![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1354753
ÁöºØ¿ë ¸âºê·¹ÀÎ ½ÃÀå - ¼¼°è »ê¾÷ ±Ô¸ð, Á¡À¯À², µ¿Çâ, ±âȸ, ¿¹Ãø(2018-2028³â)Roofing Membranes Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028 Segmented By Product Type, By Installation Type, By Application, By Region, Competition |
ÁöºØ¿ë ¸âºê·¹ÀÎ ¼¼°è ½ÃÀåÀº 2022³â 9,059¸¸ ´Þ·¯ ±Ô¸ð·Î 2028³â±îÁö 5.51%ÀÇ CAGR·Î 2028³â¿¡´Â 1,318¾ï 2,000¸¸ ´Þ·¯·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
·çÇÎ ¸âºê·¹ÀÎ ½ÃÀåÀº °ÇÃà ¹× °Ç¼³ »ê¾÷¿¡¼ ģȯ°æ ÁöºØ ½Ã½ºÅÛ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í °°Àº ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Àúºñ¿ë, ³»±¸¼º, °í¼º´É, ¿ì¼öÇÑ °µµ, Àڿܼ± Â÷´Ü, ´Ü¿, ¿¡³ÊÁö È¿À² µî ·çÇÎ ½Ã½ºÅÛÀÇ Æ¯¼ºÀº ÃÖ¼Ò 15-20³â ÀÌ»óÀÇ ¼ö¸íÀ» ÇÊ¿ä·Î ÇÏ´Â °Ç¹°¿¡ ÀÌ»óÀûÀÎ ¼±ÅÃÀÌ µÇ°í ÀÖ½À´Ï´Ù.
½ÃÀå °³¿ä | |
---|---|
¿¹Ãø ±â°£ | 2024-2028 |
2023³â ½ÃÀå ±Ô¸ð | 9,973¸¸ ´Þ·¯ |
2028³â ½ÃÀå ±Ô¸ð | 1¾ï 3,761¸¸ ´Þ·¯ |
CAGR 2023-2028 | 5.31% |
±Þ¼ºÀå ºÎ¹® | ¿°¡¼Ò¼º Æú¸®¿Ã·¹ÇÉ |
ÃÖ´ë ½ÃÀå | ºÏ¹Ì |
·çÇÁ ¸âºê·¹ÀÎ ½ÃÀåÀº ģȯ°æ ¼ÒÀç¿Í Á¦Á¶ °øÁ¤À» µµÀÔÇÏ¿© Áö¼Ó°¡´É¼º ¿ä±¸¿¡ ºÎÀÀÇϰí ÀÖ½À´Ï´Ù. Á¦Á¶¾÷üµéÀº ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâ°ú Àç»ý ºÒ°¡´ÉÇÑ ÀÚ¿ø¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀ̱â À§ÇØ Á¦Ç°¿¡ ÀçȰ¿ë Àç·á¿Í ¹ÙÀÌ¿À ±â¹Ý Æú¸®¸Ó¸¦ »ç¿ëÇϰí ÀÖ½À´Ï´Ù. ¹°°ú ¿¡³ÊÁö ¼Òºñ¸¦ ÁÙÀÌ´Â °Í°ú °°Àº Áö¼Ó°¡´ÉÇÑ Á¦Á¶ ¹æ¹ýÀº ¾÷°èÀÇ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ³ë·ÂÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÁöºØ ¸âºê·¹ÀÎÀº ´Ü¿°ú ³»ÈļºÀ» ÅëÇØ °Ç¹°ÀÇ ¿¡³ÊÁö È¿À²¿¡ Å©°Ô ±â¿©ÇÏ¿© ¿¡³ÊÁö ¼Òºñ¿Í ¿Â½Ç °¡½º ¹èÃâÀ» ÁÙÀÔ´Ï´Ù. ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº ÁöºØ ¸·Àº °Ç¹°ÀÌ LEED, BREEAM, Green Star µîÀÇ ÀÎÁõÀ» ȹµæÇÏ´Â µ¥ µµ¿òÀ̵Ǹç Áö¼Ó°¡´ÉÇÑ °Ç¼³ ¹æ¹ýÀ» ÃËÁøÇϰí ÀÌ·¯ÇÑ Á¦Ç°¿¡ ´ëÇÑ ½ÃÀå ¼ö¿ä¸¦ Áõ°¡½Ãŵ´Ï´Ù. Áö¼Ó°¡´ÉÇÑ ÁöºØ ¸âºê·¹ÀÎÀº ±âÁ¸ Àç·á¿¡ ºñÇØ ¼ö¸íÀÌ ±æ°í ³»±¸¼ºÀÌ ¶Ù¾î³ª ÁöºØÀ» ÀÚÁÖ ±³Ã¼ÇÒ Çʿ䰡 ¾øÀ¸¸ç, Æó±â¹° ¹ß»ýÀ» ÃÖ¼ÒÈÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ´Â °Ç¹° ¼ÒÀ¯ÁÖÀÇ ºñ¿ë Àý°¨À¸·Î À̾îÁú »Ó¸¸ ¾Æ´Ï¶ó ÀæÀº ÁöºØ ±³Ã¼·Î ÀÎÇÑ È¯°æ ¿µÇâµµ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. Äð·çÇÁ ±â¼úÀº ·çÇÎ ¸âºê·¹ÀÎ ½ÃÀåÀÇ »õ·Î¿î Æ®·»µåÀ̸ç, Áö¼Ó°¡´É¼ºÀ» À§ÇÑ ³ë·Â¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ÀÌ ÁöºØ ¸·Àº ÅÂ¾ç º¹»ç¸¦ °Ç¹°¿¡¼ È¿°úÀûÀ¸·Î Â÷´ÜÇÏ´Â °í¹Ý»ç¼º Ç¥¸éÀÌ Æ¯Â¡ÀÔ´Ï´Ù. ¿ Èí¼ö¸¦ ÃÖ¼ÒÈÇÏ¿© ƯÈ÷ ´õ¿î ±âÈÄ¿¡¼ ½Ç³» ¿Âµµ¸¦ ³·°Ô À¯ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù. ±× °á°ú, Äð·çÇÎÀÌ Àû¿ëµÈ °Ç¹°Àº ¿¡¾îÄÁÀÇ Çʿ伺ÀÌ ÁÙ¾îµé¾î ¿¡³ÊÁö¸¦ Àý¾àÇϰí ÀÌ»êÈź¼Ò ¹èÃâ·®À» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù.
