½ÃÀ庸°í¼­
»óǰÄÚµå
1802981

¼¼°èÀÇ ½Äǰ Æó±â¹° ¹ÙÀÌ¿À º¹ÇÕÀç ½ÃÀå ¿¹Ãø : °ø±Þ¿øº°, Àç·á À¯Çüº°, ¿ëµµº°, Áö¿ªº° ºÐ¼®(-2032³â)

Food Waste Biocomposites Market Forecasts to 2032 - Global Analysis By Source (Fruit Waste, Vegetable Waste, Cereal & Grain Waste, Dairy Waste, Meat & Poultry Waste and Other Sources), Material Type, Application and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ½Äǰ Æó±â¹° ¹ÙÀÌ¿À º¹ÇÕÀç ½ÃÀåÀº 2025³â 6¾ï 1,690¸¸ ´Þ·¯¸¦ Â÷ÁöÇÏ°í ¿¹Ãø ±â°£ µ¿¾È CAGR 21.4%¸¦ ³ªÅ¸³» 2032³â¿¡´Â 23¾ï 9,740¸¸ ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.

½Äǰ Æó±â¹° ¹ÙÀÌ¿À º¹ÇÕÀç´Â »ýºÐÇØ¼º ¶Ç´Â ÇÕ¼º °íºÐÀÚ ¸ÅÆ®¸¯½º¿¡ ½Äǰ Æó±â¹° À¯·¡ÀÇ ÇÊ·¯, ¼¶À¯ ¶Ç´Â ÀÜ·ù¹°À» ģȯ°æ º¹ÇÕÀç·á¸¦ »ý»êÇϱâ À§ÇØ ÅëÇÕÇÏ¿© ¸¸µé¾îÁø Áö¼Ó °¡´ÉÇÑ Àç·áÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Àç·á´Â °úÀÏ ²®Áú, ²®Áú, ²®Áú ¹× ±âŸ À¯±â ÀÜ·ù¹°°ú °°Àº ³ó¾÷ ¹× ½Äǰ »ê¾÷ÀÇ Á¦Ç°º°À» Ȱ¿ëÇÏ¿© ¸Å¸³Áö ºÎ´ã°ú ¿Â½Ç°¡½º ¹èÃâÀ» ÁÙÀÔ´Ï´Ù. Æó±â¹°À» ºÎ°¡°¡Ä¡ Á¦Ç°À¸·Î ÀüȯÇÔÀ¸·Î½á ½Äǰ Æó±â¹° ¹ÙÀÌ¿À º¹ÇÕÀç´Â ¼øÈ¯ °æÁ¦ÀÇ ½Çõ°ú ÀÚ¿ø È¿À²À» Áö¿øÇÕ´Ï´Ù. »ýºÐÇØ¼º, °æ·® ±¸Á¶, °­µµ µî ¿øÇϴ Ư¼ºÀ» °®Ãß°í Àֱ⠶§¹®¿¡ Æ÷Àå, ÀÚµ¿Â÷ ºÎǰ, °ÇÃà, ¼ÒºñÀç µîÀÇ ¿ëµµ¿¡ ÀûÇÕÇÕ´Ï´Ù. ÀÌ Çõ½ÅÀº Àç·á °úÇÐÀÇ Áö¼Ó°¡´É¼º°ú ±â´É¼ºÀÇ °¡±³°¡µÇ¾ú½À´Ï´Ù.

