![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1359855
¼¼°èÀÇ ºòµ¥ÀÌÅÍ ºÐ¼® ½ÃÀå - »ê¾÷ ±Ô¸ð, Á¡À¯À², µ¿Çâ, ±âȸ ¹× ¿¹Ãø(2018-2028³â)Big Data Analytics Market- Global Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028 Segmented By Component, By Deployment Mode, By Application, By Organization Size, By Industry, By Region, Competition |
¼¼°èÀÇ ºòµ¥ÀÌÅÍ ºÐ¼®(Big Data Analytics) ½ÃÀåÀº 2028³â ¸»±îÁö 3,045¾ï 7,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¿¹Ãø ±â°£ µ¿¾È 14.9%ÀÇ CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ºòµ¥ÀÌÅÍ ºÐ¼® ½ÃÀåÀÇ ¼ºÀåÀº ´Ù¾çÇÑ »ê¾÷ ºÐ¾ßÀÇ ±â¾÷µéÀÌ ÅëÂû·Â ÃßÃâ, ¿î¿µ ÃÖÀûÈ, ºñÁî´Ï½º ¼º°ú Çâ»óÀ» À§ÇØ µ¥ÀÌÅÍ ±â¹Ý ÀÇ»ç°áÁ¤ÀÇ Á߿伺À» ÀνÄÇÏ°í µ¥ÀÌÅÍ ±â¹Ý ÀÇ»ç°áÁ¤À» äÅÃÇÏ´Â »ç·Ê°¡ Áõ°¡Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. ºòµ¥ÀÌÅÍ ¹× ºÐ¼® ¼Ö·ç¼ÇÀº ¹æ´ëÇÑ ¾çÀÇ Á¤Çü ¹× ºñÁ¤Çü µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© ½ÇÇà °¡´ÉÇÑ ÀλçÀÌÆ®¸¦ µµÃâÇϰí Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ÃËÁøÇϱâ À§ÇØ È°¿ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¸¹Àº ±â¾÷µéÀÌ ºòµ¥ÀÌÅÍ¿Í ºñÁî´Ï½º ºÐ¼®À» Ȱ¿ëÇÏ¿© ¼¼°è ¿ÀÇÁ¶óÀÎ ¹× ¿Â¶óÀÎ °Å·¡¿¡¼ »ý¼ºµÇ´Â ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© ƯÁ¤ ºòµ¥ÀÌÅÍ ¼ºñ½º Á¦°ø¾÷ü°¡ Ŭ¶ó¿ìµå ±â¼ú¿¡¼ °æÀï·ÂÀ» È®º¸ÇÒ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Ŭ¶ó¿ìµå »óÀÇ ºòµ¥ÀÌÅÍ¿Í ºñÁî´Ï½º ºÐ¼®ÀÇ ¹ßÀüÀº °í°´ÀÌ ¼¼°è ¾îµð¿¡¼³ª µ¥ÀÌÅÍ¿¡ Á¢±ÙÇÒ ¼ö ÀÖ°Ô ÇÔÀ¸·Î½á Ŭ¶ó¿ìµå ±â¼úÀÇ ¹ßÀüÀ» ´õ¿í ÃËÁøÇÒ °ÍÀÔ´Ï´Ù. ÀÌ´Â ´Ù¾çÇÑ ºòµ¥ÀÌÅÍ ¼ºñ½º Á¦°ø¾÷üµéÀÌ °æÀï»çº¸´Ù ¿ìÀ§¸¦ Á¡ÇÒ ¼ö ÀÖ°Ô ÇØÁÖ°í, ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù.
¼¼°èÀÇ ºòµ¥ÀÌÅÍ ºÐ¼® ½ÃÀå ¼ºÀåÀ» ÁÖµµÇÏ´Â µ¥ÀÌÅÍ »ý¼º·® Áõ°¡ : µ¥ÀÌÅÍ »ý¼º Áõ°¡´Â ºòµ¥ÀÌÅÍ ºÐ¼® ½ÃÀå ¼ºÀåÀÇ ÁÖ¿ä Ã˸ÅÁ¦ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÇöÀç µðÁöÅÐ ½Ã´ë¿¡´Â ¼Ò¼È ¹Ìµð¾î, IoT ±â±â, µðÁöÅÐ °Å·¡, ±â¾÷ ½Ã½ºÅÛ µî ´Ù¾çÇÑ ¼Ò½º¿¡¼ µ¥ÀÌÅÍ »ý¼ºÀÌ Å©°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¥ÀÌÅÍÀÇ Æø¹ßÀûÀÎ Áõ°¡´Â Á¶Á÷ÀÌ ÅëÂû·ÂÀ» ¾ò°í Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖ´Â ¹æ´ëÇÏ°í ±ÍÁßÇÑ ÀÚ¿øÀ» Á¦°øÇÕ´Ï´Ù. dzºÎÇÑ µ¥ÀÌÅ͸¦ ÅëÇØ ±â¾÷Àº °í°´ÀÇ Çൿ, ¼±È£µµ, µ¿Ç⸦ ´õ ±í°í Á¤È®ÇÏ°Ô ºÐ¼®Çϰí ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ºòµ¥ÀÌÅÍ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ¼û°ÜÁø ÆÐÅÏ, »ó°ü°ü°è, ÀÌÀü¿¡´Â Á¢±ÙÇÒ ¼ö ¾ø¾ú´ø ÅëÂû·ÂÀ» ¹ß°ßÇϰí, µ¥ÀÌÅÍ ±â¹Ý ÀÇ»ç°áÁ¤À» ³»¸®°í, »õ·Î¿î ½ÃÀå ±âȸ¸¦ ã¾Æ³»°í, ¿î¿µÀ» ÃÖÀûÈÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¹æ´ëÇÑ µ¥ÀÌÅÍ »ý¼ºÀº µðÁöÅÐ ±â¼ú ¹× ¿¬°á¼ºÀÇ È®»ê°ú ¹ÐÁ¢ÇÑ °ü·ÃÀÌ ÀÖ½À´Ï´Ù. ½º¸¶Æ®Æù, ¼Ò¼È ¹Ìµð¾î Ç÷§Æû, ¿Â¶óÀÎ °Å·¡ÀÇ È®»êÀ¸·Î °³Àΰú ±â¾÷Àº ¾öû³ ¾çÀÇ µ¥ÀÌÅ͸¦ »ý¼ºÇÏ´Â µðÁöÅÐ ¹ßÀÚ±¹À» ³²±â°í ÀÖ½À´Ï´Ù. ÀÌ µðÁöÅÐ ¹ßÀÚ±¹Àº Ÿ°Ù ¸¶ÄÉÆÃ, °³ÀÎÈµÈ °í°´ °æÇè, ¾÷¹« È¿À²¼º °³¼±¿¡ Ȱ¿ëÇÒ ¼ö Àִ dzºÎÇÑ Á¤º¸¿øÀÌ µË´Ï´Ù. µ¥ÀÌÅÍ »ý¼º Áõ°¡´Â »ç¹°ÀÎÅͳÝ(IoT)ÀÇ ÃâÇö°ú ¸Â¹°·Á »óÈ£ ¿¬°áµÈ ÀåÄ¡¿Í ¼¾¼°¡ ½Ç½Ã°£ µ¥ÀÌÅ͸¦ ¼öÁýÇϰí Àü¼ÛÇÏ´Â °Í°úµµ ÀÏÄ¡ÇÕ´Ï´Ù. ÀÌ µ¥ÀÌÅÍ¿¡´Â ¼ÒºñÀÚ Çൿ, Á¦Ç° »ç¿ë, ȯ°æ ¿äÀÎ µî¿¡ ´ëÇÑ ±ÍÁßÇÑ ÅëÂû·ÂÀÌ Æ÷ÇԵǾî ÀÖ½À´Ï´Ù. ºòµ¥ÀÌÅÍ ºÐ¼®Àº ±â¾÷ÀÌ IoT¿¡¼ »ý¼ºµÈ µ¥ÀÌÅÍ¿¡¼ ±ÍÁßÇÑ ÅëÂû·ÂÀ» ¾ò¾î Á¦Ç° °³¹ßÀ» °ÈÇϰí, °ø±Þ¸ÁÀ» ÃÖÀûÈÇϸç, °í°´ °æÇèÀ» °³¼±ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ¶ÇÇÑ, µ¥ÀÌÅÍ »ý¼º·®ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ±â¾÷µéÀº µ¥ÀÌÅÍ ÀÚ»êÀ¸·Î ¼öÀÍÀ» âÃâÇÒ ¼ö ÀÖ´Â ±âȸ¸¦ ¾ò°Ô µÇ¾ú½À´Ï´Ù. ºòµ¥ÀÌÅÍ ºÐ¼®À» Ȱ¿ëÇÏ¸é ±â¾÷Àº ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© °í°´À»À§ÇÑ Á¦Ç° ¹× ¼ºñ½º·Î ÆÐŰÁöÈÇÒ ¼ö ÀÖ´Â ±ÍÁßÇÑ ÅëÂû·ÂÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¥ÀÌÅÍ ¼öÀÍÈ ¸ðµ¨Àº »õ·Î¿î ¼öÀÍ¿ø ¹× ºñÁî´Ï½º ¸ðµ¨À» °³Ã´ÇÏ¿© ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
½ÃÀå °³¿ä | |
---|---|
¿¹Ãø ±â°£ | 2024-2028³â |
½ÃÀå ±Ô¸ð | 3,045¾ï 7,000¸¸ ´Þ·¯ |
½ÃÀå ±Ô¸ð(2028³â) | 7,008¾ï 2,000¸¸ ´Þ·¯ |
CAGR(2023-2028³â) | 14.81% |
±Þ¼ºÀå ºÎ¹® | ¸®½ºÅ© ¹× ºÎÁ¤ ºÐ¼® |
ÃÖ´ë ½ÃÀå | ºÏ¹Ì |
¼Ò¼È ¹Ìµð¾î, ¼¾¼, ¿Â¶óÀÎ °Å·¡, µðÁöÅРä³Î µî ´Ù¾çÇÑ ¼Ò½º¿¡¼ »ý¼ºµÇ´Â µ¥ÀÌÅͰ¡ ±ÞÁõÇÔ¿¡ µû¶ó, ±â¾÷µéÀº ºòµ¥ÀÌÅÍ ¹× ºÐ¼® ¼Ö·ç¼ÇÀ» Ȱ¿ëÇÏ¿© ±ÍÁßÇÑ ÅëÂû·ÂÀ» ¾ò°í Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖ´Â ±âȸ¸¦ ¾ò°Ô µÇ¾ú½À´Ï´Ù. Çϰí ÀÖ½À´Ï´Ù. ´ë·®ÀÇ µ¥ÀÌÅ͸¦ ½Ç½Ã°£ ¶Ç´Â °ÅÀÇ ½Ç½Ã°£À¸·Î ó¸®ÇÏ°í ºÐ¼®ÇÏ´Â ´É·ÂÀº ±â¾÷ÀÌ °æÀï·ÂÀ» ³ôÀ̰í, ¿î¿µÀ» ÃÖÀûÈÇϰí, °í°´ °æÇèÀ» °³¼±Çϰí, »õ·Î¿î ¼ºÀå ±âȸ¸¦ ã´Â µ¥ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ¾Ò½À´Ï´Ù. ±â¾÷µéÀº Çõ½ÅÀ» ÃËÁøÇÏ°í ¿î¿µ È¿À²¼ºÀ» °³¼±ÇÏ¸ç ºñÁî´Ï½º ¸ñÇ¥¸¦ ´Þ¼ºÇϱâ À§ÇØ µ¥ÀÌÅÍ ±â¹Ý ÀÇ»ç°áÁ¤ÀÇ Á߿伺À» ÀνÄÇϰí ÀÖ½À´Ï´Ù. ºòµ¥ÀÌÅÍ ¹× ºÐ¼® ¼Ö·ç¼ÇÀº ¿¹Ãø ºÐ¼®, ¸Ó½Å·¯´×, ÀΰøÁö´É°ú °°Àº °í±Þ ºÐ¼® ±â´ÉÀ» Á¦°øÇÏ¿© Á¶Á÷ÀÌ ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅÍ¿¡¼ ½ÇÇà °¡´ÉÇÑ ÀλçÀÌÆ®¸¦ µµÃâÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÀλçÀÌÆ®´Â °í°´ Çൿ ÀÌÇØ, °¡°Ý Ã¥Á¤ ¹× Àç°í °ü¸® ÃÖÀûÈ, ½ÃÀå µ¿Çâ ÆÄ¾Ç, ¼ö¿ä ¿¹Ãø, °í°´ °æÇè °³ÀÎÈ µî¿¡ µµ¿òÀ» ÁÙ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, »ç¹°ÀÎÅͳÝ(IoT) ±â±â ¹× ±â¼úÀÇ µµÀÔÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ó¸®, ºÐ¼®, ÇØ¼®À» À§ÇØ °í±Þ ºòµ¥ÀÌÅÍ ¹× ºÐ¼® ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇÑ ´ë·®ÀÇ µ¥ÀÌÅͰ¡ »ý¼ºµÇ°í ÀÖÀ¸¸ç, IoT ±â±â´Â ¼¾¼, ±â°è, ¿þ¾î·¯ºí, Ä¿³ØÆ¼µå µð¹ÙÀ̽º µî ´Ù¾çÇÑ ¼Ò½º¿¡¼ µ¥ÀÌÅ͸¦ ¼öÁýÇϰí ÀÖ½À´Ï´Ù. µî ´Ù¾çÇÑ ¼Ò½º·ÎºÎÅÍ µ¥ÀÌÅ͸¦ »ý¼ºÇØ ¾÷¹« ÃÖÀûÈ, ¾ÈÀü °³¼±, °í°´ °æÇè Çâ»ó¿¡ Ȱ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ IoT ¿ëµµ¿¡ ½Ç½Ã°£ ÀλçÀÌÆ®¸¦ Á¦°øÇÏ°í ´ë±Ô¸ð µ¥ÀÌÅÍ Ã³¸® ¹× ºÐ¼®ÀÌ °¡´ÉÇÑ ºòµ¥ÀÌÅÍ ¹× ºÐ¼® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. °³ÀÎÈµÈ °í°´ °æÇè¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ¸é¼ ¼¼°è ºòµ¥ÀÌÅÍ ºÐ¼® ½ÃÀåÀÌ Å©°Ô º¯ÈÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È´Â ±â¾÷ÀÌ °í°´ Âü¿©¿Í °í°´ À¯Áö¿¡ Á¢±ÙÇÏ´Â ¹æ½ÄÀ» À籸¼ºÇϰí ÀÖ½À´Ï´Ù. ±â¾÷Àº ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ ºÐ¼®ÀÇ ÈûÀ» Ȱ¿ëÇÏ¿© °³ÀÎÀÇ ¼±È£µµ, Çൿ, ´ÏÁî¿¡ ´ëÇÑ º¹ÀâÇÑ ÆÐÅϰú ÅëÂû·ÂÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ °³ÀÎÀû Â÷¿ø¿¡¼ °ø°¨À» ºÒ·¯ÀÏÀ¸Å°°í ´õ °ÇÑ ¿¬°á°ú ºê·£µå Ãæ¼ºµµ¸¦ Çü¼ºÇÏ´Â ¸ÂÃãÇü Á¦Ç°, ¼ºñ½º, ¸¶ÄÉÆÃ Àü·«À» ¼ö¸³ÇÒ ¼ö ÀÖ½À´Ï´Ù. Á¶Á÷ÀÌ µ¶Æ¯Çϰí ÀûÀýÇÑ »óÈ£ÀÛ¿ëÀ» Á¦°øÇϱâ À§ÇØ ³ë·ÂÇÏ´Â °¡¿îµ¥, ºòµ¥ÀÌÅÍ ºÐ¼®Àº Ź¿ùÇÑ °í°´ ¿©Á¤À» Á¦°øÇϱâ À§ÇÑ Ãʼ®ÀÌ µÉ °ÍÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â °í°´ ¸¸Á·µµ¸¦ ³ôÀÏ »Ó¸¸ ¾Æ´Ï¶ó ±â¾÷ÀÌ Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï µµ¿ÍÁÖ°í ¼öÀÍ Áõ´ë¸¦ ÃËÁøÇÏ´Â ÈûÀÌ µÉ °ÍÀÔ´Ï´Ù. °³ÀÎÈµÈ °í°´ °æÇè°ú ºòµ¥ÀÌÅÍ ºÐ¼®ÀÇ °ø»ý °ü°è´Â ½ÃÀå È®´ëÀÇ ¸Å¿ì Áß¿äÇÑ ¿øµ¿·ÂÀ̸ç, ±â¾÷ÀÌ ¼¼°èÀûÀ¸·Î °í°´°ú ¿¬°áÇÏ°í °í°´À» ÀÀ´ëÇÏ´Â ¹æ¹ýÀÇ ¹Ì·¡¸¦ Çü¼ºÇÒ ¼ö Àִ ż¼¸¦ °®Ãß°í ÀÖ½À´Ï´Ù.
