![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1370948
Drug Discovery¿ë ÀΰøÁö´É ½ÃÀå : ¼¼°è »ê¾÷ ±Ô¸ð, Á¡À¯À², µ¿Çâ, ±âȸ ¹× ¿¹Ãø(2018-2028³â) - ÄÄÆ÷³ÍÆ® À¯Çüº°, ¾àÁ¦ À¯Çüº°, ¿ëµµ À¯Çüº°, Ä¡·á ¿µ¿ªº°, Áö¿ªº°, °æÀïAI in Drug Discovery Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028 Segmented By Component Type, By Drug Type, By Application Type, By Therapeutic Area, By Region and Competition |
¼¼°èÀÇ Drug Discovery¿ë ÀΰøÁö´É ½ÃÀåÀº 2022³â¿¡ 7¾ï 5,004¸¸ ´Þ·¯·Î Æò°¡µÇ¸ç ¿¹Ãø ±â°£ Áß ´ëÆøÀûÀÎ ¼ºÀåÀÌ Àü¸ÁµÇ¸ç ¿¬°£ Æò±Õ ¼ºÀå·ü(CAGR)Àº 10.18%, 2028³â¿¡´Â 13¾ï 2,765¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.
ÄÄÇ»ÅÍ °úÇÐÀÇ ÇÑ ºÐ¾ßÀÎ ÀΰøÁö´É(AI)Àº ÁöÀû ÇൿÀ» ¸ð¹æÇÏ´Â µ¥ ÃÊÁ¡À» ¸ÂÃß°í ÀÖ½À´Ï´Ù. ÄÄÇ»ÅͰ¡ Àΰ£À̳ª µ¿¹°°ú °°Àº »ç°í¿Í ÀÛ¾÷ ¼öÇàÀ» ½Ã¹Ä·¹À̼ÇÇÏ°í ½ÇÆÐ¸¦ ÅëÇØ ÇнÀÇϵµ·Ï ÇÏ´Â °Í. AI´Â ÁÖ·Î ¿À·ù¸¦ ÃÖ¼ÒÈÇϰí È¿À²ÀûÀ¸·Î ÀÛ¾÷À» ¿Ï·áÇϵµ·Ï ¼³°èµÈ ¾Ë°í¸®ÁòÀ» äÅÃÇÕ´Ï´Ù. µö·¯´×°ú ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀ» Ȱ¿ëÇÏ¿© AI´Â °³ÀÎÈµÈ Áö½ÄÀ» Àû¿ëÇÏ°í ´Ù¾çÇÑ ÀÛ¾÷À» ¼öÇàÇϸç, AI¸¦ ½Å¾à°³¹ß¿¡ Àû¿ëÇÏ´Â °ÍÀº Áúº´À» ÃßÀûÇϰí, Ä¡·á¹ý °³¹ßÀ» ÃËÁøÇϰí, ½ÉÁö¾î µ¹¿¬º¯ÀÌ µ¿¹° ¹ÙÀÌ·¯½ºÀÇ ÃâÇöÀ» ¿¹ÃøÇÏ´Â µ¥ ±â¿©ÇÏ´Â µî ¸Å¿ì Å« Àǹ̰¡ ÀÖ½À´Ï´Ù. ½Å¾à ¿¬±¸°³¹ß¿¡ Çõ¸íÀ» ÀÏÀ¸ÄÑ ¸¸¼ºÁúȯ Ä¡·á¿¡ ȹ±âÀûÀÎ ÁøÀüÀ» °¡Á®¿Ô½À´Ï´Ù.
½ÃÀå °³¿ä | |
---|---|
¿¹Ãø ±â°£ | 2024-2028³â |
2022³â ½ÃÀå ±Ô¸ð | 7¾ï 5,004¸¸ ´Þ·¯ |
2028³â ½ÃÀå ±Ô¸ð | 13¾ï 2,765¸¸ ´Þ·¯ |
CAGR 2023-2028³â | 10.18% |
±Þ¼ºÀå ºÎ¹® | Á¾¾çÇÐ |
ÃÖ´ë ½ÃÀå | ºÏ¹Ì |
Drug Discovery °úÁ¤ÀÇ °¡¼ÓÈ·Î ÀÎÇØ Á¦¾à ¿¬±¸ ºÐ¾ß¿¡¼ ÀΰøÁö´É(AI)¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ¸é¼ ½ÃÀå ¼ºÀåÀÌ °¡¼Óȵǰí ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ ¹æ¹ýÀ¸·Î´Â Àΰ£ÀÌ Æò°¡ÇÒ ¼ö ÀÖµµ·Ï ÈÇÕ¹°À» ÃÖÀûÈÇÏ´Â µ¥ ¼ö³âÀÌ °É¸®´Â °æ¿ì°¡ ¸¹Áö¸¸, AI¸¦ Ȱ¿ëÇÏ´Â ½ºÅ¸Æ®¾÷Àº ¼öÀÏ¿¡¼ ¼ö°³¿ù ³»¿¡ µ¿ÀÏÇÑ °á°ú¸¦ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. ÀÇ·á ¿¹»ê Áõ°¡¿Í ÀÇ·á ÀÎÇÁ¶óÀÇ ¹ßÀüÀº ½ÃÀå È®´ë¿¡ ´õ¿í ±â¿©Çϰí ÀÖ½À´Ï´Ù. È¿À²ÀûÀÎ ¾à¹° Ȱ¼º Ž»öÀ» À§ÇÑ AIÀÇ ÅëÇÕµµ Drug Discovery ºÐ¾ß ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖÀ¸¸ç, AI ±â¹Ý Á¢±Ù ¹æ½ÄÀº Drug Discovery ´Ü°è¸¦ °£¼ÒÈÇÏ°í ºñ¿ë°ú ½Ã°£ÀÌ ¸¹ÀÌ ¼Ò¿äµÇ´Â ½ÇÆÐ¸¦ ÃÖ¼ÒÈÇϸç, AI ¾Ë°í¸®ÁòÀº ÈÇÕ¹° ¶óÀ̺귯¸®ÀÇ ½Å¼ÓÇÑ ºÐ¼®, Á¤È®ÇÑ Èĺ¸¹°ÁúÀÇ ¿ì¼±¼øÀ§ °áÁ¤, Á¤È®ÇÑ Æ¯¼º ¿¹ÃøÀ» °¡´ÉÇÏ°Ô ÇÏ°í¸¦ °¡´ÉÇÏ°Ô ÇÏ¿© ±Ã±ØÀûÀ¸·Î È¿°úÀûÀÎ ÀǾàǰ °³¹ßÀ» ÃËÁøÇÕ´Ï´Ù.
¸¶ÀÌÅ©·Î¼ÒÇÁÆ®¿Í °°Àº ±â¼ú ´ë±â¾÷°ú ³ë¹ÙƼ½º¿Í °°Àº Á¦¾àȸ»ç °£ÀÇ Àü·«Àû ÇÕÀÇ´Â Á¦¾à¾÷°è¿¡ AI ¾Ë°í¸®ÁòÀ» ÅëÇÕÇÏ´Â ±æÀ» ¿¾ú½À´Ï´Ù. Nvidia¿Í SchrodingerÀÇ ºÐÀÚ ¿¹Ãø ´É·Â °È¸¦ À§ÇÑ Çù·Â°ú °°Àº ÆÄÆ®³Ê½ÊÀº Drug DiscoveryÀÇ ÀΰøÁö´É ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÄ¡°í ÀÖÀ¸¸ç, Exscientia¿Í °°Àº ½Å»ý ±â¾÷Àº AI ±â¹Ý ¹æ¹ý¿¡ ÃÊÁ¡À» ¸ÂÃß°í ¸¹Àº ÅõÀÚ¸¦ À¯Ä¡Çϰí ÀÖ½À´Ï´Ù. Recursion Pharmaceuticals¿Í °°Àº ±â¾÷Àº AI¸¦ »ç¿ëÇÏ¿© ÀáÀçÀûÀÎ ÀǾàǰ Èĺ¸¹°ÁúÀÇ ½Äº°À» °¡¼ÓÈÇÏ´Â ÅøÀ» °³¹ßÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ IBM, ¸¶ÀÌÅ©·Î¼ÒÇÁÆ®, ±¸±Û°ú °°Àº IT ±â¾÷Àº Á¦¾àȸ»ç¿¡ ÅõÀÚÇϰí Á¦ÈÞ¸¦ ¸Î¾î Drug Discovery¿ë ÀΰøÁö´É ½ÃÀåÀÇ ¹ßÀüÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