Áö¼Ó °¡´ÉÇÑ ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä ±ÞÁõ

Áö¼Ó°¡´ÉÇÑ ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ³ó¾÷ ºÎ»ê¹°À» °í¼º´É, ģȯ°æ ´ëüǰÀ¸·Î Àüȯ½ÃÄÑ ½ÃÀåÀÇ Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ ½ÃÇÁÆ®´Â Æ÷Àå, °Ç¼³, ¼ÒºñÀçÀÇ °¢ ºÎ¹®¿¡¼­ ¼øÈ¯ °æÁ¦ÀÇ Ã¤ÅÃÀ» ÃËÁøÇÏ°í ¸Å¸³Áö ÀÇÁ¸¼ºÀ» ÁÙÀ̰í ź¼Ò ¹ßÀÚ±¹À» ÁÙÀÔ´Ï´Ù. »ê¾÷°è°¡ »ýºÐÇØ¼ºÀ̰í Àúȯ°æ ºÎÇÏ ¼Ö·ç¼ÇÀ» ¼±È£ÇÏ´Â °¡¿îµ¥, ½Äǰ Æó±â¹° ¹ÙÀÌ¿À º¹ÇÕÀç´Â ºñ¿ëÈ¿°ú, Àç»ý°¡´É¼º, ±â°èÀû °­µµ·Î ÁöÁö¸¦ ¹Þ°í ÀÖÀ¸¸ç, ¼¼°èÀûÀÎ Áö¼Ó°¡´É¼º ¸ñÇ¥¿Í ±ÔÁ¦¾Ð·Â¿¡ µû¶ó »õ·Î¿î ¼öÀÍ¿øÀ» ²ø¾î³»°í ÀÖ½À´Ï´Ù.

³ôÀº »ý»ê ºñ¿ë°ú Àç·á ºñ¿ë

³ôÀº »ý»ê ºñ¿ë°ú Àç·á ºñ¿ëÀº ½Äǰ Æó±â¹° ¹ÙÀÌ¿À º¹ÇÕÀç ½ÃÀå¿¡ Å« °úÁ¦¸¦ °¡Á®¿À°í ¼ºÀå°ú ¼öÀͼºÀ» Á¦ÇÑÇÕ´Ï´Ù. ¿øÀç·á °¡°ÝÀÇ »ó½Â°ú °í°¡ÀÇ Á¦Á¶ °øÁ¤Àº ¹ÙÀÌ¿À º¹ÇÕÀç Á¦Ç°ÀÇ ÃÑ ºñ¿ëÀ» Áõ°¡½Ã۰í Á¾·¡ÀÇ ´ëüǰ¿¡ ºñÇØ °æÀï·ÂÀ» ÀúÇϽÃŵ´Ï´Ù. ÀÌ·¯ÇÑ ÀçÁ¤Àû ¾Ð·ÂÀº Á¦Á¶¾÷ü¿Í ÃÖÁ¾ »ç¿ëÀÚÀÇ Ã¤¿ëÀ» Á¦ÇÑÇÏ°í ½ÃÀå È®´ë¸¦ ´ÊÃß°í Çõ½ÅÀûÀÎ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÅõÀÚ¸¦ ¾ïÁ¦ÇÒ ¼ö ÀÖ½À´Ï´Ù.

±â¼ú Áøº¸ ¹× ¿¬±¸ °³¹ß

±â¼úÀÇ Áøº¸¿Í °­·ÂÇÑ R&D´Â Àç·áÀÇ ¼º´É°ú ºñ¿ë È¿À²¼ºÀ» Çâ»ó½ÃÄÑ ½Äǰ Æó±â¹° ¹ÙÀÌ¿À º¹ÇÕÀç ½ÃÀå¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ¹ÙÀÌ¿À Æú¸®¸Ó, È¿¼Ò ó¸® ¹× ½º¸¶Æ® °¡°ø ±â¼úÀÇ Çõ½ÅÀº ³ó¾÷ ½Äǰ ÀÜ·ù¹°À» °í°¡Ä¡·Î Áö¼Ó °¡´ÉÇÑ º¹ÇÕÀç·á·Î ¹Ù²Ù°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ È¹±âÀûÀÎ ±â¼úÀº Æ÷Àå, ÀÚµ¿Â÷, °ÇÃà ºÐ¾ß¿¡ ¸Â´Â Àû¿ëÀÌ °¡´ÉÇÔ°ú µ¿½Ã¿¡ ¸Å¸³Áö¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. R&D´Â ¶ÇÇÑ ºÐ¾ß¸¦ °¡·ÎÁö¸£´Â Çù·ÂÀ» ÃËÁøÇÏ°í ½ÃÀå È®´ë¸¦ ÃËÁøÇÏ´Â »õ·Î¿î ¿ø·á¿Í ¼øÈ¯ °æÁ¦ ¸ðµ¨À» Ç®¾î ³õ½À´Ï´Ù.