¼¼°èÀÇ ºòµ¥ÀÌÅÍ ºÐ¼® ½ÃÀåÀº Ŭ¶ó¿ìµå ÄÄÇ»ÆÃÀÇ È®»êÀ¸·Î Å« ÆøÀ¸·Î ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ±â¾÷µéÀº Ŭ¶ó¿ìµå Ç÷§ÆûÀ» Ȱ¿ëÇÏ¿© ´ë·®ÀÇ µ¥ÀÌÅ͸¦ È¿À²ÀûÀ¸·Î ÀúÀå, ó¸®, ºÐ¼®ÇÏ¿© È®À强°ú ºñ¿ë È¿À²¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý ÀÎÇÁ¶ó´Â µ¥ÀÌÅÍ ±â¹Ý ÅëÂû·ÂÀ» °¡¼ÓÈÇÏ¿© ±â¾÷ÀÌ Á¤º¸ Àڻ꿡¼ ºü¸£°Ô °¡Ä¡¸¦ âÃâÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ°ú ºòµ¥ÀÌÅÍ ºÐ¼®ÀÇ °ø»ý °ü°è´Â »ê¾÷À» ÀçÆíÇϰí, Çõ½ÅÀ» ÃËÁøÇϸç, ½ÃÀåÀ» Áö¼ÓÀûÀ¸·Î È®ÀåÇϰí ÀÖ½À´Ï´Ù.
±â¼úÀº °¡Â¥ µ¥ÀÌÅÍ »ý¼º, ½Ç½Ã°£ º¸¾È, °í°´ µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã º¸È£ µî ½É°¢ÇÑ º¸¾È ¹®Á¦¸¦ ¾ß±âÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇØ°áÇÏ´Â °ÍÀº ¸Å¿ì Áß¿äÇϸç, ¿ø°Ý ½ºÅ丮Áö, ID °Å¹ö³Í½º, ½Ã½ºÅÛ ¹× ³×Æ®¿öÅ© º¸¾È ÅõÀÚ, ÀÎÀû ¿À·ù, Ä¿³ØÆ¼µå µð¹ÙÀ̽º, »ç¹°ÀÎÅͳÝ(IoT) ¿ëµµ µî ´Ù¾çÇÑ ºÐ¾ß¸¦ Æ÷°ýÇϰí ÀÖ½À´Ï´Ù. ¾÷Á¾¿¡ °ü°è¾øÀÌ ÀúÀåµÈ °í°´ µ¥ÀÌÅ͸¦ °Ü³ÉÇÑ µ¥ÀÌÅÍ À¯Ãâ ¹× »çÀ̹ö °ø°ÝÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ Data Protection &Privacy, Information Technology Act, 2000, EU General Data Protection Regulation(GDPR) µî µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹ý±Ô Áؼö°¡ ¼Ö·ç¼Ç µµÀÔ¿¡ °É¸²µ¹ÀÌ µÉ °¡´É¼ºÀÌ ³ô½À´Ï´Ù.
¼¼°èÀÇ ºòµ¥ÀÌÅÍ ºÐ¼® ½ÃÀåÀº ¼÷·ÃµÈ Àü¹® Àη ºÎÁ·À¸·Î ÀÎÇØ ´õ Å« ¼ºÀåÀÇ ±æ¿¡ Å« Àå¾Ö¹°¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ ºÐ¼®ÀÇ º¹ÀâÇÑ Æ¯¼ºÀ¸·Î ÀÎÇØ µ¥ÀÌÅÍ Ã³¸®, Åë°è ºÐ¼® ¹× ¸Ó½Å·¯´× ±â¼ú¿¡ ´ëÇÑ ±íÀº ÀÌÇØ¸¦ °¡Áø ÀÎÀç°¡ ÇÊ¿äÇÕ´Ï´Ù. ±×·¯³ª ÀÌ·¯ÇÑ Àü¹® ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä´Â °¡¿ë Àη ǮÀ» ÈξÀ ´É°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼÷·ÃµÈ Àü¹®°¡ÀÇ ºÎÁ·Àº »ê¾÷ Àü¹Ý¿¡ °ÉÃÄ ºòµ¥ÀÌÅÍ ºÐ¼® ¼Ö·ç¼ÇÀÇ È¿À²ÀûÀÎ µµÀÔ°ú Ȱ¿ëÀ» °¡·Î¸·°í ÀÖ½À´Ï´Ù. ÀÌ´Â Çõ½ÅÀÇ ¼Óµµ¸¦ ´ÊÃâ »Ó¸¸ ¾Æ´Ï¶ó µ¥ÀÌÅÍ¿¡¼ ÀÇ¹Ì ÀÖ´Â ÅëÂû·ÂÀ» µµÃâÇÏ´Â Á¶Á÷ÀÇ ´É·ÂÀ» Á¦ÇÑÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ºÎÁ·À» ÇØ°áÇϱâ À§Çؼ´Â ºòµ¥ÀÌÅÍ ºÐ¼®ÀÇ ÀáÀç·ÂÀ» ÃÖ´ëÇÑ È°¿ëÇÏ°í ¼¼°èÀûÀ¸·Î Áö¼ÓÀûÀÎ ¼ºÀåÀ» °¡¼ÓÇÒ ¼ö ÀÖ´Â »õ·Î¿î ¼¼´ëÀÇ µ¥ÀÌÅÍ Àü¹®°¡¸¦ ¾ç¼ºÇϱâ À§ÇÑ ±³À°, ÈÆ·Ã ¹× ±â¼ú Çâ»ó¿¡ ´ëÇÑ °øµ¿ÀÇ ³ë·ÂÀÌ ÇÊ¿äÇÕ´Ï´Ù.
ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´×(ML)ÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀ¸·Î ¼¼°è ºòµ¥ÀÌÅÍ ºÐ¼® ½ÃÀåÀº Å« º¯È¸¦ ¸ÂÀÌÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ã·´Ü ±â¼úÀº ¹æ´ëÇÑ µ¥ÀÌÅÍ ¼¼Æ®¿¡¼ ÀÚµ¿ÈµÈ ¿¹ÃøÀû ÅëÂû·ÂÀ» Á¦°øÇÔÀ¸·Î½á µ¥ÀÌÅÍ ºÐ¼®¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖÀ¸¸ç, AI¿Í MLÀÇ ¾Ë°í¸®ÁòÀº ÀÇ¹Ì ÀÖ´Â ÆÐÅÏ, µ¿Çâ, »ó°ü°ü°è¸¦ ÃßÃâÇÏ¿© »ê¾÷ Àü¹ÝÀÇ ÀÇ»ç°áÁ¤¿¡ Á¤º¸¸¦ Á¦°øÇϰí ÀÖ´Ù, µ¥ÀÌÅÍ Ã³¸®ÀÇ Á¤È®¼º, ¼Óµµ, È®À强À» Çâ»ó½ÃÄÑ ´õ ±íÀº ¼öÁØÀÇ ÀÌÇØ¸¦ À̲ø¾î³»°í ¼û°ÜÁø ºñÁî´Ï½º ±âȸ¸¦ ¹ß°ßÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷µéÀÌ Çõ½Å°ú °æÀï ¿ìÀ§¸¦ È®º¸ÇÏ´Â µ¥ ÀÖ¾î AI¿Í MLÀÇ °¡Ä¡¸¦ Á¡Á¡ ´õ ¸¹ÀÌ ÀνÄÇÔ¿¡ µû¶ó ºòµ¥ÀÌÅÍ ºÐ¼® ½ÃÀåÀº µ¥ÀÌÅÍ ºÐ¼®°ú AI¿Í MLÀÇ Áö´ÉÇü ±â´ÉÀÇ ½Ã³ÊÁö È¿°ú·Î ÀÎÇØ Å©°Ô ¼ºÀåÇÒ ¼ö Àִ ż¼¸¦ °®Ãß°Ô µÇ¾ú½À´Ï´Ù.
ºòµ¥ÀÌÅÍ ºÐ¼®°ú ±ÔÁ¦ Áؼö¸¦ °áÇÕÇÏ´Â °ÍÀº º¯È¸¦ °¡Á®¿Ã ¼ö ÀÖ´Â ½Ã³ÊÁö È¿°úÀÔ´Ï´Ù. Á¶Á÷Àº ¹ýÀû ÇÁ·¹ÀÓ¿öÅ©¸¦ ÁؼöÇÒ »Ó¸¸ ¾Æ´Ï¶ó ¿î¿µÀ» °£¼ÒÈÇϰí, µ¥ÀÌÅÍ °Å¹ö³Í½º¸¦ °ÈÇϸç, Åõ¸í¼º ¹®È¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼¼°è ±ÔÁ¦°¡ °è¼Ó ¹ßÀüÇÏ°í ¾ö°ÝÇÑ µ¥ÀÌÅÍ º¸È£ ±âÁØÀÌ º¸Æíȵʿ¡ µû¶ó Á¤±³ÇÑ ºòµ¥ÀÌÅÍ ºÐ¼® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä´Â ´õ¿í Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ ½ÃÀåÀÇ ¼ºÀåÀº ±â¾÷ÀÌ µ¥ÀÌÅÍ °üÇàÀ» ±ÔÁ¦ Áöħ°ú ÀÏÄ¡½Ã۰í, ¼ÒºñÀÚÀÇ ½Å·Ú¸¦ Áö۰í, ±Ã±ØÀûÀ¸·Î ±ÔÁ¦ Áؼö°¡ °¡Àå Áß¿äÇÑ È¯°æ¿¡¼ ¹øÃ¢ÇÒ ¼ö ÀÖµµ·Ï µ½´Â µ¥ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ ¼ö ÀÖ´Ù´Â Á¡¿¡¼ µÞ¹ÞħµË´Ï´Ù.
ºòµ¥ÀÌÅÍ ºÐ¼® ½ÃÀåÀº ¿ÂÇÁ·¹¹Ì½º ¹× Ŭ¶ó¿ìµå ±â¹Ý ¹èÆ÷ À¯ÇüÀ¸·Î ³ª´¹´Ï´Ù. ¿¹Ãø ±â°£ µ¿¾È Ŭ¶ó¿ìµå ±â¹Ý ºòµ¥ÀÌÅÍ ºÐ¼®Àº °è¼ÓÇØ¼ Áö¹èÀûÀÎ ºÎ¹®ÀÌ µÉ °ÍÀÔ´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý ºòµ¥ÀÌÅÍ ºÐ¼®Àº Á¶Á÷ÀÌ Áõ°¡ÇÏ´Â µ¥ÀÌÅÍ ¾ç°ú º¹À⼺À» ó¸®ÇÏ´Â µ¥ ÇÊ¿äÇÑ À¯¿¬¼º, È®À强, ºñ¿ë È¿À²¼ºÀ» Á¦°øÇÕ´Ï´Ù. Ŭ¶ó¿ìµå¸¦ µµÀÔÇÏ¸é ±â¾÷Àº ´ë±Ô¸ð ¿ÂÇÁ·¹¹Ì½º ÀÎÇÁ¶ó ÅõÀÚ³ª À¯Áöº¸¼ö ¾øÀ̵µ ¹æ´ëÇÑ µ¥ÀÌÅÍ ¼¼Æ®¿¡ ¿øÈ°ÇÏ°Ô ¾×¼¼½ºÇÏ°í °ü¸®ÇÒ ¼ö ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ ¾÷¹«°¡ °£¼ÒÈµÇ°í ºÐ¼® ±â´ÉÀÇ ½Å¼ÓÇÑ ¹èÆ÷¸¦ ÅëÇØ ½Å¼ÓÇÑ ÅëÂû·Â°ú Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖ°Ô µË´Ï´Ù. ÀÌ¿¡ µû¶ó Ŭ¶ó¿ìµå ±â¹Ý ºòµ¥ÀÌÅÍ ºÐ¼® ½ÃÀåÀº Å« ÁÖ¸ñÀ» ¹Þ°í ÀÖÀ¸¸ç, Å« ÆøÀÇ ¼ºÀåÀÌ ¿¹»óµÇ°í ÀÖ½À´Ï´Ù.
ºòµ¥ÀÌÅÍ ºÐ¼® ½ÃÀåÀº ±¸¼º ¿ä¼Ò¿¡ µû¶ó ¼ÒÇÁÆ®¿þ¾î ¹× ¼ºñ½º·Î ºÐ·ùµÇ¸ç, 2022³â¿¡´Â ¼ÒÇÁÆ®¿þ¾î ºÎ¹®ÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÏ°í ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ºòµ¥ÀÌÅÍ ºÐ¼® ½ÃÀå¿¡¼ ¼ÒÇÁÆ®¿þ¾î ºÎ¹®ÀÇ ¿ìÀ§´Â ¸î °¡Áö Áß¿äÇÑ ¿äÀο¡ ±âÀÎÇÕ´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î ¼Ö·ç¼ÇÀº ´ë±Ô¸ðÀÇ º¹ÀâÇÑ µ¥ÀÌÅÍ ¼¼Æ®¸¦ ó¸®ÇÒ ¼ö ÀÖ´Â ´Ù¾çÇÑ ºÐ¼® Ç÷§Æû, µµ±¸ ¹× ¿ëµµ¸¦ Á¦°øÇÏ¿© Á¶Á÷ÀÌ µ¥ÀÌÅ͸¦ È¿À²ÀûÀ¸·Î ó¸®, ºÐ¼® ¹× ÇØ¼®ÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. ¶ÇÇÑ ÀÌ·¯ÇÑ ¼ÒÇÁÆ®¿þ¾î µµ±¸´Â ¿¹Ãø ºÐ¼® ¹× ¸Ó½Å·¯´×°ú °°Àº °í±Þ ºÐ¼® ±â¼úÀ» ½±°Ô Àû¿ëÇÏ°í °¡Ä¡ ÀÖ´Â ÅëÂû·ÂÀ» Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ, »ç¿ëÀÚ Ä£ÈÀûÀÎ ¼¿ÇÁ ¼ºñ½º ºÐ¼® µµ±¸´Â ±â¼úÀû Àü¹® Áö½ÄÀÌ ¾ø´Â »ç¿ëÀÚµµ ½º½º·Î µ¥ÀÌÅ͸¦ Ž»öÇÏ°í ºÐ¼®ÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù. ¶ÇÇÑ, ¼ÒÇÁÆ®¿þ¾î ¼Ö·ç¼ÇÀº ¿ÂÇÁ·¹¹Ì½º ¶Ç´Â Ŭ¶ó¿ìµå ¹èÆ÷ ¿É¼ÇÀ» ÅëÇØ È®À强°ú À¯¿¬¼ºÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ½ÃÀåÀº Áö¼ÓÀûÀ¸·Î Çõ½ÅÇÏ´Â ¼Ö·ç¼Ç Á¦°ø¾÷üÀÇ ¿ªµ¿ÀûÀÎ »ýŰ踦 Ư¡À¸·Î ÇÕ´Ï´Ù. Àü¹ÝÀûÀ¸·Î ¼ÒÇÁÆ®¿þ¾î´Â ºòµ¥ÀÌÅÍ ºÐ¼® ½ÃÀå¿¡¼ È¿À²ÀûÀÎ µ¥ÀÌÅÍ ºÐ¼®, °í±Þ ºÐ¼® ±â´É, ¼¿ÇÁ ¼ºñ½º ºÐ¼®, È®À强, ±â¼ú Çõ½ÅÀ» °¡´ÉÇÏ°Ô ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù.
ºÏ¹Ì´Â ¿¹Ãø ±â°£ µ¿¾È ¼öÀÍ¿¡¼ Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ª¿¡´Â ´Ù¾çÇÑ »ê¾÷ ºÐ¾ßÀÇ À¯¸í ±â¾÷µéÀÌ ¼ÒÇÁÆ®¿þ¾î ¼Ö·ç¼ÇÀ» ±¤¹üÀ§ÇÏ°Ô µµÀÔÇϰí ÀÖ½À´Ï´Ù. ¹Ì±¹Àº ÄÄÇöóÀ̾𽺠ºÐ¼®À» °ÈÇÏ´Â °í±Þ ºÐ¼® µµ±¸¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ºü¸¥ ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸´Â ºÎÁ¤ÇàÀ§, Á¤Ã¥ À§¹Ý ¹× ±âŸ ºñÁî´Ï½º ºÎÁ¤ÇàÀ§¸¦ ŽÁöÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ºÏ¹Ì´Â ¸Ó½Å·¯´×, »ç¹°ÀÎÅͳÝ, ÀΰøÁö´É°ú °°Àº ÷´Ü ±â¼ú¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç, ±× °á°ú °¢ »ê¾÷¿¡¼ ±âÇϱ޼öÀûÀ¸·Î ¸¹Àº µ¥ÀÌÅͰ¡ »ý¼ºµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ºÏ¹Ì´Â Áö¼ÓÀûÀ¸·Î ±â¼ú ¹ßÀü°ú Çõ½ÅÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ±â¼ú ±â¾÷, ¿¬±¸±â°ü, ½ºÅ¸Æ®¾÷À¸·Î ±¸¼ºµÈ °·ÂÇÑ »ýŰè´Â ºòµ¥ÀÌÅÍ ºÐ¼® ¼Ö·ç¼ÇÀÇ °³¹ß ¹× µµÀÔÀ» ÃËÁøÇÏ´Â µ¥ Å« ¿ªÇÒÀ» Çß½À´Ï´Ù. ƯÈ÷ ½Ç¸®Äܹ븮¿Í °°Àº ÁÖ¿ä ±â¼ú °ÅÁ¡ÀÌ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇϰí ÃËÁøÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ´Ù´Â Á¡À» ÁÖ¸ñÇÒ Çʿ䰡 ÀÖ½À´Ï´Ù.
Tech Sci Research´Â ÁÖ¾îÁø ½ÃÀå µ¥ÀÌÅ͸¦ »ç¿ëÇÏ¿© ¼¼°è ºòµ¥ÀÌÅÍ ºÐ¼® ½ÃÀå º¸°í¼¿¡¼ ±â¾÷ÀÇ °íÀ¯ÇÑ ¿ä±¸¿¡ µû¶ó ¸ÂÃãȸ¦ Á¦°øÇÕ´Ï´Ù. º¸°í¼¿¡¼ ´ÙÀ½°ú °°Àº Ä¿½ºÅ͸¶ÀÌ¡ÀÌ °¡´ÉÇÕ´Ï´Ù.
The Global Big Data Analytics Market is projected to reach USD 304.57 billion by the end of 2028, with a compound annual growth rate (CAGR) of 14.9% during the forecast period. The growth of the Big Data Analytics market is driven by the increasing adoption of data-driven decision-making as enterprises across diverse industries acknowledge the significance of data-driven decision making for extracting insights, optimizing operations, and enhancing business outcomes. Big data and analytics solutions are utilized to analyze substantial amounts of structured and unstructured data, uncover actionable insights, and facilitate informed decision making. Moreover, numerous businesses leverage big data and business analytics to analyze vast quantities of data generated by global offline and online trading, granting certain big data service providers a competitive edge in cloud technologies. Additionally, the development of big data and business analytics on the cloud empowers customers to access data from any location worldwide, fostering further advancements in cloud technologies. This presents different big data service providers with an advantage over their rivals, driving further growth in the market.
Increasing Data Generation Driving Growth of Global Big Data Analytics Market: The escalating generation of data serves as a major catalyst for the growth of the big data analytics market. In the present digital era, there is a significant surge in data creation from various sources such as social media, IoT devices, digital transactions, and enterprise systems. This data explosion presents organizations with a vast and invaluable resource for gaining insights and making well-informed decisions. The abundance of data enables businesses to analyze and comprehend customer behavior, preferences, and trends with enhanced depth and accuracy. By leveraging big data analytics, companies can uncover hidden patterns, correlations, and previously inaccessible insights, empowering them to adopt data-driven decision-making, identify new market opportunities, and optimize operations. Additionally, the mounting data generation is intricately linked to the proliferation of digital technologies and connectivity. With the widespread use of smartphones, social media platforms, and online transactions, individuals and businesses are leaving digital footprints that generate massive amounts of data. This digital footprint provides a rich source of information that can be harnessed for targeted marketing, personalized customer experiences, and improved operational efficiency. The growth in data generation also aligns with the emergence of the Internet of Things (IoT), where interconnected devices and sensors collect and transmit real-time data. This data encompasses valuable insights into consumer behavior, product usage, environmental factors, and more. Big data analytics helps organizations extract valuable insights from this IoT-generated data to enhance product development, optimize supply chains, and improve customer experiences. Furthermore, the increasing data generation has presented businesses with opportunities to monetize data assets. By leveraging big data analytics, organizations can analyze large volumes of data and extract valuable insights that can be packaged as products or services for customers. This data monetization model has opened new revenue streams and business models, further propelling market growth.
Market Overview | |
---|---|
Forecast Period | 2024-2028 |
Market Size 2022 | USD 304. 57 billion |
Market Size 2028 | USD 700.82 billion |
CAGR 2023-2028 | 14.81% |
Fastest Growing Segment | Risk & Fraud Analytics |
Largest Market | North America |
With the exponential growth of data generated from diverse sources such as social media, sensors, online transactions, and digital channels, organizations are leveraging Big Data and Analytics solutions to extract valuable insights and make informed decisions. The ability to process and analyze large volumes of data in real-time or near-real-time has become crucial for businesses to gain a competitive edge, optimize operations, enhance customer experience, and identify new growth opportunities. Organizations are recognizing the significance of data-driven decision-making to drive innovation, improve operational efficiency, and achieve business objectives. Big Data and Analytics solutions offer advanced analytics capabilities such as predictive analytics, machine learning, and artificial intelligence, empowering organizations to derive actionable insights from vast amounts of data. These insights assist organizations in understanding customer behavior, optimizing pricing and inventory management, identifying market trends, forecasting demand, and personalizing customer experiences, among others. Furthermore, the increasing adoption of Internet of Things (IoT) devices and technologies is generating massive amounts of data that require advanced Big Data and Analytics solutions for processing, analysis, and interpretation. IoT devices generate data from various sources such as sensors, machines, wearables, and connected devices, which can be used to optimize operations, enhance safety, and elevate customer experiences. This surge in demand is driving the need for Big Data and Analytics solutions capable of handling large-scale data processing and analysis while providing real-time insights for IoT applications. The growing demand for personalized customer experiences is significantly transforming the global big data analytics market. This shift is reshaping how businesses approach customer engagement and retention. By harnessing the power of extensive data analysis, companies can decipher intricate patterns and insights about individual preferences, behaviors, and needs. This enables the creation of tailor-made products, services, and marketing strategies that resonate on a personal level, fostering stronger connections and brand loyalty. As organizations strive to provide unique and relevant interactions, Big Data Analytics becomes a cornerstone in delivering exceptional customer journeys. This trend not only enhances customer satisfaction but also empowers businesses to make informed decisions that drive revenue growth. The symbiotic relationship between personalized customer experiences and big data analytics underscores a pivotal driver of the market's expansion, poised to shape the future of how businesses connect and cater to their clientele on a global scale.
The global big data analytics market is witnessing significant growth, driven by the widespread adoption of cloud computing. Businesses are leveraging cloud platforms to efficiently store, process, and analyze large volumes of data, unlocking scalability and cost-effectiveness. Cloud-based infrastructure accelerates data-driven insights, enabling organizations to derive value from their information assets quickly. This symbiotic relationship between cloud computing and Big Data Analytics is reshaping industries, driving innovation, and positioning the market for sustained expansion.
Technology presents significant security concerns, including fake data generation, real-time security, and safeguarding customer data privacy. Addressing these challenges is critical, encompassing areas such as remote storage, identity governance, system and network security investment, human error, connected devices, and Internet of Things (IoT) applications. The increasing incidents of data loss and cyberattacks targeting stored customer data across industries are expected to hinder market growth. Moreover, compliance with data privacy laws such as Data Protection & Privacy, Information Technology Act, 2000, EU General Data Protection Regulation (GDPR), and others is likely to pose obstacles to solution implementation.
The global big data analytics market faces a significant hurdle in its path to further expansion due to a shortage of skilled professionals. The complex nature of data analytics demands individuals with a deep understanding of data processing, statistical analysis, and machine learning techniques. However, the demand for these specialized skills far exceeds the available talent pool. This scarcity of skilled professionals hampers the efficient implementation and utilization of big data analytics solutions across industries. It not only slows down the pace of innovation but also limits organizations' capacity to derive meaningful insights from their data. Addressing this shortage requires concerted efforts in education, training, and upskilling to empower a new generation of data experts capable of harnessing the full potential of big data analytics and driving its continued growth on a global scale.
The global big data analytics market is undergoing a significant transformation, driven by the rapid rise of artificial intelligence (AI) and machine learning (ML). These advanced technologies are revolutionizing data analysis by enabling automated and predictive insights from vast datasets. AI and ML algorithms extract meaningful patterns, trends, and correlations that inform decision-making across industries. They enhance the accuracy, speed, and scalability of data processing, unlocking deeper levels of understanding and revealing hidden opportunities. As businesses increasingly recognize the value of AI and ML in driving innovation and competitive advantage, the Big Data Analytics market is poised for substantial growth, fueled by the synergistic relationship between data analytics and the intelligent capabilities of AI and ML.
The convergence of Big Data Analytics and regulatory compliance is a transformative synergy. It empowers organizations to not only adhere to legal frameworks but also streamline operations, enhance data governance, and establish a culture of transparency. As global regulations continue to evolve and stringent data protection standards become the norm, the demand for sophisticated Big Data Analytics solutions is set to rise further. The market's growth is underscored by the pivotal role it plays in assisting businesses in aligning their data practices with regulatory guidelines, safeguarding consumer trust, and ultimately thriving in an environment where regulatory compliance is of paramount importance.
The Big Data Analytics market is divided into on-premises and cloud-based deployment types. Throughout the forecast period, cloud-based big data analytics remains the dominant segment. Cloud-based big data analytics offers organizations the flexibility, scalability, and cost-efficiency needed to handle the ever-growing volume and complexity of data. With cloud deployment, businesses can access and manage extensive datasets seamlessly, without the need for extensive on-premises infrastructure investments or maintenance. This streamlines operations and expedites the deployment of analytics capabilities, enabling rapid insights and informed decision-making. As a result, the cloud-based Big Data Analytics market is expected to attract significant attention and experience substantial growth.
The big data analytics market is categorized into software and services based on components. In 2022, the software segment held the largest market share and is projected to exhibit the highest CAGR during the forecast period. The dominance of the software segment in the big data analytics market can be attributed to several key factors. Software solutions provide a wide range of analytics platforms, tools, and applications to handle large and complex datasets, enabling organizations to efficiently process, analyze, and interpret data. These software tools also facilitate the application of advanced analytics techniques such as predictive analytics and machine learning, offering valuable insights. Moreover, user-friendly self-service analytics tools empower non-technical users to independently explore and analyze data. Furthermore, software solutions offer scalability and flexibility with on-premises or cloud deployment options. The market is characterized by a dynamic ecosystem of solution providers who continuously innovate their offerings. Overall, software plays a crucial role in enabling efficient data analysis, advanced analytics capabilities, self-service analytics, scalability, and innovation within the big data analytics market.
North America is expected to capture a significant share of the revenue during the forecast period. The region is home to prominent businesses across various industries and extensively implements software solutions. The United States is poised for rapid growth due to the increasing demand for advanced analytics tools that enhance compliance analytics. These tools play a crucial role in detecting fraud, policy violations, and other forms of business misconduct. The country is making substantial investments in cutting-edge technologies such as machine learning, the Internet of Things, and artificial intelligence, resulting in the generation of exponential data for industries. Moreover, North America has consistently led the way in technological advancements and innovation. Its strong ecosystem, comprising technology companies, research institutions, and startups, has been instrumental in driving the development and adoption of big data analytics solutions. Notably, major technology hubs like Silicon Valley have played a pivotal role in nurturing and accelerating market growth.
In this report, the Global Big Data Analytics Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:
Company Profiles: Detailed analysis of the major companies present in the Global Big Data Analytics Market.
Global Big Data Analytics market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report: