![]() |
시장보고서
상품코드
1725131
세계의 전기자동차 트랙션 시장 : 모터 유형, 정격 출력, 차량 유형, 지역별 분석, 예측(-2032년)Electric Vehicle Traction Market Forecasts to 2032 - Global Analysis By Motor Type (AC Motors, DC Motors and Other Motor Types), Power Rating, Vehicle Type and By Geography |
Stratistics MRC에 따르면 세계 전기자동차 트랙션 시장은 2025년 165억 달러, 예측 기간 동안 CAGR은 32.5%를 나타낼 전망이며, 2032년에는 1,187억 달러에 이를 전망입니다.
전기자동차(EV) 트랙션은 전기에너지를 전기자동차를 추진하기 위한 운동으로 변환하는 시스템입니다. 모터는 토크와 속도를 조절하여 최적의 성능과 에너지 효율을 보장합니다. 회생 브레이크 등의 첨단 기술은 운동 에너지를 회수하고 나중에 사용하기 위해 축적함으로써 에너지 이용을 더욱 향상시킵니다.
고성능 EV에 대한 소비자 수요 증가
소비자는 순간적인 토크와 원활한 전력 공급을 실현하는 고성능 EV를 점점 요구하고 있으며, 각 업체는 모터 설계와 배터리의 통합에 연마를 하고 있습니다.
희토류에 대한 공급망 의존
세계의 매장량에 한계가 있는 것, 지정학적 불확실성, 무역 규제는 제조업체에 있어서 안정 공급을 확보하는데 있어서의 과제가 되고 있습니다.
차량 투 그리드(V2G)와 회생 브레이크 통합
V2G 기능을 통해 전기자동차는 잉여 에너지를 송전망으로 되돌릴 수 있으며 에너지 최적화를 지원하며 기존 전원에 대한 의존성을 줄일 수 있습니다. 변환을 통해 효율성을 높이고 배터리 수명을 향상시키고 전반적인 전력 소비를 줄일 수 있습니다.
대체 추진 시스템의 출현
연료전지 전기자동차(FCEV)는 배터리를 탑재한 EV에 비해 항속거리가 길고 연료 보급이 빠르기 때문에 기존의 전기 파워트레인과 경쟁합니다. 전기 모터와 기존 엔진을 결합한 하이브리드 추진 시스템은 특히 충전 인프라가 제한된 지역에 유연성을 제공합니다.
COVID-19의 대유행은 공급망을 혼란시키고 EV 생산을 늦추고 경제 불확실성으로 인해 소비자의 보급을 늦추었습니다. 그러나 정부가 지속 가능한 교통 이니셔티브를 우선시하면서 이 위기는 전기 모빌리티에 대한 투자도 가속화했습니다.
예측기간 동안 DC 모터 분야가 최대화될 전망
DC 모터 분야는 전기자동차 용도에서 광범위한 사용으로 예측 기간 동안 최대 시장 점유율을 차지할 것으로 예측됩니다. 배터리 구동 아키텍처와의 호환성으로 원활한 전력 공급이 가능해 차량 성능이 향상되고 냉각 메커니즘의 개선과 재료 혁신 등 DC 모터 기술의 끊임없는 진보가 시장에서의 우위에 기여하고 있습니다.
예측 기간 동안 연료전지 전기자동차(FCEV) 분야의 CAGR이 가장 높을 것으로 예측됩니다.
예측 기간 동안 연료전지 전기자동차(FCEV) 부문은 가장 높은 성장률을 보일 것으로 예측됩니다. FCEV는 수소 연료전지를 이용하여 발전하기 때문에 배터리 구동의 EV에 비해 항속 거리가 길고, 연료 보급이 신속합니다. 특히 클린 에너지의 도입을 중시하는 지역에서는 수소 인프라에 대한 투자가 증가하고 있어 FCEV 개발을 뒷받침하고 있습니다.
예측 기간 동안 북미는 강력한 정부 정책, 광범위한 EV 인프라, 주요 자동차 제조업체의 전기화에 대한 헌신에 견인되어 최대 시장 점유율을 차지할 것으로 예측됩니다. 규제 인센티브, 세제 혜택, 소비자 인식 이니셔티브가 전기 자동차 도입을 촉진하여 첨단 트랙션 시스템에 대한 수요를 증가시키고 있습니다.
예측 기간 동안 아시아태평양은 급속한 산업화, 전기자동차의 보급 확대, 배터리 기술의 진보로 가장 높은 CAGR을 나타낼 것으로 예측됩니다. 중국, 일본, 인도와 같은 국가들은 정부 보조금과 충전 네트워크에 대한 투자를 통해 전기 이동성 확대에 앞장서고 있습니다.
