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚ, Áö¿ªº° ºÐ¼®Selective Catalytic Reduction Market Forecasts to 2032 - Global Analysis By Reducing Agent Type (Ammonia, Urea and Diesel Exhaust Fluid), Catalyst Type, Component, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é, ¼¼°è ¼±ÅÃÀû Ã˸Šȯ¿ø ½ÃÀåÀº 2025³â 154¾ï ´Þ·¯¿¡ À̸£°í, ¿¹Ãø ±â°£ µ¿¾È 7.2%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÏ¿© 2032³â¿¡´Â 251¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¼±ÅÃÀû Ã˸Šȯ¿ø(SCR)Àº Ã˸ÅÀÇ Á¸Àç ÇÏ¿¡¼ ȯ¿øÁ¦(º¸Åë ¾Ï¸ð´Ï¾Æ ¶Ç´Â ¿ä¼Ò)¿ÍÀÇ ÈÇÐ ¹ÝÀÀÀ» ÅëÇØ ¹è±â°¡½º¿¡¼ Áú¼Ò»êȹ°(NOx)À» °¨¼Ò½ÃŰ´Â ÷´Ü ¹èÃâ Á¦¾î ±â¼úÀÔ´Ï´Ù. ÀÌ °øÁ¤Àº À¯ÇØÇÑ NOx ¹èÃâÀ» ¹«ÇØÇÑ Áú¼Ò(N2)¿Í ¼öÁõ±â(H2O)·Î ÀüȯÇÏ¿© ´ë±â ¿À¿° ¼öÁØÀ» Å©°Ô ³·Ãä´Ï´Ù. ¹ßÀü¼Ò, »ê¾÷¿ë º¸ÀÏ·¯, µðÁ© ¿£Áø¿¡ ³Î¸® »ç¿ëµÇ´Â SCRÀº À¯·Î 6 ¹× Tier 4 ±âÁذú °°Àº ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦¿¡ ´ëÇÑ ÀûÇÕ¼ºÀ» °ÈÇÕ´Ï´Ù.
±¹Á¦Ã»Á¤±³ÅëÀ§¿øÈ¸(ICCT)¿¡ µû¸£¸é, À¯·Î6d ±âÁØÀº µðÁ© ½Â¿ëÂ÷ÀÇ NOx ¹èÃâ·®À» 80mg/km ¹Ì¸¸À¸·Î Á¦ÇÑÇϰí ÀÖÀ¸¸ç, Áß±¹6 ±âÁØÀº ¼ÒÇüÂ÷ÀÇ NOx ¹èÃâ·®À» 35mg/km·Î Á¦ÇÑÇϰí ÀÖ½À´Ï´Ù.
»ê¾÷È¿Í ¹ßÀü È®´ë
¼¼°è »ê¾÷ÈÀÇ °¡¼ÓÈ¿Í ¹ßÀü Ȱµ¿ÀÇ È®´ë´Â ¼±ÅÃÀû Ã˸Šȯ¿ø(SCR) ½ÃÀå, ƯÈ÷ ½ÅÈï±¹ÀÇ ¼±ÅÃÀû Ã˸Šȯ¿ø(SCR) ½ÃÀåÀÇ ¸Å¿ì Áß¿äÇÑ ÃËÁø¿äÀÎÀÔ´Ï´Ù. Áß±¹ÀÇ ±¹°¡ Ç¥ÁØ VI ¹× ÀεµÀÇ BS-VI¿Í °°Àº ¾ö°ÝÇÑ ¹è±â°¡½º ±ÔÁ¦´Â ¼®Åº È·Â ¹ßÀü¼Ò ¹× Áß°ø¾÷¿¡¼ NOx °¨ÃàÀ» Àǹ«ÈÇϰí ÀÖÀ¸¸ç, ÀÌ´Â SCRÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¿º´ÇÕ¹ßÀü(CHP) ½Ã½ºÅÛ¿¡ SCR ±â¼úÀÇ ÅëÇÕÀº Àü ¼¼°è ´ë±âÁú ±ÔÁ¦ Áؼö¸¦ ´õ¿í ÃËÁøÇÏ°í ½ÃÀå ħÅõ¸¦ °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù.