°ø±Þ¸Á Á¦¾à ¹× È®À强

½Äǰ Æó±â¹° ¹ÙÀÌ¿À º¹ÇÕÀç ½ÃÀåÀº °ø±Þ¸ÁÀÇ Á¦¾à°ú È®À强 ¹®Á¦·Î ÀÎÇØ Å« ¹®Á¦¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù. ¾ÈÁ¤ÀûÀΠǰÁúÀÇ ½Äǰ Æó±â¹°ÀÇ °¡¿ë¼ºÀº Á¦ÇÑÀûÀÌ¸ç ¹°·ù º´¸ñ Çö»ó°ú ÇÔ²² »ý»êÀÌ Áö¿¬µÇ°í ºñ¿ëÀÌ »ó½ÂÇÕ´Ï´Ù. ¼Ò±Ô¸ð ó¸® ½Ã¼³Àº Áõ°¡ÇÏ´Â ¼ö¿ä¿¡ ´ëÀÀÇÏ±â ¾î·Æ°í, ¿î¼ÛÀÇ ºñÈ¿À²¼ºÀº Áö¿¬À» ¾ÇÈ­½Ãŵ´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀÎÀÌ °áÇÕµÇ¾î ½ÃÀåÀÇ È¿À²ÀûÀÎ È®´ë°¡ ¸·È÷°í, Àû½Ã¿¡ Á¦Ç° °ø±ÞÀÌ Á¦Çѵǰí, ÀüüÀûÀÎ º¸±ÞÀÌ Áö¿¬µÇ°í, ÀÌ ºÐ¾ßÀÇ Áö¼Ó °¡´ÉÇÑ ¼ºÀå¿¡ Å« Àå¾Ö°¡ µÇ°í ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19ÀÇ ´ëÀ¯ÇàÀº Áö¼Ó °¡´ÉÇÑ ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä¸¦ °¡¼ÓÈ­ÇÏ°í ½Äǰ Æó±â¹° À¯·¡ÀÇ ¹ÙÀÌ¿À º¹ÇÕÀç¿¡ ´ëÇÑ °ü½ÉÀ» ³ô¿´½À´Ï´Ù. °ø±Þ¸ÁÀÇ È¥¶õ°ú ȯ°æ ÀǽÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó »ê¾÷°è´Â »ýºÐÇØ¼º ´ëü Àç·áÀÇ Å½±¸¸¦ Ã˱¸Çß½À´Ï´Ù. ¶ô´Ù¿îÀº Æ÷Àå°ú °ÇÃà ºÎ¹®ÀÇ ±â¼ú Çõ½Å¿¡ ¹ÚÂ÷¸¦ °¡Çϰí, °Å±â¼­ À½½Ä¹° ¾²·¹±â ¹ÙÀÌ¿À º¹ÇÕÀç°¡ Àα⸦ ²ø¾ú½À´Ï´Ù. Ãʱ⠻ý»ê °úÁ¦¿¡µµ ºÒ±¸ÇÏ°í ½ÃÀå¿¡¼­´Â ÅõÀÚ¿Í ±ÔÁ¦¿¡ ÀÇÇÑ Áö¿øÀÌ Áõ°¡ÇßÀ¸¸ç, ÀÌ·¯ÇÑ Ä£È¯°æ ¼ÒÀç´Â À¯Çà ÈÄ ¼øÈ¯ °æÁ¦ Àü·«ÀÇ ÁÖ¿ä ±â¾÷·Î ÀÚ¸®¸Å±èÇß½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ³«³ó Æó±â¹° ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á

À¯Á¦Ç° Æó±â¹° ºÎ¹®Àº À¯Ã»°ú ¹öÅÍ ¹ÐÅ©¿Í °°Àº ¿µ¾çÀÌ Ç³ºÎÇÑ Á¦Ç°º°À» Áö¼Ó °¡´ÉÇÑ ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½°ú ½Ä¿ë Çʸ§À¸·Î º¯È¯Çϱ⠶§¹®¿¡ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ·¯ÇÑ ¹°ÁúÀº ¼®À¯°è ÁßÇÕü¿¡ ´ëÇÑ ÀÇÁ¸¼ºÀ» ÁÙÀ̰í, GHG ¹èÃâ·®À» ÁÙÀ̰í, ¼øÈ¯Çü °æÁ¦ ½ÇõÀ» °­È­ÇÕ´Ï´Ù. ¹Ì»ý¹°¿¡ ÀÇÇÑ °¡Ä¡È­¿Í ´Ü¹éÁú ±â¹Ý ĸ½¶È­ÀÇ Çõ½ÅÀº ÆÐŰ¡°ú ³ó¾÷¿¡¼­ÀÇ »õ·Î¿î ¿ëµµ¸¦ Ç®¾îÁÖ°í ȯ°æ¿¡ ¾ÈÀüÇÑ Æó±â¹° °ü¸®¿Í ºÎ°¡°¡Ä¡ Á¦Ç° °³¹ßÀ» ÃßÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ º¯È­´Â ȯ°æÀÇ Åº·Â¼º°ú »ê¾÷ÀÇ È®À强À» ¸ðµÎ Áö¿øÇÕ´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¼¶À¯ ºÐ¾ßÀÇ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¶À¯ Á¦Ç° ºÐ¾ß´Â ¼¶À¯°¡ dzºÎÇÑ Æó±â¹°À» ³»±¸¼ºÀÌ ÀÖ´Â »ýºÐÇØ¼º ¼ÒÀç·Î ¾÷»çÀÌŬÇÒ ¼ö Àֱ⠶§¹®¿¡ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. µ¥´ÔÀ̳ª ¿ï °°Àº ¼¶À¯ Àܻ縦 ½Äǰ Æó±â¹°°ú ÅëÇÕÇÔÀ¸·Î½á º¹ÇÕÀç·áÀÇ °­µµ, ¹æ°õÆÎÀ̼º, ³»¼ö¼ºÀÌ Çâ»óµË´Ï´Ù. ÀÌ ½Ã³ÊÁö È¿°ú´Â ¼øÈ¯ °æÁ¦ÀÇ ¸ñÇ¥¸¦ ´Þ¼ºÇÏ°í ¸Å¸³ÁöÀÇ ºÎ´ãÀ» ÁÙÀÌ°í ÆÐŰ¡°ú °ÇÃà¿¡¼­ È®Àå °¡´ÉÇÑ ÀÀ¿ëÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¼¶À¯ À¯·¡ ¹ÙÀÌ¿À º¹ÇÕÀç´Â ¶ÇÇÑ ¹ÌÀû, ±â´ÉÀû ´Ù¾ç¼ºÀ» Á¦°øÇϰí ȯ°æ ģȭÀûÀÎ ´ëüǰÀ» ¿ä±¸ÇÏ´Â ¾÷°è Àü¹Ý¿¡ °ÉÃÄ Áö¼Ó °¡´ÉÇÑ Ã¤ÅÃÀ» ÃßÁøÇϰí ÀÖ½À´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÀÌÀ¯´Â Àα¸ ±ÞÁõ°ú ½Äǰ ¼Òºñ Áõ°¡·Î ÀÎÇØ ´ë·®ÀÇ ½Äǰ Æó±â¹°ÀÌ ¹ß»ýÇϱ⠶§¹®ÀÔ´Ï´Ù. Á¤ºÎ¿Í »ê¾÷°è´Â ÇöÀç Áö¼Ó°¡´ÉÇÑ Æó±â¹° °ü¸®¿Í ¼øÈ¯Çü °æÁ¦¿¡ ÁßÁ¡À» µÎ°í ÀÖÀ¸¸ç, ½Äǰ Æó±â¹°ÀÇ À¯°¡¹°·ÎÀÇ ÀüȯÀ» ÃËÁøÇÏ´Â Á¤Ã¥°ú Á¤Ã¥ÀÌ Á¦½ÃµÇ°í ÀÖ½À´Ï´Ù. ÀÌ´Â ¼ÒºñÀÚÀÇ ÀǽÄÀÌ ³ô¾ÆÁö°í ģȯ°æ Á¦Ç°¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó, ƯÈ÷ Æ÷ÀåÀ» ºñ·ÔÇÑ ´Ù¾çÇÑ ¿ëµµ¿¡ ½Äǰ Æó±â¹° À¯·¡ÀÇ ¹ÙÀÌ¿À º¹ÇÕÀçÀÇ Ã¤¿ëÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

°¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³»´Â Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â ¼øÈ¯Çü °æÁ¦ÀÇ ½ÇõÀ» ÃËÁøÇÏ´Â Á¤ºÎ±ÔÁ¦ÀÇ °íÁ¶¿Í ¹ÙÀÌ¿À º¹ÇÕÀç±â¼úÀÇ Áøº¸°¡ ´õÇØÁ® Æ÷Àå, ³ó¾÷, °Ç¼³¼½ÅÍ¿¡¼­ÀÇ Ã¤¿ëÀÌ °¡¼ÓµÇ°í Àֱ⠶§¹®ÀÔ´Ï´Ù. ÀÌ Áö¿ªÀº ½Äǰ Æó±â¹° °¨Ãà¿¡ ÁßÁ¡À» µÎ°í ÀÖÀ¸¸ç Á¦Á¶¾÷ü¿Í ¿¬±¸ ±â°üÀÇ Çù·Â °ü°è°¡ Áõ°¡ÇÔ¿¡ µû¶ó ±â¼ú Çõ½Å°ú È®À强À» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ ±àÁ¤ÀûÀÎ ±â¼¼´Â ºÏ¹Ì¸¦ ½Äǰ Æó±â¹° ¹ÙÀÌ¿À º¹ÇÕÀç »ê¾÷ÀÇ ÁÖ¿ä ¼ºÀå ±âÁö·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù.

¹«·á ÁÖ¹®À» ¹Þ¾Æ¼­ ¸¸µå´Â ¼­ºñ½º :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå Ã߰衤¿¹Ãø¡¤CAGR(ÁÖ : Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ½Äǰ Æó±â¹° ¹ÙÀÌ¿À º¹ÇÕÀç ½ÃÀå : °ø±Þ¿øº°

  • °úÀÏ Æó±â¹°
  • ¾ßä Æó±â¹°
  • °î¹° ¹× Àâ°î Æó±â¹°
  • À¯Á¦Ç° Æó±â¹°
  • À°·ù ¹× °¡±Ý·ù Æó±â¹°
  • ±âŸ

Á¦6Àå ¼¼°èÀÇ ½Äǰ Æó±â¹° ¹ÙÀÌ¿À º¹ÇÕÀç ½ÃÀå : Àç·á À¯Çüº°

  • Æú¸®¶ôƽ»ê(PLA)
  • Æú¸®ÇÏÀ̵å·Ï½Ã¾Æ³ë¿¡ÀÌÆ®(PHA)
  • ÀüºÐ ±â¹Ý ¹ÙÀÌ¿À º¹ÇÕÀç
  • ¼¿·ê·Î¿À½º ±â¹Ý ¹ÙÀÌ¿À º¹ÇÕÀç
  • ±âŸ

Á¦7Àå ¼¼°èÀÇ ½Äǰ Æó±â¹° ¹ÙÀÌ¿À º¹ÇÕÀç ½ÃÀå : ¿ëµµº°

  • Æ÷Àå
  • ½ÄÀ½·á
  • ¼¶À¯
  • ÀÚµ¿Â÷ ¹× ¿î¼Û
  • ¼ÒºñÀç
  • °Ç¼³ ¹× °ÇÃà ÀÚÀç
  • ³ó¾÷ ¹× ¿ø¿¹
  • ±âŸ

Á¦8Àå ¼¼°èÀÇ ½Äǰ Æó±â¹° ¹ÙÀÌ¿À º¹ÇÕÀç ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦9Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦10Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • BASF SE
  • Covestro AG
  • NatureWorks LLC
  • Arkema SA
  • Toray Industries, Inc.
  • Mitsubishi Chemical Group Corporation
  • SABIC
  • Novamont SpA
  • DuPont de Nemours, Inc.
  • Braskem SA
  • Corbion NV
  • Danimer Scientific, Inc.
  • FKuR Kunststoff GmbH
  • Green Dot Bioplastics, Inc.
  • Trellis Earth Products, Inc.
  • Cardia Bioplastics Limited
  • Biome Bioplastics Limited
  • EcoCortec doo
  • Plantic Technologies Limited
  • FlexForm Technologies
KTH 25.09.10

According to Stratistics MRC, the Global Food Waste Biocomposites Market is accounted for $616.9 million in 2025 and is expected to reach $2,397.4 million by 2032 growing at a CAGR of 21.4% during the forecast period. Food waste biocomposites are sustainable materials created by incorporating food waste-derived fillers, fibers, or residues into biodegradable or synthetic polymer matrices to produce eco-friendly composites. These materials utilize agricultural and food industry by-products such as fruit peels, shells, husks, and other organic residues, reducing landfill burden and greenhouse gas emissions. By converting waste into value-added products, food waste biocomposites support circular economy practices and resource efficiency. They offer desirable properties such as biodegradability, lightweight structure, and strength, making them suitable for applications in packaging, automotive components, construction, and consumer goods. This innovation bridges sustainability with functionality in material science.

Market Dynamics:

Driver:

Surging Demand for Sustainable Materials

The surging demand for sustainable materials is catalyzing innovation in the market, transforming agricultural byproducts into high-performance, eco-friendly alternatives. This shift is driving circular economy adoption, reducing landfill dependency, and lowering carbon footprints across packaging, construction, and consumer goods sectors. As industries prioritize biodegradable, low-impact solutions, food waste biocomposites gain traction for their cost-effectiveness, renewability, and mechanical strength-unlocking new revenue streams while aligning with global sustainability goals and regulatory pressures.

Restraint:

High Production and Material Costs

High production and material costs pose a significant challenge to the Food Waste Biocomposites Market, restricting growth and profitability. Elevated raw material prices and expensive manufacturing processes increase the overall cost of biocomposite products, making them less competitive compared to conventional alternatives. These financial pressures can limit adoption among manufacturers and end-users, slow market expansion, and discourage investment in innovative solutions, ultimately hindering the sector's potential to scale efficiently and sustainably.

Opportunity:

Technological Advancements & R&D

Technological advancements and robust R&D are revolutionizing the food waste biocomposites market by enhancing material performance and cost-efficiency. Innovations in bio-based polymers, enzymatic treatments, and smart processing techniques are transforming agri-food residues into high-value, sustainable composites. These breakthroughs enable tailored applications across packaging, automotive, and construction sectors, while reducing landfill dependency. R&D also fosters cross-sector collaboration, unlocking novel feedstocks and circular economy models that drive market expansion.

Threat:

Supply Chain Constraints & Scalability

The Food Waste Biocomposites Market faces significant challenges due to supply chain constraints and scalability issues. Limited availability of consistent-quality food waste, coupled with logistical bottlenecks, delays production and increases costs. Small-scale processing facilities struggle to meet growing demand, while transportation inefficiencies exacerbate delays. These factors collectively hinder the market's ability to expand efficiently, restrict timely product delivery, and slow overall adoption, posing a substantial barrier to sustainable growth in the sector.

Covid-19 Impact

The COVID-19 pandemic accelerated demand for sustainable materials, boosting interest in food waste-derived biocomposites. Disruptions in supply chains and heightened environmental awareness prompted industries to explore biodegradable alternatives. Lockdowns spurred innovation in packaging and construction sectors, where food waste biocomposites gained traction. Despite initial production challenges, the market saw increased investment and regulatory support, positioning these eco-friendly materials as key players in post-pandemic circular economy strategies.

The dairy waste segment is expected to be the largest during the forecast period

The dairy waste segment is expected to account for the largest market share during the forecast period as transforming nutrient-rich byproducts like whey and buttermilk into sustainable bioplastics and edible films. These materials reduce reliance on petroleum-based polymers, lower GHG emissions, and enhance circular economy practices. Innovations in microbial valorization and protein-based encapsulation are unlocking new applications in packaging and agriculture, driving eco-safe waste management and value-added product development2. This shift supports both environmental resilience and industrial scalability.

The textiles segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the textiles segment is predicted to witness the highest growth rate, because it enables the upcycling of fiber-rich waste into durable, biodegradable materials. Integration of textile residues-like denim and wool-with food waste enhances composite strength, fungal resistance, and water stability. This synergy supports circular economy goals, reduces landfill burden, and unlocks scalable applications in packaging and construction. Textile-derived biocomposites also offer aesthetic and functional versatility, driving sustainable adoption across industries seeking eco-conscious alternatives.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share due to rapidly growing population and increasing food consumption, which leads to a massive amount of food waste. Governments and industries are now heavily focusing on sustainable waste management and the circular economy, with policies and regulations promoting the conversion of food waste into valuable materials. This, combined with growing consumer awareness and demand for eco-friendly products, is boosting the adoption of food waste-derived biocomposites for various applications, particularly in packaging.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to rising government regulations promoting circular economy practices, coupled with advancements in biocomposite technologies, are accelerating adoptions across packaging, agriculture, and construction sectors. The region's emphasis on reducing food waste, combined with increasing collaborations between manufacturers and research institutions, is fostering innovation and scalability. This positive momentum positions North America as a key growth hub for the food waste biocomposites industry.

Key players in the market

Some of the key players profiled in the Food Waste Biocomposites Market include BASF SE, Covestro AG, NatureWorks LLC, Arkema S.A., Toray Industries, Inc., Mitsubishi Chemical Group Corporation, SABIC, Novamont S.p.A., DuPont de Nemours, Inc., Braskem S.A., Corbion N.V., Danimer Scientific, Inc., FKuR Kunststoff GmbH, Green Dot Bioplastics, Inc., Trellis Earth Products, Inc., Cardia Bioplastics Limited, Biome Bioplastics Limited, EcoCortec d.o.o., Plantic Technologies Limited and FlexForm Technologies.

Key Developments:

In July 2025, BASF and Equinor have forged a strategic partnership under which Equinor will annually supply up to 23 terawatt-hours (≈2 billion m3) of low-carbon natural gas to BASF over ten years, enhancing Europe's energy security and sustainability efforts.

In April 2025, Covestro and INEOS have formalized a landmark eight-year LNG-linked gas supply agreement, anchored in INEOS's global LNG capabilities. The deal ensures stable, long-term feedstock and energy security for Covestro's European operations, fortifying industrial resilience across the region.

In January 2025, Arkema and Japanese deep-tech start-up OOYOO have signed a memorandum of understanding to jointly develop high-performance CO2 gas-separation membranes. Arkema contributes advanced high-performance polymers (e.g., Pebax(R), polyimide, PEKK, PVDF), while OOYOO leads membrane and module design.

Sources Covered:

  • Fruit Waste
  • Vegetable Waste
  • Cereal & Grain Waste
  • Dairy Waste
  • Meat & Poultry Waste
  • Other Sources

Material Types Covered:

  • Polylactic Acid (PLA)
  • Polyhydroxyalkanoates (PHA)
  • Starch-based Biocomposites
  • Cellulose-based Biocomposites
  • Other Biocomposites

Applications Covered:

  • Packaging
  • Food & Beverage
  • Textiles
  • Automotive & Transportation
  • Consumer Goods
  • Construction & Building Materials
  • Agriculture & Horticulture
  • Other Applications

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Food Waste Biocomposites Market, By Source

  • 5.1 Introduction
  • 5.2 Fruit Waste
  • 5.3 Vegetable Waste
  • 5.4 Cereal & Grain Waste
  • 5.5 Dairy Waste
  • 5.6 Meat & Poultry Waste
  • 5.7 Other Sources

6 Global Food Waste Biocomposites Market, By Material Type

  • 6.1 Introduction
  • 6.2 Polylactic Acid (PLA)
  • 6.3 Polyhydroxyalkanoates (PHA)
  • 6.4 Starch-based Biocomposites
  • 6.5 Cellulose-based Biocomposites
  • 6.6 Other Biocomposites

7 Global Food Waste Biocomposites Market, By Application

  • 7.1 Introduction
  • 7.2 Packaging
  • 7.3 Food & Beverage
  • 7.4 Textiles
  • 7.5 Automotive & Transportation
  • 7.6 Consumer Goods
  • 7.7 Construction & Building Materials
  • 7.8 Agriculture & Horticulture
  • 7.9 Other Applications

8 Global Food Waste Biocomposites Market, By Geography

  • 8.1 Introduction
  • 8.2 North America
    • 8.2.1 US
    • 8.2.2 Canada
    • 8.2.3 Mexico
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 Italy
    • 8.3.4 France
    • 8.3.5 Spain
    • 8.3.6 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 Japan
    • 8.4.2 China
    • 8.4.3 India
    • 8.4.4 Australia
    • 8.4.5 New Zealand
    • 8.4.6 South Korea
    • 8.4.7 Rest of Asia Pacific
  • 8.5 South America
    • 8.5.1 Argentina
    • 8.5.2 Brazil
    • 8.5.3 Chile
    • 8.5.4 Rest of South America
  • 8.6 Middle East & Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 UAE
    • 8.6.3 Qatar
    • 8.6.4 South Africa
    • 8.6.5 Rest of Middle East & Africa

9 Key Developments

  • 9.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 9.2 Acquisitions & Mergers
  • 9.3 New Product Launch
  • 9.4 Expansions
  • 9.5 Other Key Strategies

10 Company Profiling

  • 10.1 BASF SE
  • 10.2 Covestro AG
  • 10.3 NatureWorks LLC
  • 10.4 Arkema S.A.
  • 10.5 Toray Industries, Inc.
  • 10.6 Mitsubishi Chemical Group Corporation
  • 10.7 SABIC
  • 10.8 Novamont S.p.A.
  • 10.9 DuPont de Nemours, Inc.
  • 10.10 Braskem S.A.
  • 10.11 Corbion N.V.
  • 10.12 Danimer Scientific, Inc.
  • 10.13 FKuR Kunststoff GmbH
  • 10.14 Green Dot Bioplastics, Inc.
  • 10.15 Trellis Earth Products, Inc.
  • 10.16 Cardia Bioplastics Limited
  • 10.17 Biome Bioplastics Limited
  • 10.18 EcoCortec d.o.o.
  • 10.19 Plantic Technologies Limited
  • 10.20 FlexForm Technologies
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