¾ö°ÝÇÑ °ÇÃà ±ÔÁ¤À¸·Î ÀÎÇØ Á¤È®ÇÑ ¼º´É ±âÁØÀ» ÃæÁ·ÇÏ´Â °íǰÁú ·çÇÎ ¸âºê·¹ÀÎÀ» »ç¿ëÇØ¾ß ÇÕ´Ï´Ù. ÁöºØ¸· Á¦Á¶¾÷ü´Â Á¦Ç°ÀÌ ³»È¼º, ³»Ç³¼º, ³»¼ö¼º µî °ü·Ã ¹ý±Ô¿Í ±âÁØÀ» ÃæÁ·ÇÏ´ÂÁö È®ÀÎÇØ¾ß ÇÕ´Ï´Ù. µû¶ó¼ ³»±¸¼º, ³»Èļº ¹× Àå±âÀûÀÎ ¼º´ÉÀ» °®Ãá ÁöºØ ¸·¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ·çÇÎ ¸âºê·¹ÀÎÀº ÈÀç À§ÇèÀ¸·ÎºÎÅÍ ±¸Á¶¹°°ú °ÅÁÖÀÚ¸¦ º¸È£Çϱâ À§ÇØ ¾ö°ÝÇÑ ÈÀç ¾ÈÀü ±ÔÁ¤À» ÁؼöÇØ¾ß ÇÕ´Ï´Ù. ³¿¬¼º ·çÇÎ ¸âºê·¹ÀÎÀº ƯÈ÷ »ó¾÷ ¹× °ø°ø ½Ã¼³¿¡¼ Á¡Á¡ ´õ ¸¹ÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ÈÀç ¿¬¼Ò ¹æÁö°¡ °¡Àå Áß¿äÇÑ °íÃþ °Ç¹°¿¡ »ç¿ëµÇ´Â ·çÇθ·Àº ÈÀç ¾ÈÀü ±âÁØÀ» ÁؼöÇÏ´Â °ÍÀÌ °¡Àå Áß¿äÇÕ´Ï´Ù. ¾ö°ÝÇÑ °ÇÃà¹ý±Ô´Â ¿¡³ÊÁö È¿À²°ú Áö¼Ó°¡´ÉÇÑ °ÇÃà ÀÚÀ縦 Æ÷ÇÔÇÑ Ä£È¯°æ °ÇÃàÀ» ±ÇÀåÇϰųª Àǹ«ÈÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ·çÇÎ ¸âºê·¹ÀÎÀº È¿°úÀûÀÎ ´Ü¿À» Á¦°øÇÏ°í ¿¡³ÊÁö ¼Òºñ¸¦ ÁÙÀÓÀ¸·Î½á ¿¡³ÊÁö È¿À²ÀûÀÎ °Ç¹° ¼³°è¿¡¼ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀÌ¿¡ µû¶ó ÁöºØ¸· ½ÃÀå¿¡¼´Â LEED, BREEAM µî Áö¼Ó°¡´ÉÇÑ °ÇÃà ¹æ½ÄÀ» ÀÎÁõÇÏ´Â ³ì»ö°ÇÃà ÀÎÁõ¿¡ ±â¿©ÇÏ´Â Á¦Ç°¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