¿ä¼Ò °ø±Þ(DEF)¿¡ ´ëÇÑ ÀÇÁ¸µµ
SCR ½Ã½ºÅÛÀÇ Áß¿äÇÑ ±¸¼º ¿ä¼ÒÀÎ ¿ä¼Ò´Â µðÁ© ¿£Áø¿¡¼ NOx¸¦ ÁÙÀ̱â À§ÇÑ ¾Ï¸ð´Ï¾Æ¸¦ »ý¼ºÇÏ´Â µ¥ »ç¿ëµË´Ï´Ù. °ø±Þ¸Á Áß´ÜÀ̳ª ÁöÁ¤ÇÐÀû ¿äÀÎÀ¸·Î ÀÎÇØ ¿ä¼ÒÀÇ °¡¿ë¼ºÀÌ º¯µ¿ÇÏ¸é ºñ¿ë »ó½Â°ú ¿î¿µÀÇ ºñÈ¿À²¼ºÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Æ¯Á¤ Áö¿ªÀÇ ¿ä¼Ò ¼öÀÔ¿¡ ´ëÇÑ ÀÇÁ¸µµ´Â ½ÃÀå º¯µ¿¿¡ ´ëÇÑ Ãë¾à¼ºÀ» ¾ÇȽÃŵ´Ï´Ù. µû¶ó¼ ¿ä¼Ò °ø±ÞÀÌ Á¦ÇѵǸé SCR ±â¼ú äÅÃÀ» ¹æÇØÇÏ°í ¾ö°ÝÇÑ ¹èÃâ ±ÔÁ¦ Áؼö¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù.
ÇØ¾ç ¹× Ç×°ø ºÐ¾ß¿¡¼ÀÇ »ç¿ë È®´ë
IMOÀÇ Tier III ±âÁذú °°Àº ¾ö°ÝÇÑ ¹èÃâ ±ÔÁ¦´Â ¼±¹ÚÀÇ Áú¼Ò»êȹ°(NOx) ¹èÃâÀ» ÁÙÀÌ´Â SCR ½Ã½ºÅÛ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¸¶Âù°¡Áö·Î, Ç×°ø ºÐ¾ß¿¡¼µµ Áö»ó Áö¿ø ÀåÄ¡ ¹× º¸Á¶ µ¿·Â ÀåÄ¡ÀÇ È¯°æ ±âÁØÀ» ÃæÁ·½Ã۱â À§ÇØ SCR ±â¼úÀÌ °ËÅäµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÀ¿ë ºÐ¾ß¿¡¼´Â SCR Ã˸ÅÀÇ ¹ßÀü, °æ·®È ¼³°è, °ø°£ Á¦¾àÀÌ Àִ ȯ°æ¿¡ ¸Â´Â ¼ÒÇü ½Ã½ºÅÛ °³¹ßÀÌ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù.
´ëü ¹è±â°¡½º ±ÔÁ¦ ±â¼ú°úÀÇ °æÀï
¹è±â°¡½º Àç¼øÈ¯(EGR) ¹× ¸° NOx Æ®·¦(LNT)°ú °°Àº ½Å±â¼úÀº Áú¼Ò»êȹ° ¹èÃâÀ» ÁÙÀ̱â À§ÇÑ ºñ¿ë È¿À²ÀûÀ̰í È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ´ëü ±â¼úÀº ƯÁ¤ ÀÀ¿ë ºÐ¾ß¿¡¼ SCR ½Ã½ºÅÛÀ» ´É°¡ÇÒ ¼ö ÀÖÀ¸¸ç, SCR ±â¼úÀÇ Ã¤ÅÃÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÇÏÀ̺긮µå ¹× Àü±âÀÚµ¿Â÷ ±â¼úÀÇ ¹ßÀüÀ¸·Î ¹èÃâ°¡½º°¡ ÀûÀº ÀÚµ¿Â÷°¡ µîÀåÇÔ¿¡ µû¶ó SCR ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä´Â ´õ¿í °¨¼ÒÇÒ °ÍÀÔ´Ï´Ù.
Äڷγª19´Â Ãʱ⿡ SCR °ø±Þ¸ÁÀ» È¥¶õ¿¡ ºü¶ß·È°í, ºÀ¼â·Î ÀÎÇØ ºÎǰ Á¦Á¶ ¹× ¼³Ä¡ ÇÁ·ÎÁ§Æ®°¡ Áö¿¬µÇ¾ú½À´Ï´Ù. »ê¾÷ Ȱµ¿ °¨¼Ò¿Í ¹èÃâ°¡½º ±ÔÁ¦ ¿¬±â·Î ÀÎÇØ 2020-2021³â ¼ö¿ä´Â ÀϽÃÀûÀ¸·Î µÐȵǾú½À´Ï´Ù. ±×·¯³ª EUÀÇ ±×¸°µô°ú ¹Ì±¹ÀÇ ÀÎÇÁ¶ó ¹ý¾È µî Äڷγª19 ÀÌÈÄ È¸º¹Ã¥Àº ûÁ¤ °ø±â ±â¼ú¿¡ ´ëÇÑ ÀÚ±Ý °ø±ÞÀ» ¿ì¼±½ÃÇϰí SCR¿¡ ´ëÇÑ ÅõÀÚ¸¦ ȸº¹½ÃÄ×À¸¸ç, ÇöÀç SCR ½ÃÀåÀº °·ÂÇÑ ¼ö¿ä¿Í ±ÔÁ¦ °ÈÀÇ °¡¼ÓȷΠȸº¹¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¹Ù³ªµã ±â¹Ý Ã˸ŠºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¹Ù³ªµã Ã˸Ŵ Áú¼Ò»êȹ°(NOx) ¹èÃâ °¨¼Ò È¿À²ÀÌ ³ô¾Æ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, TiO2¿¡ V2O5¸¦ ´ãÁöÇÑ Ã˸Ŵ ³ÐÀº ¿Âµµ ¹üÀ§¿¡¼ È¿°úÀûÀ¸·Î ÀÛ¿ëÇϱ⠶§¹®¿¡ ´Ù¾çÇÑ »ê¾÷ ÀÀ¿ë ºÐ¾ß¿¡ ÀûÇÕÇÕ´Ï´Ù. Àú¿Â¿¡¼µµ ³ôÀº NOx ÀüȯÀ²À» ´Þ¼ºÇÒ ¼ö Àֱ⠶§¹®¿¡ ¾ö°ÝÇÑ ±ÔÁ¦ ȯ°æ¿¡¼µµ ±× ¸Å·ÂÀ» ¹ßÈÖÇÒ ¼ö ÀÖ½À´Ï´Ù. ±×·¯³ª ¹Ù³ªµãÀÇ µ¶¼º¿¡ ´ëÇÑ ¿ì·Á¿Í Æó±â ¹®Á¦°¡ ½ÃÀå ¼ºÀå¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¹ßÀü¼Ò ºÎ¹®Àº °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¹ßÀü¼Ò ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ¸ç, SCR ½Ã½ºÅÛÀº NOx ¹èÃâ·® °¨¼Ò¸¦ À§ÇÑ ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦¿¡ ´ëÀÀÇϱâ À§ÇØ ¼®Åº ¹× õ¿¬°¡½º ¹ßÀü¼Ò¿¡¼ ³Î¸® äÅõǰí ÀÖ½À´Ï´Ù. ¼¼°è ¿¡³ÊÁö ¼ö¿ä Áõ°¡¿Í ûÁ¤ ¿¡³ÊÁö¿øÀ¸·ÎÀÇ ÀüȯÀº ¹ßÀü ºÐ¾ß¿¡¼ SCR ±â¼úÀÇ Ã¤ÅÃÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Àç»ý °¡´É ¿¡³ÊÁö·ÎÀÇ ÀüȯÀº ¹ßÀü¼ÒÀÇ SCR ½Ã½ºÅÛ¿¡ ´ëÇÑ Àå±âÀûÀÎ ¼ö¿ä¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº ±Þ¼ÓÇÑ »ê¾÷È¿Í ¿¡³ÊÁö ¼ö¿ä Áõ°¡·Î ÀÎÇØ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÁÖ¿ä Á¦Á¶ °ÅÁ¡ÀÇ Á¸Àç¿Í ¾ö°ÝÇÑ ¹èÃâ ±ÔÁ¦°¡ °áÇÕµÇ¾î ¸ðµç »ê¾÷ ºÐ¾ß¿¡¼ SCR ±â¼ú äÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Áß±¹°ú Àεµ´Â »ê¾÷ ¹èÃâÀÇ °¡Àå Å« ¿äÀÎ Áß ÇϳªÀ̸ç, NOx Àú°¨ ¼Ö·ç¼Ç¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ¿î¼Û, ¹ßÀü ¹× ¼®À¯ÈÇÐ ºÎ¹®ÀÇ È®ÀåÀº ½ÃÀå ¼ºÀåÀ» Áö¼ÓÀûÀ¸·Î µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦¿Í ¹è±â°¡½º ±ÔÁ¦ ±â¼úÀÇ ¹ßÀüÀ¸·Î ÀÎÇØ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¹Ì±¹°ú ij³ª´Ù´Â ¾ö°ÝÇÑ NOx ¹èÃâ ±âÁØÀ» ¼³Á¤Çϰí ÀÖÀ¸¸ç, »ê¾÷°è´Â À̸¦ ÁؼöÇϱâ À§ÇØ SCR ½Ã½ºÅÛÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù. ¹ßÀü¼Ò, ÀÚµ¿Â÷, ÇØ¾ç »ê¾÷¿¡¼ ¿Â½Ç °¡½º ¹èÃâ °¨¼Ò¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼ ½ÃÀå ¼ºÀåÀ» ´õ¿í °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Selective Catalytic Reduction Market is accounted for $15.4 billion in 2025 and is expected to reach $25.1 billion by 2032 growing at a CAGR of 7.2% during the forecast period. Selective Catalytic Reduction (SCR) is an advanced emission control technology that reduces nitrogen oxides (NOx) from exhaust gases through a chemical reaction with a reductant, typically ammonia or urea, in the presence of a catalyst. This process converts harmful NOx emissions into harmless nitrogen (N2) and water vapor (H2O), significantly lowering air pollution levels. Widely used in power plants, industrial boilers, and diesel engines, SCR enhances compliance with stringent environmental regulations such as Euro 6 and Tier 4 standards.
According to the International Council on Clean Transportation (ICCT), Euro 6d standards require NOx emissions from diesel passenger cars to be below 80 mg/km, while China 6 standards limit NOx emissions to 35 mg/km for light-duty vehicles.
Growing industrialization and power generation
The accelerating pace of industrialization and expanding power generation activities worldwide are pivotal drivers for the selective catalytic reduction (SCR) market, particularly in emerging economies. Stringent emission norms, such as China's National VI and India's BS-VI standards, mandate NOx reduction in coal-fired plants and heavy industries, propelling SCR adoption. The integration of SCR technology in combined heat and power (CHP) systems further supports compliance with global air quality regulations accelerating market penetration.
Dependency on urea supply (DEF)
Urea, a critical component in SCR systems, is used to produce ammonia for NOx reduction in diesel engines. Fluctuations in urea availability due to supply chain disruptions or geopolitical factors can lead to increased costs and operational inefficiencies. Additionally, reliance on urea imports in certain regions exacerbates vulnerability to market volatility. Thus limited urea supply can hinder the adoption of SCR technology, impacting compliance with stringent emission regulations.