´ç´¢º´, COPD, °ü»óµ¿¸ÆÁúȯ, °üÀý¿°, õ½Ä, °£¿°, ¾Ï°ú °°Àº ¸¸¼ºÁúȯÀÇ À¯º´·üÀÌ ¼¼°è¿¡¼ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ±× ¹è°æ¿¡´Â ³ëÀÎ Àα¸ Áõ°¡, ¶óÀÌÇÁ½ºÅ¸ÀÏÀÇ ÁøÈ, µµ½ÃȰ¡ ÀÖ½À´Ï´Ù. ±¹Á¦´ç´¢º´¿¬¸ÍÀº 2021³â¿¡ ´ç´¢º´ÀÌ ¼¼°è 5¾ï 3,700¸¸ ¸í¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ̶ó°í º¸°íÇß½À´Ï´Ù. 2030³â±îÁö ¿¬°£ ¾à 6¾ï 4,300¸¸ ¸íÀÌ »õ·Ó°Ô ¾Ï¿¡ °É¸± °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¿¹¸¦ µé¾î Áß±¹Àº ¾Æ½Ã¾ÆÅÂÆò¾ç Æó¾Ï ȯÀÚÀÇ 50% ÀÌ»óÀ» Â÷ÁöÇϰí ÀÖÀ¸¸ç, AI´Â ȯÀÚ µ¥ÀÌÅÍ ÅëÇÕÀ» ÅëÇØ °³ÀÎÈµÈ ÀǷḦ Çõ½ÅÇϰí, Á¤¹ÐÀǷḦ °¡´ÉÇÏ°Ô Çϸç, Ä¡·á °á°ú¸¦ Çâ»ó½Ã۰í, AI´Â Áúº´ Áø´Ü, ¸ð´ÏÅ͸µ, Ä¡·á¿¡ Çõ¸íÀ» ÀÏÀ¸ÄÑ º¸´Ù È¿°úÀûÀÌ°í ¸ÂÃãÈµÈ Ä¡·á °³ÀÔÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¸ÂÃãÇü Ä¡·á¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.
¸Ó½Å·¯´×, µö·¯´×, ÀÚ¿¬¾î ó¸® µî AI ±â¼úÀÇ ¹ßÀüÀ¸·Î º¹ÀâÇÑ »ý¹°ÇÐÀû µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ´Â AIÀÇ ´É·ÂÀÌ Å©°Ô Çâ»óµÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº À¯Àüü, ÇÁ·ÎÅ׿À¹Í½º, ÀÓ»ó µ¥ÀÌÅÍ µî ´Ù¾çÇÑ µ¥ÀÌÅÍ ¼Ò½ºÀÇ ÅëÇÕÀ» °¡´ÉÇÏ°Ô ÇÏ¿© ½Å¾à°³¹ß¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ÀλçÀÌÆ®¿Í ½Å¼ÓÇÑ ÀÇ»ç°áÁ¤À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. À¯Àüü ¼¿, ´Ü¹éÁú ±¸Á¶, ¾à¹°-Ç¥Àû »óÈ£ÀÛ¿ë µî »ý¹°ÇÐÀû µ¥ÀÌÅÍÀÇ ±Þ°ÝÇÑ ¼ºÀå ±âȸ´Â AI ±â¹Ý ºÐ¼® ¹× ¸ðµ¨¸µ¿¡ ÃæºÐÇÑ ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. ´ë±Ô¸ð µ¥ÀÌÅÍ ¼¼Æ®´Â AI ¾Ë°í¸®ÁòÀÌ ÆÐÅÏÀ» ½Äº°Çϰí, ÈÇÕ¹°ÀÇ Æ¯¼ºÀ» ¿¹ÃøÇϰí, Çõ½ÅÀûÀÎ °¡¼³À» »ý¼ºÇÒ ¼ö ÀÖ´Â ´É·ÂÀ» Á¦°øÇÏ¿© Drug Discovery¿¡¼ Á¤º¸¿¡ ÀÔ°¢ÇÑ µ¥ÀÌÅͺ£À̽º ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù.
AI´Â ¸ðµ¨ °³¹ß¿¡ ÀÖÀ¸¸ç, °íǰÁúÀÇ ´Ù¾çÇϰí Á¾ÇÕÀûÀÎ µ¥ÀÌÅÍ¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã, ÁöÀûÀç»ê±Ç, ±ÔÁ¦¿¡ ´ëÇÑ °í·Á´Â ½Å¾à°³¹ß¿¡ ÀÖÀ¸¸ç, ¸Å¿ì Áß¿äÇÑ ¹®Á¦ÀÔ´Ï´Ù. ƯÈ÷ ´Ù¾çÇÑ È¯ÀÚ Áý´Ü°ú Áúº´ À¯ÇüÀ» ´ëÇ¥ÇÒ ¼ö ÀÖ´Â ½Å·ÚÇÒ ¼ö ÀÖ°í Àß ¼±º°µÈ µ¥ÀÌÅÍ ¼¼Æ®¸¦ È®º¸ÇÏ´Â °ÍÀº AI ±â¹Ý Drug DiscoveryÀÇ Àå¾Ö¹°À̸ç, AI ¸ðµ¨, ƯÈ÷ µö·¯´× ¸ðµ¨ÀÇ ºÒÅõ¸í¼ºÀ¸·Î ÀÎÇÑ Åõ¸í¼º¿¡ ´ëÇÑ ¿ì·Á¸¦ ÇØ¼ÒÇÏ´Â °ÍÀÌ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ±ÔÁ¦ ´ç±¹, ÀÓ»óÀÇ, ȯÀÚµéÀº Åõ¸íÇÑ ÀÇ»ç°áÁ¤À» ¿øÇϸç, ÇØ¼®°¡´É¼ºÀÌ ÇʼöÀûÀ̸ç, AI ¸ðµ¨ÀÇ °ËÁõ°ú ±ÔÁ¦ Áؼö¸¦ º¸ÀåÇÏ´Â °ÍÀº ¾î·Á¿î °úÁ¦À̸ç, AI ¸ðµ¨ÀÌ ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎÀ» ¹ÞÀ¸·Á¸é ¾ö°ÝÇÑ ±âÁØÀ» ÃæÁ·ÇÏ°í °·ÂÇÑ ¼º´ÉÀ» ÀÔÁõÇØ¾ß ÇÕ´Ï´Ù. Drug Discovery¿¡¼ AIÀÇ °íÀ¯ÇÑ °í·Á»çÇ×À» °í·ÁÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©¸¦ °³¹ßÇÏ´Â °ÍÀº AIÀÇ ±¤¹üÀ§ÇÑ Ã¤ÅÃÀ» À§ÇØ ÇʼöÀûÀÔ´Ï´Ù.
AI´Â Å« ÁøÀüÀ» ÀÌ·ç¾úÁö¸¸, µ¥ÀÌÅÍ Ç°ÁúÀº ¿©ÀüÈ÷ ½Å¾à°³¹ß¿¡ AI ±â¹ýÀ» »ç¿ëÇÏ´Â µ¥ Å« °É¸²µ¹ÀÌ µÇ°í ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ ¼ÒÀ¯±Ç ¹× ±â¹Ð¼º ¹®Á¦¸¦ ÇØ°áÇÏ´Â °ÍÀÌ ÇʼöÀûÀÔ´Ï´Ù. ÇöÀç ½Å¾à°³¹ß¿¡¼ ÇöÀçÀÇ AI ±â¼úÀ» ÃÖÀûÈÇϱâ À§ÇÑ ³ë·ÂÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù.
¿¬±¸°³¹ß Ȱµ¿ÀÇ È°¼ºÈ¿Í Ŭ¶ó¿ìµå ±â¹Ý ¼ºñ½º ÀÌ¿ëÀÌ Drug Discovery ºÐ¾ßÀÇ ÀΰøÁö´É ½ÃÀå ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ½ÅÈï °æÁ¦ ±¹°¡¿Í »ý¸í°øÇÐÀÇ ¹ßÀüÀº ½ÃÀå °³Ã´À» ´õ¿í °¡¼ÓÈÇϰí ÀÖÀ¸¸ç, COVID-19 ÆÒµ¥¹ÍÀº ÀǾàǰ °³¹ß, ƯÈ÷ COVID-19 Ä¡·á¸¦ À§ÇÑ ±âÁ¸ ¾à¹°ÀÇ ½Äº° ¹× ½ºÅ©¸®´×¿¡ AIÀÇ È°¿ëÀ» Å©°Ô ÃËÁøÇß½À´Ï´Ù. ´Ù¾çÇÑ Áúº´¿¡ ´ëÇÑ È°¼º ¹°ÁúÀ» ½Äº°ÇÏ´Â µ¥ ÀÖÀ¸¸ç, AIÀÇ È¿´ÉÀº ÆÒµ¥¹Í ±â°£ Áß ¼ºÀå¿¡ ±â¿©Çß½À´Ï´Ù.
À¯ÀüÀÚ ¹× ÀÓ»ó Á¤º¸¸¦ Æ÷ÇÔÇÑ È¯ÀÚ µ¥ÀÌÅ͸¦ AI·Î ÅëÇÕÇÏ´Â °ÍÀº °³ÀÎ ¸ÂÃãÇü ÀÇ·á¿¡ Çõ¸íÀ» ÀÏÀ¸Å³ ¼ö ÀÖ´Â ÀáÀç·ÂÀ» °¡Áö°í ÀÖ½À´Ï´Ù. Ä¡·á¿¡ ´ëÇÑ °³ÀÎÀÇ ¹ÝÀÀÀ» ¿¹ÃøÇϰí Ä¡·á Àü·«À» ÃÖÀûÈÇÔÀ¸·Î½á º¸´Ù È¿°úÀûÀÎ Áúº´ Áø´Ü, ¸ð´ÏÅ͸µ ¹× Ä¡·á·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù.
ÄÄÆ÷³ÍÆ® À¯Çüº°·Î´Â ¼ºñ½º°¡ 2022³â Drug Discovery¿ë ÀΰøÁö´É ½ÃÀåÀ» Àå¾ÇÇϰí 2028³â±îÁö °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¼ºñ½ºÀÇ ¼ºÀåÀº ±× ÀåÁ¡°ú ÃÖÁ¾»ç¿ëÀÚÀÇ °·ÂÇÑ ¼ö¿ä·Î ÀÎÇØ ¹ß»ýÇÕ´Ï´Ù. ¼ÒÇÁÆ®¿þ¾îµµ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, ½ºÅ¸Æ®¾÷µéÀº Çõ½ÅÀûÀÎ ºÐÀÚ ¼³°è¸¦ ÃËÁøÇϱâ À§ÇØ µö·¯´× ¼Ö·ç¼Ç°ú Á¦³Ê·¹ÀÌÆ¼ºê ¸ðµ¨¿¡ ÁýÁßÇϰí ÀÖ½À´Ï´Ù.
¾Ï ºÐ¾ß´Â ¾Ï Ä¡·áÁ¦ ¹ß°ß¿¡ AI¸¦ µµÀÔÇϰí Á¦¾àȸ»ç¿Í AI ÇÁ·Î¹ÙÀÌ´õ¿ÍÀÇ Çù¾÷À¸·Î ÀÎÇØ ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ºÏ¹Ì´Â ³ôÀº AI µµÀÔ·ü, ÷´ÜÈµÈ ÀÇ·á ÀÎÇÁ¶ó, Ȱ¹ßÇÑ AI ¹× Drug Discovery °ü·Ã ÀÓ»ó ¿¬±¸·Î ÀÎÇØ ½ÃÀåÀ» ¼±µµÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÁÖ¸ñÇÒ ¸¸ÇÑ ¿¬±¸ ±â°ü°ú ÁÖ¿ä ¹ßÀüÀº AI ±â¹Ý Drug Discovery¿¡¼ ÀÌ Áö¿ªÀÇ ¿ìÀ§¸¦ ´õ¿í °ÈÇϰí ÀÖ½À´Ï´Ù.
The Global AI in Drug Discovery Market was valued at USD 750.04 Million in 2022 and is expected to experience substantial growth throughout the forecast period, projecting a Compound Annual Growth Rate (CAGR) of 10.18% and expected to reach USD 1327.65 Million through 2028. Artificial intelligence (AI), a discipline within computer science, is focused on emulating intelligent behavior. It empowers computers to simulate human and animal-like thinking and task execution, while learning from mistakes. AI predominantly employs algorithms designed for efficient task completion with minimal errors. By harnessing deep learning and machine learning algorithms, AI applies personalized knowledge to perform a wide array of tasks. The application of AI in drug discovery holds immense significance, contributing to disease tracking, facilitating the development of treatments, and even predicting the emergence of mutated animal viruses. AI has revolutionized research and development in drug discovery, leading to breakthroughs in treating chronic diseases.
Market Overview | |
---|---|
Forecast Period | 2024-2028 |
Market Size 2022 | USD 750.04 Million |
Market Size 2028 | USD 1327.65 Million |
CAGR 2023-2028 | 10.18% |
Fastest Growing Segment | Oncology |
Largest Market | North America |
The drive to accelerate the drug discovery process has spurred demand for artificial intelligence (AI) in pharmaceutical research, consequently propelling market growth. Traditional methods often take years to optimize compounds for human evaluation, while AI-powered startups could potentially accomplish the same in a matter of days or months. Increased healthcare budgets and advancements in healthcare infrastructure further contribute to market expansion. The integration of AI for efficient drug activity exploration is also driving demand in the drug development sector. AI-driven approaches streamline drug discovery stages, minimizing costs and time-consuming failures. AI algorithms enable rapid analysis of compound libraries, precise candidate prioritization, and accurate property predictions, ultimately expediting effective drug development.
Strategic agreements between technology giants like Microsoft and pharmaceutical companies like Novartis have paved the way for AI algorithm integration into the pharmaceutical landscape. Partnerships such as Nvidia's collaboration with Schrodinger to enhance predictive capabilities in molecular forecasting have significantly influenced the AI in Drug Discovery Market. Emerging enterprises like Exscientia focus on AI-based methodologies, attracting substantial investments. Companies such as Recursion Pharmaceuticals are developing tools to accelerate the identification of potential drug candidates using AI. Moreover, IT firms like IBM, Microsoft, and Google are investing and partnering with pharmaceutical companies to propel the advancement of AI in Drug Discovery Market.
The prevalence of chronic diseases like diabetes, COPD, coronary artery disease, arthritis, asthma, hepatitis, and cancer has surged globally. This is attributed to the growing geriatric population, evolving lifestyles, and urbanization. The International Diabetes Federation reports that diabetes affected 537 million individuals globally in 2021. Predictions estimate around 643 million new cancer cases annually by 2030. China, for instance, accounts for over 50% of all lung cancer cases in the Asia Pacific region. AI is transforming personalized medicine through patient data integration, enabling precision healthcare, and enhancing treatment outcomes. It revolutionizes disease diagnosis, monitoring, and treatment, leading to more effective and tailored therapeutic interventions.
Advancements in AI technologies such as machine learning, deep learning, and natural language processing have significantly enhanced AI's capabilities in analyzing complex biological data. These advancements enable the integration of diverse data sources, including genomics, proteomics, and clinical data, leading to comprehensive insights and rapid decision-making in drug discovery. The exponential growth of biological data, including genomic sequences, protein structures, and drug-target interactions, offers ample opportunities for AI-driven analysis and modeling. Large-scale datasets empower AI algorithms to identify patterns, predict compound properties, and generate innovative hypotheses, enabling informed and data-driven decisions in drug discovery.
AI relies heavily on high-quality, diverse, and comprehensive data for model development. In drug discovery, data privacy, intellectual property, and regulatory considerations are significant challenges. Obtaining reliable, well-curated datasets, especially those representing diverse patient populations and disease types, poses obstacles for AI-driven drug discovery. Addressing transparency concerns due to the opacity of AI models, especially deep learning models, is crucial. Regulators, clinicians, and patients seek transparent decision-making, making interpretability essential. Validating AI models and ensuring regulatory compliance present challenges. AI models must meet stringent standards and demonstrate robust performance to gain regulatory approval. Developing a regulatory framework catering to AI's unique considerations in drug discovery is vital for widespread adoption.
Although AI has made significant progress, data quality remains a substantial obstacle in using AI methods for drug development. Addressing challenges related to data ownership and confidentiality is imperative. Ongoing efforts aim to optimize current AI technologies in drug discovery.
Increased research and development activities, coupled with the use of cloud-based services, fuel growth in the AI in Drug Discovery Market. Emerging economies and advancements in biotechnology further accelerate the market's development. The COVID-19 pandemic significantly boosted the use of AI in drug development, especially in identifying and screening existing drugs for COVID-19 treatment. AI's effectiveness in identifying active substances for various diseases contributed to its growth during the pandemic.
AI's integration of patient data, including genetic and clinical information, has the potential to revolutionize personalized medicine. It predicts individual responses to therapies and optimizes treatment strategies, leading to more effective disease diagnosis, monitoring, and treatment.
In terms of component types, Services are expected to dominate the AI in Drug Discovery Market in 2022, exhibiting the highest CAGR until 2028. The growth of services is driven by their advantages and strong demand among end users. Software also plays a significant role, with emerging companies focusing on deep learning solutions and generative models, facilitating innovative molecule design.
The oncology segment is projected to experience the highest CAGR during the forecast period due to AI's adoption in discovering cancer drugs and collaborations between pharmaceutical companies and AI providers.
North America is set to lead the market due to high AI adoption, advanced healthcare infrastructure, and active clinical research in AI and drug discovery. Noteworthy research institutions and key developments further contribute to the region's dominance in AI-driven drug discovery.
In this report, the Global AI in Drug Discovery Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below.