According to Stratistics MRC, the Global Electric Vehicle Traction Market is accounted for $16.5 billion in 2025 and is expected to reach $118.7 billion by 2032 growing at a CAGR of 32.5% during the forecast period. Electric vehicle (EV) traction is the system responsible for converting electrical energy into motion to propel an EV. Unlike conventional vehicles that rely on internal combustion engines, EVs utilize traction motors powered by batteries or fuel cells to drive their wheels efficiently. These motors regulate torque and speed, ensuring optimal performance and energy efficiency. Advanced technologies, such as regenerative braking, further enhance energy utilization by recovering kinetic energy and storing it for later use. EV traction systems play a vital role in sustainable transportation, improving vehicle reliability, reducing environmental impact, and contributing to the evolution of modern mobility solutions.
Rising consumer demand for high performance EVs
Consumers increasingly seek high-performance EVs that deliver instant torque and seamless power delivery, prompting manufacturers to refine motor designs and battery integration. Technological innovations, including improved energy management and thermal control, enhance vehicle efficiency and user experience. The transition toward electric mobility, supported by government incentives and infrastructure development, further fuels market expansion.
Supply chain dependency on rare earth elements
Limited global reserves, geopolitical uncertainties, and trade restrictions pose challenges for manufacturers in securing a steady supply. Fluctuating raw material costs and extraction complexities contribute to production expenses, affecting the affordability of EVs. Companies are exploring alternative motor technologies, such as magnet-free and induction systems, to reduce reliance on these materials
Vehicle-to-grid (V2G) and regenerative braking integration
V2G capabilities enable electric vehicles to feed excess energy back into the grid, supporting energy optimization and reducing dependence on conventional power sources. Regenerative braking enhances efficiency by converting kinetic energy into reusable power, improving battery longevity and reducing overall electricity consumption. These innovations not only contribute to sustainability efforts but also enhance vehicle performance by optimizing power distribution.
Emergence of alternative propulsion systems
Fuel cell electric vehicles (FCEVs) offer extended range and faster refueling compared to battery-powered EVs, posing competition to traditional electric powertrains. Hybrid propulsion systems combining electric motors with conventional engines provide flexibility, especially for regions with limited charging infrastructure. Additionally, advancements in solid-state battery technology may alter the demand for existing traction motor configurations.
The COVID-19 pandemic disrupted supply chains, delayed EV production, and slowed consumer adoption due to economic uncertainties. However, the crisis also accelerated investments in electric mobility as governments prioritized sustainable transportation initiatives. EV traction market players leveraged digital manufacturing and automation to mitigate operational setbacks, leading to a more resilient supply chain.
The DC motors segment is expected to be the largest during the forecast period
The DC motors segment is expected to account for the largest market share during the forecast period owing to its widespread usage in electric vehicle applications. DC motors offer high efficiency, precise speed control, and consistent torque output, making them ideal for traction systems in various EV models. Their compatibility with battery-driven architectures enables seamless power delivery, enhancing vehicle performance. Continuous advancements in DC motor technology, including improved cooling mechanisms and material innovations, contribute to their dominance in the market.
The fuel cell electric vehicle (FCEV) segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the fuel cell electric vehicle segment is predicted to witness the highest growth rate FCEVs utilize hydrogen fuel cells to generate electricity, providing an extended driving range and quicker refueling compared to battery-powered EVs. The growing investment in hydrogen infrastructure, particularly in regions emphasizing clean energy adoption, is boosting FCEV development. Automakers are focusing on efficiency improvements to reduce production costs and enhance market viability.
During the forecast period, the North America region is expected to hold the largest market share driven by strong government policies, extensive EV infrastructure, and leading automotive manufacturers' commitment to electrification. Regulatory incentives, tax benefits, and consumer awareness initiatives are propelling electric vehicle adoption, thereby increasing demand for advanced traction systems. Research and development efforts focused on energy efficiency and sustainable mobility are shaping market growth.
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR fueled by rapid industrialization, growing EV adoption, and extensive battery technology advancements. Countries such as China, Japan, and India are at the forefront of electric mobility expansion, supported by government subsidies and investments in charging networks. Asia Pacific's strong presence in EV manufacturing and battery production fosters continuous technological innovation, driving higher traction system integration.
Key players in the market
Some of the key players in Electric Vehicle Traction Market include AB SKF, ABB, CG Power and Industrial Solutions Ltd, Continental Engineering Services, General Electric Company, Hitachi, Ltd., Kirloskar Electric Company Ltd, Nidec Corporation, Parker Hannifin Corp, Robert Bosch GmbH, Siemens AG, Skoda Transportation AS, Traktionssysteme Austria (TSA) GmbH, Turntide, Valeo, YASA Limited and ZF Friedrichshafen AG.
In September 2024, Bosch and Pirelli announced a collaboration to develop "intelligent tyre" technology aimed at enhancing safety, comfort, sustainability, and driving dynamics. This innovative technology will utilize tyre-integrated sensors from Pirelli alongside Bosch's hardware and software capabilities to collect, process, and transmit real-time tyre data to the vehicle's electronic control systems.
In August 2024, Nidec Advance Technology Corporation, a subsidiary of Nidec Corporation, announced the establishment of a new subsidiary in India. This strategic move aims to strengthen Nidec's presence in the fast-growing Indian market and support the expansion of its global operations.