Expanding use in marine and aviation sectors
Stringent emission regulations, such as IMO Tier III standards, are propelling the adoption of SCR systems to reduce nitrogen oxide (NOx) emissions from ships. Similarly, in aviation, SCR technology is being explored to meet evolving environmental standards for ground support equipment and auxiliary power units. These applications are fostering advancements in SCR catalysts, lightweight designs, and compact systems tailored for space-constrained environments.
Competition from alternative emission control technologies
Emerging technologies, such as Exhaust Gas Recirculation (EGR) and Lean NOx Traps (LNT), offer cost-effective and efficient solutions for reducing nitrogen oxide emissions. These alternatives can outperform SCR systems in specific applications, leading to reduced adoption of SCR technology. Additionally, advancements in hybrid and electric vehicle technologies further diminish the demand for SCR systems, as these vehicles produce fewer emissions.
The pandemic initially disrupted SCR supply chains, delaying component manufacturing and installation projects amid lockdowns. Reduced industrial activity and deferred emission compliance timelines temporarily slowed demand in 2020-2021. However, post-pandemic recovery packages, such as the EU's Green Deal and U.S. Infrastructure Bill, prioritized funding for clean air technologies, reviving SCR investments. The market is now rebounding, driven by pent-up demand and accelerated regulatory enforcement.
The vanadium-based catalysts segment is expected to be the largest during the forecast period
The vanadium-based catalysts segment is expected to account for the largest market share during the forecast period due to their high efficiency in reducing nitrogen oxides (NOx) emissions. These catalysts, typically composed of V2O5 supported on TiO2, operate effectively across a wide temperature range, making them suitable for diverse industrial applications. Their ability to achieve high NOx conversion rates, even at low temperatures, enhances their appeal in stringent regulatory environments. However, concerns over vanadium toxicity and disposal challenges may impact market growth.
The power plants segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the power plants segment is predicted to witness the highest growth rate. SCR systems are widely adopted in coal-fired and natural gas-fired power plants to comply with stringent environmental regulations aimed at reducing NOx emissions. The increasing global energy demand and the transition to cleaner energy sources further boost the adoption of SCR technology in power generation. Additionally, the shift towards renewable energy sources may impact the long-term demand for SCR systems in power plants.
During the forecast period, the Asia Pacific region is expected to hold the largest market share due to rapid industrialization and increasing energy demand. The presence of major manufacturing hubs, coupled with stringent emission control regulations, has fueled the adoption of SCR technology across industries. China and India, being among the largest contributors to industrial emissions, are heavily investing in NOx reduction solutions. The expansion of transportation, power generation, and petrochemical sectors in the region continues to support the market's growth.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR driven by stringent environmental regulations and advancements in emission control technologies. The U.S. and Canada have enforced strict NOx emission standards, compelling industries to adopt SCR systems for compliance. The growing focus on reducing greenhouse gas emissions in power plants, automotive, and marine industries is further accelerating market growth.
Key players in the market
Some of the key players in Selective Catalytic Reduction Market include Tenneco Inc, SCR Solutions Holding Ltd, Rochling Group, Plastic Omnium, Mitsubishi Heavy Industries Ltd, Magneti Marelli, Johnson Matthey, Haldor Topsoe,Faurecia, Durr Systems, Inc., Cummins Inc., Cormetech, CONCORD Thermal Efficiency, Ceram-Ibiden, BOSCH, Bosal, BASF and ANDRITZ Clean Air Technologies
In Jan 2025, BASF is projected to launch SYNOVA(R) Flex, a dual-function SCR catalyst compatible with both diesel and hydrogen combustion engines. The product aligns with global shifts toward multi-fuel transitional powertrains in maritime and rail sectors.
In February 2024, ANDRITZ announced it had secured an order from TPC Group to supply a Selective Catalytic Reduction (SCR) system for NOx emissions reduction at a power boiler in Houston, TX, U.S. This system is tailored for industrial use, offering high-efficiency NOx control to meet stringent environmental standards.