µµ½ÃÈ¿Í ÀÎÇÁ¶ó °³¹ßÀº ·çÇÎ ¼Ö·ç¼Ç, ƯÈ÷ ·çÇÎ ¸âºê·¹Àο¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÇÁ·ÎÁ§Æ®¿¡´Â ½Å·ÚÇÒ ¼ö ÀÖ°í È¿À²ÀûÀÎ ¹æ¼ö ¹× ³»Èļº ½Ã½ºÅÛÀÌ ÇÊ¿äÇÕ´Ï´Ù. ·çÇÎ ¸âºê·¹ÀÎÀº ¹°ÀÇ Ä§Åõ, Àڿܼ± ¹× Ȥµ¶ÇÑ ±â»ó Á¶°ÇÀ¸·ÎºÎÅÍ Å¹¿ùÇÑ º¸È£ ±â´ÉÀ» Á¦°øÇÏ´Â ´É·ÂÀ¸·Î ³ôÀº Æò°¡¸¦ ¹Þ°í ÀÖ½À´Ï´Ù. ÀÌ´Â µµ½Ã ȯ°æ¿¡¼ °Ç¹°ÀÇ ±ä ¼ö¸í°ú ³»±¸¼ºÀ» º¸ÀåÇÕ´Ï´Ù. µµ½Ã Áö¿ª¿¡¼´Â °íÃþ ºôµù°ú µ¶Æ¯ÇÑ °ÇÃà µðÀÚÀÎÀ» °¡Áø º¹ÀâÇÑ ±¸Á¶¹°ÀÇ °Ç¼³ÀÌ ÀϹÝÀûÀÔ´Ï´Ù. À¯¿¬¼º, °æ·® ¼ÒÀç, È¿°úÀûÀÎ ´Ü¿ µî Ư¼öÇÑ ¿ä±¸ »çÇ×À» ÃæÁ·Çϱâ À§Çؼ´Â ÷´Ü ·çÇÎ ½Ã½ºÅÛÀÌ ÇʼöÀûÀÔ´Ï´Ù. ´ÙÀç´Ù´ÉÇϰí ÀûÀÀ·ÂÀÌ ¶Ù¾î³ ·çÇÎ ¸âºê·¹ÀÎÀº Çö´ë µµ½Ã °ÇÃà¿¡ ÀûÇÕÇÑ ¼±ÅÃÀÔ´Ï´Ù. µµ½Ã Áö¿ªÀÇ ±Þ¼ÓÇÑ ¹ßÀü°ú ÇÔ²² µµ½Ã ¿¼¶ Çö»óÀÌ Å« ¹®Á¦°¡ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ ¿¼¶ Çö»óÀº °Ç¹°°ú ¾Æ½ºÆÈÆ® Ç¥¸éÀÇ ¿ Èí¼ö Áõ°¡·Î ÀÎÇØ µµ½ÉÀÇ ±â¿ÂÀÌ ÁÖº¯ ³óÃÌ Áö¿ªº¸´Ù ³ô¾ÆÁö´Â °ÍÀ» Ư¡À¸·Î ÇÕ´Ï´Ù. ³ôÀº ÀÏ»ç¹Ý»çÀ²°ú ¿¹æ»çÀ²À» °¡Áø Äð·çÇÎ Çʸ§Àº ¿ Èí¼ö¸¦ ÁÙÀÌ°í ³Ã¹æÀ» À§ÇÑ ¿¡³ÊÁö ¼Òºñ¸¦ ÃÖ¼ÒÈÇÏ¿© µµ½ÃÀÇ ¿¼¶Çö»óÀ» ¿ÏÈÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ±³Åë ½Ã½ºÅÛ, °øÇ×, °ø°ø ½Ã¼³°ú °°Àº ÀÎÇÁ¶ó °³¹ß ÇÁ·ÎÁ§Æ®¿¡¼´Â ÀÌ·¯ÇÑ ÀÚ»êÀ» ³¯¾¾·Î ÀÎÇÑ ¼Õ»óÀ¸·ÎºÎÅÍ º¸È£Çϱâ À§ÇØ ³»±¸¼ºÀÌ ¶Ù¾î³ª°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ÁöºØÀç ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÁöºØ ¸·Àº ÀϹÝÀûÀ¸·Î °Ý·ÄÇÑ »ç¶÷ÀÇ ¿Õ·¡¸¦ °ßµô ¼ö ÀÖ°í, Àڿܼ± ¿È¿¡ °Çϸç, ´ëÇü ±¸Á¶¹°ÀÇ ¹æ¼ö¼ºÀ» º¸ÀåÇÒ ¼ö ÀÖ´Â ´É·ÂÀ¸·Î ¼±Åõ˴ϴÙ.
·çÇÁ ¸âºê·¹ÀÎÀº ÀϹÝÀûÀ¸·Î ¿ªÃ»°ú PVC ¹× TPO¿Í °°Àº ´Ù¾çÇÑ ÇÕ¼º Æú¸®¸Ó¿Í °°Àº ¼®À¯ ±â¹Ý Àç·á¸¦ »ç¿ëÇÏ¿© Á¦Á¶µË´Ï´Ù. ÀÌ·¯ÇÑ ¿øÀç·áÀÇ °¡°ÝÀº ¿øÀ¯ °¡°ÝÀÇ º¯µ¿¿¡ Å©°Ô ¿µÇâÀ» ¹Þ½À´Ï´Ù. ¿øÀ¯ °¡°ÝÀº ÁöÁ¤ÇÐÀû »ç°Ç, ¼ö¿ä¿Í °ø±ÞÀÇ ºÒ±ÕÇü ¹× ±âŸ ½ÃÀå ¿äÀο¡ ÀÇÇØ ¿µÇâÀ» ¹ÞÀ» ¼ö ÀÖ½À´Ï´Ù. ±× °á°ú, ·çÇÎ ¸âºê·¹Àο¡ »ç¿ëµÇ´Â ¿øÀÚÀç ºñ¿ëÀº ½Ã°£ÀÌ Áö³²¿¡ µû¶ó Å©°Ô º¯µ¿µÉ ¼ö ÀÖ½À´Ï´Ù. ´Ù¸¥ »ê¾÷°ú ¸¶Âù°¡Áö·Î ·çÇÎ ¸âºê·¹ÀÎ ½ÃÀåµµ ¼ö¿ä¿Í °ø±Þ ¿ªÇÐÀÇ ¿µÇâÀ» ¹Þ½À´Ï´Ù. °©ÀÛ½º·± ¼ö¿ä ±ÞÁõ°ú °ø±Þ¸Á È¥¶õÀº ¿øÀÚÀç ºÎÁ·°ú ±×¿¡ µû¸¥ °¡°Ý »ó½ÂÀ¸·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. ¹Ý´ë·Î ¼ö¿ä °¨¼Ò¿Í ¿øÀÚÀç °ø±Þ °úÀ×Àº °¡°Ý Ç϶ôÀ¸·Î À̾îÁý´Ï´Ù. Á¤Ä¡Àû »ç°Ç, ±¹Á¦ ¹«¿ª ºÐÀï, °ü¼¼ ºÎ°ú´Â ÁöºØ ¸·¿¡ »ç¿ëµÇ´Â ¿øÀÚÀç °ø±ÞÀ» ¹æÇØ ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¹«¿ª Á¦ÇÑ ¹× ¼öÃâÀÔ ¼¼±ÝÀº ¿øÀÚÀç ¼öÀÔ ºñ¿ëÀ» Áõ°¡½ÃÄÑ ·çÇÎ ¸âºê·¹ÀÎÀÇ ÃÖÁ¾ ºñ¿ë¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ¶ÇÇÑ, ·çÇÎ ¸âºê·¹ÀÎ ½ÃÀåÀº ¼¼°è ½ÃÀåÀ̸ç, Á¦Á¶¾÷ü¿Í °ø±Þ¾÷ü´Â ¿©·¯ ±¹°¡¿¡ °ÉÃÄ ¿î¿µµÇ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ȯÀ² º¯µ¿µµ ¿øÀÚÀç ¼öÀÔ ¹× ¼öÃâ ºñ¿ë¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ±Ã±ØÀûÀ¸·Î ·çÇÎ ¸âºê·¹ÀÎ Á¦Ç°ÀÇ °¡°Ý º¯µ¿À¸·Î À̾îÁý´Ï´Ù.
¼¼°è ÁöºØ¸· ½ÃÀå¿¡¼ ½Ã°øÀÇ º¹À⼺Àº Å« µµÀüÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¾Æ½ºÆÈÆ® ½Ì±ÛÀ̳ª ±Ý¼Ó ½ÃÆ®¿Í °°Àº ÀüÅëÀûÀÎ ÁöºØÀç¿Í ´Þ¸®, ÁöºØ ¸âºê·¹ÀÎÀº ¼º°øÀûÀÎ ½Ã°øÀ» À§ÇØ Àü¹® ±â¼ú, ÀûÀýÇÑ ±â¼ú ¹× ÀûÀýÇÑ Àåºñ°¡ ÇÊ¿äÇÕ´Ï´Ù. ½Ã°øÀÌ º¹ÀâÇϱ⠶§¹®¿¡ ·çÇÎ ½Ã°ø¾÷ü¿Í °Ç¹° ¼ÒÀ¯ÁÖ¿¡°Ô ¿©·¯ °¡Áö Àå¾Ö¹°ÀÌ µË´Ï´Ù. ÁöºØ ¸·ÀÇ ÀûÀýÇÑ ½Ã°øÀ» À§Çؼ´Â ÀÚÀç Ãë±Þ¿¡ ´ëÇÑ Àü¹® Áö½ÄÀ» °®Ãá ¼÷·Ã°øÀÌ ÇÊ¿äÇÕ´Ï´Ù. °è¾àÀÚ´Â ¿Ã¹Ù¸¥ ½Ã°ø¿¡ ÇÊ¿äÇÑ Áö½Ä°ú °æÇèÀ» °®Ãß±â À§ÇØ ±³À°°ú ÀÎÁõÀ» ¹Þ¾Æ¾ß ÇÕ´Ï´Ù. ¼÷·Ã°øÀÌ ¾ø°Å³ª ÈÆ·ÃÀÌ ºÎÁ·ÇÏ¸é ºÎÀûÀýÇÑ ½Ã°øÀ¸·Î ÀÎÇØ ´©¼ö, ¼º´É ÀúÇÏ ¹× °í°¡ÀÇ ¼ö¸® ºñ¿ëÀÌ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÁöºØ ¸·Àº Á¾Á¾ Å« ·Ñ ÇüÅ·ΠµÇ¾î ÀÖ¾î Ãë±ÞÀÌ ¹ø°Å·Ó°í ¾î·Á¿ï ¼ö ÀÖ½À´Ï´Ù. ÀûÀýÇÑ ÀÚÀç Ãë±Þ ¹× º¸°üÀº ½Ã°ø Àü°ú ½Ã°ø Áß ¸·ÀÇ ¼Õ»óÀ» ¹æÁöÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ÁöºØ ¸âºê·¹ÀÎÀÇ ¹«°á¼ºÀ» À¯ÁöÇϱâ À§ÇØ ¿î¼Û, ÇÏ¿ª ¹× º¸°ü¿¡ Ưº°ÇÑÁÖÀǰ¡ ÇÊ¿äÇÕ´Ï´Ù.
·çÇÎ ¸âºê·¹ÀÎ ½ÃÀå¿¡¼´Â Áö¼Ó°¡´É¼º°ú ģȯ°æ °ÇÃà °üÇà¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. °Ç¹° ¼ÒÀ¯ÁÖ¿Í °è¾àÀÚ´Â ¿¡³ÊÁö È¿À², ÀçȰ¿ë¼º, ȯ°æ ºÎÇÏ °¨¼Ò µî ȯ°æ Ä£ÈÀûÀÎ ÁöºØÀ縦 ã°í ÀÖ½À´Ï´Ù. ³ôÀº ÀÏ»ç ¹Ý»çÀ²°ú ¿¹æ»çÀ²À» °¡Áø Äð·çÇÎ Çʸ§Àº µµ½ÃÀÇ ¿¼¶ Çö»óÀ» ¿ÏÈÇÏ°í ¿¡³ÊÁö Àý¾à¿¡ ±â¿©ÇÏ¸é¼ Àα⸦ ¾ò°í ÀÖ½À´Ï´Ù. ±â¼úÀÇ ¹ßÀü°ú Àç·áÀÇ Çõ½ÅÀº ·çÇÎ ¸âºê·¹ÀÎ ½ÃÀåÀÇ Áö¼ÓÀûÀÎ ¹ßÀüÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Á¦Á¶¾÷üµéÀº ³»Èļº Çâ»ó, Àڿܼ± Â÷´Ü, ¼ö¸í ¿¬Àå µî ¼º´É Ư¼ºÀÌ °ÈµÈ Çõ½ÅÀûÀÎ ·çÇÎ ¸âºê·¹ÀÎ °³¹ß¿¡ ¿ÁßÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÁöºØ ¸ð´ÏÅ͸µ ¹× À¯Áöº¸¼ö¸¦ °ÈÇϱâ À§ÇØ ¼öºÐ °¨Áö ¼¾¼ ¹× ¿Âµµ Á¶Àý ½Ã½ºÅÛ°ú °°Àº ½º¸¶Æ® ±â¼úÀÇ ÅëÇÕÀ» °í·ÁÇϰí ÀÖ½À´Ï´Ù. ´Ù¾çÇÑ ¼±ÅÃÁö Áß ´ÜÃþ ÁöºØ ¸·, ƯÈ÷ ¿°¡¼Ò¼º Æú¸®¿Ã·¹ÇÉ(TPO) ¹× Æú¸®¿°Èºñ´Ò(PVC) ¸·Àº ½Ã°øÀÇ ¿ëÀ̼º, À¯¿¬¼º ¹× ¿¡³ÊÁö È¿À²¼ºÀ¸·Î ÀÎÇØ ¼±È£µÇ´Â ¼±ÅÃÁö·Î ¶°¿À¸£°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ´ÜÃþ ¸âºê·¹ÀÎÀº ½Å·ÚÇÒ ¼ö ÀÖ´Â ¹æ¼ö ¹× ³»Èļº ¼Ö·ç¼ÇÀ» Á¦°øÇÏ¿© ´Ù¾çÇÑ »ó¾÷ ¹× »ê¾÷ ÀÀ¿ë ºÐ¾ß¿¡ ¸Å¿ì ÀûÇÕÇÕ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¿ªÃ» ºÎ¹®ÀÌ ½ÃÀåÀ» Áö¹èÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ÀϹÝÀûÀ¸·Î "¶ß°Å¿î °É·¹Áú" ÁöºØÀ̶ó°í ºÒ¸®´Â ºôÆ®¾÷ ·çÇÎ ½Ã½ºÅÛÀº À¯¸® ¼¶À¯ ¶Ç´Â À¯±â ÆçÆ®¿Í °°Àº º¸°À縦 ³¢¿ö ³ÖÀº ¿©·¯ °³ÀÇ ¿ªÃ»ÃþÀ¸·Î ±¸¼ºµË´Ï´Ù. BUR ½Ã½ºÅÛÀº ¶Ù¾î³ ³»±¸¼º°ú °ß°íÇÑ ¹æ¼ö ¼º´ÉÀ¸·Î À¯¸íÇÕ´Ï´Ù. ¿ªÃ» ÁöºØ ¸·Àº ¹æ¼ö¼ºÀÌ ¶Ù¾î³ª ħ¼ö ¹× ´©¼ö·ÎºÎÅÍ °Ç¹°À» º¸È£ÇÕ´Ï´Ù. ¶ÇÇÑ Àڿܼ±°ú ¿, ¿Âµµ º¯È¿¡ °ÇØ ´Ù¾çÇÑ ±âÈÄ¿¡ ÀûÇÕÇÕ´Ï´Ù. ¿ªÃ» ÁöºØ ½Ã½ºÅÛÀº ¿Ã¹Ù¸£°Ô ½Ã°øÇÏ¸é ¼ö¸íÀÌ ±æ¾î °Ç¹° ¼ÒÀ¯ÁÖ¿¡°Ô °¡Ä¡¿Í ³»±¸¼ºÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ºñ¿ë È¿À²¼ºÀÌ ³ô±â ¶§¹®¿¡ ¿ªÃ» ÁöºØÀç´Â ´ë±Ô¸ð »ó¾÷ ¹× »ê¾÷ ÇÁ·ÎÁ§Æ®¿¡ ¸¹ÀÌ Ã¤Åõǰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È »ó¾÷ ºÐ¾ß°¡ ½ÃÀåÀ» Áö¹èÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. º¹ÇÕ ¿ÀÇǽº ºôµù, ¼Ò¸Å ¼¾ÅÍ, ¼îÇθô, È£ÅÚ ¹× ±âŸ »ó¾÷ ½Ã¼³°ú °°Àº »ó¾÷¿ë °Ç¹°Àº ·çÇÎ ¸âºê·¹ÀÎÀÌ È¿°úÀûÀ¸·Î ´ëóÇÒ ¼ö Àִ ƯÁ¤ ÁöºØ Àç·á ¿ä±¸ »çÇ×À» °¡Áö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °Ç¹°Àº ÀϹÝÀûÀ¸·Î À¯µ¿Àα¸°¡ ¸¹°í ´Ù¾çÇÑ ¼³ºñ°¡ ¼³Ä¡µÇ´Â ´ëÇü °Ç¹°À̱⠶§¹®¿¡ ¿À·¡ Áö¼ÓµÇ´Â ¼º´É°ú ³»±¸¼ºÀ» °®Ãá ·çÇÎ ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇÕ´Ï´Ù. ´ÜÃþ TPO, PVC, °³Áú ¿ªÃ» µîÀÇ ·çÇÎ Çʸ§Àº °ß°íÇÏ°í ³»¸¶¸ð¼ºÀÌ ¶Ù¾î³ °ÍÀ¸·Î ¾Ë·ÁÁ® ÀÖ½À´Ï´Ù. °Ç¹° ¼ÒÀ¯ÁÖ°¡ ¿î¿µ ºñ¿ëÀ» Àý°¨Çϰí ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈÇϱâ À§ÇØ ³ë·ÂÇÔ¿¡ µû¶ó ¿¡³ÊÁö È¿À²Àº »ó¾÷¿ë °Ç¹°¿¡¼ Á¡Á¡ ´õ Áß¿äÇÑ °í·Á»çÇ×ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ³ôÀº ÀÏ»ç ¹Ý»çÀ²°ú ¿º¹»ç·®À» °¡Áø Äð·çÇÎ ¸âºê·¹ÀÎÀº ¿¡³ÊÁö È¿À²À» ³ôÀÌ°í ³Ã¹æ ºñ¿ëÀ» Àý°¨Çϱâ À§ÇØ »ó¾÷¿ë °Ç¹°¿¡ ÀϹÝÀûÀ¸·Î äÅõǰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì Áö¿ªÀÌ ½ÃÀåÀ» Áö¹èÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ºÏ¹Ì Áö¿ªÀº ´ë±Ô¸ð °Ç¼³ Ȱµ¿, ´Ù¾çÇÑ ±âÈÄ Á¶°Ç, Áö¼Ó°¡´É¼º°ú ¿¡³ÊÁö È¿À²¿¡ ´ëÇÑ °ü½ÉÀ¸·Î ÀÎÇØ ¼¼°è ÁöºØ ¸· ½ÃÀå¿¡¼ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ºÏ¹Ì, ƯÈ÷ ¹Ì±¹°ú ij³ª´Ù´Â ÁöºØ ¸âºê·¹Àο¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇÏ´Â ¹ß´ÞµÇ°í °ß°íÇÑ °Ç¼³ »ê¾÷À» ÀÚ¶ûÇÕ´Ï´Ù. ÁÖ°Å, »ó¾÷ ¹× »ê¾÷ °Ç¼³ ÇÁ·ÎÁ§Æ®°¡ ½ÃÀå ¼ºÀåÀ» ÃËÁøÇÏ°í ´Ù¾çÇÑ À¯ÇüÀÇ ÁöºØ ¸âºê·¹ÀÎ ¼ºÀå ±âȸ¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. ƯÈ÷, ÀÌ Áö¿ªÀÇ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ³ë·ÂÀº ·çÇÎ ¼Ö·ç¼Ç¿¡µµ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖÀ¸¸ç, LEED(Leadership in Energy and Environmental Design) ÀÎÁõ°ú °°Àº ģȯ°æ °ÇÃà °üÇàÀº Áö¼Ó°¡´ÉÇϰí ȯ°æ Ä£ÈÀûÀÎ ·çÇÎ ¸âºê·¹ÀÎ »ç¿ëÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
Tech Sci ResearchÀÇ ·çÇÎ ¸âºê·¹ÀÎ ¼¼°è ½ÃÀå º¸°í¼´Â ÁÖ¾îÁø ½ÃÀå µ¥ÀÌÅ͸¦ ±â¹ÝÀ¸·Î ±â¾÷ÀÇ Æ¯Á¤ ¿ä±¸¿¡ µû¶ó ¸ÂÃãȸ¦ Á¦°øÇÕ´Ï´Ù. º¸°í¼¿¡¼ ´ÙÀ½°ú °°Àº »ç¿ëÀÚ Á¤Àǰ¡ °¡´ÉÇÕ´Ï´Ù.
The Global Roofing Membranes Market reached a size of USD 90.59 million in 2022 and is projected to grow to USD 131.82 billion by 2028, with a CAGR of 5.51% through 2028. The Roofing Membranes market is driven by factors such as the increasing demand for green roofing system solutions in the Building & Construction Industry. Additionally, the properties of roofing systems, including low cost, durability, high performance, superior strength, UV resistance, insulation, and energy efficiency, make them an ideal choice for buildings that require a minimum service life of 15-20 years.
Market Overview | |
---|---|
Forecast Period | 2024-2028 |
Market Size 2023 | USD 99.73 million |
Market Size 2028 | USD 137.61 million |
CAGR 2023-2028 | 5.31% |
Fastest Growing Segment | Thermoplastic Polyolefin |
Largest Market | North America |
The roofing membranes market is addressing sustainability demands by incorporating eco-friendly materials and manufacturing processes. Manufacturers are increasingly using recycled materials and bio-based polymers in their products to reduce environmental impact and dependence on non-renewable resources. Sustainable manufacturing practices, such as reducing water and energy consumption, further support the industry's focus on sustainability. Moreover, roofing membranes significantly contribute to a building's energy efficiency by providing thermal insulation and weatherproofing, resulting in reduced energy consumption and greenhouse gas emissions. Energy-efficient roofing membranes can help buildings achieve certifications like LEED, BREEAM, or Green Star, promoting sustainable construction practices and increasing market demand for these products. Sustainable roofing membranes have a longer lifespan and increased durability compared to traditional materials, reducing the need for frequent roof replacements and minimizing waste generation. This not only provides cost savings for building owners but also reduces the environmental impact associated with frequent replacements. Cool roof technology is an emerging trend in the roofing membranes market, contributing to sustainability efforts. These membranes feature highly reflective surfaces that effectively redirect solar radiation away from the building. By minimizing heat absorption, they help to maintain lower indoor temperatures, particularly in hot climates. Consequently, structures equipped with cool roofing membranes require less air conditioning, resulting in energy savings and reduced carbon emissions.
Stringent building regulations necessitate the utilization of high-quality roofing membranes that meet precise performance criteria. Manufacturers of roofing membranes must ensure that their products comply with relevant codes and standards, encompassing fire resistance, wind uplift resistance, and water penetration resistance. Consequently, there is an escalating demand for roofing membranes that offer exceptional durability, weatherproofing capabilities, and long-term performance. Roofing membranes must adhere to rigorous fire safety regulations to safeguard structures and their occupants from the hazards of fires. Flame-retardant roofing membranes are increasingly sought-after, particularly in commercial and public buildings. Compliance with fire safety standards is paramount for roofing membranes employed in high-rise constructions, where fire spread prevention holds utmost significance. Stringent building regulations often endorse or mandate green building practices, encompassing energy efficiency and sustainable construction materials. Roofing membranes play a pivotal role in energy-efficient building design by providing effective insulation and reducing energy consumption. Consequently, the market for roofing membranes experiences heightened demand for products that contribute to green building certifications, such as LEED and BREEAM, which recognize sustainable construction practices.
Urbanization and the development of infrastructure drive the demand for roofing solutions, specifically roofing membranes. These projects necessitate dependable and efficient waterproofing and weatherproofing systems. Roofing membranes are highly regarded for their ability to offer superior protection against water infiltration, UV radiation, and harsh weather conditions. This ensures the longevity and durability of buildings in urban environments. The construction of high-rise buildings and complex structures with unique architectural designs is common in urban areas. To meet their specific requirements, such as flexibility, lightweight materials, and effective thermal insulation, advanced roofing systems are essential. Roofing membranes, with their versatility and adaptability, are the preferred choice for modern urban constructions. As urban areas undergo rapid development, the urban heat island effect becomes a significant concern. This effect is characterized by higher temperatures in urban centers compared to surrounding rural areas due to increased heat absorption by buildings and asphalt surfaces. Cool roofing membranes, with their high solar reflectance and thermal emissivity properties, play a crucial role in mitigating the urban heat island effect by reducing heat absorption and minimizing energy consumption for cooling. Infrastructure development projects, including transportation systems, airports, and public facilities, require durable and reliable roofing solutions to protect these assets from weather-related damage. Roofing membranes are commonly selected for their ability to withstand heavy foot traffic, resist UV degradation, and provide waterproofing for large structures.
Roofing membranes are commonly manufactured using petroleum-based materials, such as bitumen and various synthetic polymers like PVC and TPO. The prices of these raw materials are significantly influenced by fluctuations in crude oil prices, which can be influenced by geopolitical events, supply-demand imbalances, and other market factors. Consequently, the costs of raw materials used in roofing membranes can vary considerably over time. The roofing membranes market, like any other industry, is subject to demand-supply dynamics. A sudden surge in demand or disruptions in the supply chain can lead to raw material scarcity and subsequent price hikes. Conversely, a decrease in demand or an oversupply of raw materials can result in lower prices. Political events, international trade disputes, and the imposition of tariffs can disrupt the supply of raw materials used in roofing membranes. Trade restrictions or import/export taxes can escalate the cost of importing raw materials, thereby impacting the final cost of roofing membranes. Furthermore, the roofing membranes market is global, with manufacturers and suppliers often operating across multiple countries. Currency exchange rate fluctuations can also affect the cost of importing or exporting raw materials, ultimately leading to price fluctuations in the final roofing membrane products.
Installation complexity poses a significant challenge in the Global Roofing Membranes Market. Unlike traditional roofing materials like asphalt shingles or metal sheets, roofing membranes necessitate specialized skills, proper techniques, and appropriate equipment for successful installation. The intricacy of installation can present various obstacles for roofing contractors and building owners alike. The proper installation of roofing membranes requires a skilled workforce with specific expertise in handling these materials. Contractors must undergo training and certification to ensure they possess the knowledge and experience needed to execute the installation correctly. A lack of skilled labor or inadequate training can result in improper installation, leading to leaks, reduced performance, and costly repairs. Additionally, roofing membranes often come in large rolls, which can be cumbersome and challenging to handle. Proper material handling and storage are crucial to prevent damage to the membranes before and during installation. Special care must be taken during transportation, unloading, and storage to maintain the integrity of the roofing membranes.
The roofing membranes market has witnessed a growing inclination towards sustainability and green building practices. Building owners and contractors are increasingly seeking environmentally friendly roofing solutions that offer energy efficiency, recyclability, and reduced environmental impact. Cool roofing membranes, with their high solar reflectance and thermal emissivity properties, have gained popularity in mitigating the urban heat island effect and contributing to energy savings. Technological advancements and material innovations have been driving continuous progress in the roofing membranes market. Manufacturers are diligently focusing on developing innovative roofing membranes with enhanced performance characteristics, including improved weather resistance, UV protection, and extended lifespans. Furthermore, the integration of smart technologies, such as moisture detection sensors and temperature regulation systems, is being explored to enhance roof monitoring and maintenance. Among the various options available, single-ply roofing membranes, especially thermoplastic polyolefin (TPO) and polyvinyl chloride (PVC) membranes, have emerged as preferred choices due to their ease of installation, flexibility, and energy-efficient properties. These single-ply membranes provide reliable waterproofing and weatherproofing solutions, making them highly suitable for diverse commercial and industrial applications.
Bitumen segment is expected to dominate the market during the forecast period. Built-up roofing systems, commonly referred to as "hot-mopped" roofs, are comprised of multiple layers of bitumen interleaved with reinforcing materials like fiberglass or organic felts. These layers are fused together using heat application. BUR systems are renowned for their exceptional durability and robust waterproofing capabilities. Bitumen roofing membranes possess remarkable waterproofing properties that effectively safeguard buildings against water infiltration and leaks. Additionally, they exhibit excellent resistance to UV radiation, heat, and temperature fluctuations, making them well-suited for diverse climates. When installed correctly, bitumen roofing systems can offer a lengthy lifespan, delivering value and durability to building owners. Due to their cost-effectiveness, bitumen-based roofing membranes are often favored for large commercial and industrial projects.
Commercial segment is expected to dominate the market during the forecast period. Commercial buildings, including office complexes, retail centers, shopping malls, hotels, and other commercial establishments, have specific roofing requirements that can be effectively addressed by roofing membranes. These buildings necessitate roofing solutions that deliver long-lasting performance and durability, as they are typically large structures with high foot traffic and various equipment installations. Roofing membranes, such as single-ply TPO and PVC, as well as modified bitumen systems, are renowned for their robustness and resistance to wear and tear. Energy efficiency is an increasingly important consideration in commercial construction, as building owners strive to reduce operational costs and minimize environmental impact. Cool roofing membranes, which possess high solar reflectance and thermal emissivity, are commonly employed in commercial buildings to enhance energy efficiency and decrease cooling expenses.
North America is expected to dominate the market during the forecast period. The North American region plays a crucial role in the Global Roofing Membranes Market, driven by significant construction activity, diverse climatic conditions, and a strong emphasis on sustainability and energy efficiency. North America, specifically the United States and Canada, boasts a well-developed and robust construction industry that fuels the demand for roofing membranes. The market's growth is propelled by residential, commercial, and industrial construction projects, creating opportunities for various types of roofing membranes. Notably, the region's commitment to sustainability extends to roofing solutions, with green building practices like LEED (Leadership in Energy and Environmental Design) certification promoting the use of sustainable and eco-friendly roofing membranes.
In this report, the Global Roofing Membranes Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:
Company Profiles: Detailed analysis of the major companies present in the Global Roofing Membranes Market.
Global Roofing Membranes Market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report: