시장보고서
상품코드
1527207

세계의 첨단 배터리 기술 시장 : 산업 규모, 점유율, 동향, 기회, 예측, 기술별, 최종 사용자별, 지역별, 시장 경쟁(2019-2029년)

Advanced Battery Technology Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Technology, By End User By Region & Competition, 2019-2029F

발행일: | 리서치사: TechSci Research | 페이지 정보: 영문 189 Pages | 배송안내 : 2-3일 (영업일 기준)

    
    
    




※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

첨단 배터리 기술 시장 규모는 2023년에 806억 7,000만 달러로 평가되었고, 2029년까지의 예측 기간 동안 복합 연간 성장률(CAGR)은 8.22%로 견조한 성장이 예측되고 있습니다.

시장 개요
예측 기간 2026년-2030년
시장 규모 : 2023년 806억 7,000만 달러
시장 규모 : 2029년 1,309억 4,000만 달러
복합 연간 성장률(CAGR) : 2024년-2029년 8.22%
급성장 부문 에너지 저장
최대 시장 아시아태평양

첨단 배터리 기술 시장은 기존의 에너지 저장 솔루션을 능가하는 차세대 배터리 기술 시장 개척, 제조 및 응용에 초점을 맞춘 분야를 포괄합니다. 이 시장에는 에너지 밀도 향상, 안전성 개선, 배터리 수명 연장을 목적으로 한 리튬 이온 배터리, 고체 배터리, 플로우 배터리 등의 혁신이 포함됩니다. 첨단 배터리는 전기자동차(EV), 재생 가능 에너지 저장, 휴대 전자 기기 등 다양한 산업을 지원하는 매우 중요한 역할을 담당하고 있습니다. 이 배터리는 기존 배터리에 비해 충전 시간 단축, 사이클 수명 연장, 에너지 효율 향상 등 우수한 성능을 특징으로 합니다. 환경 문제에 대한 관심이 높아지고 보다 친환경 기술로의 전환이 진행되고 있는 가운데, 고성능으로 지속 가능한 에너지 저장 솔루션에 대한 수요가 높아지고 있는 것이 이 시장을 견인하고 있습니다. 이 시장의 주요 기업는 기존의 한계를 극복하고 새로운 기회를 활용하기 위해 지속적인 연구 개발에 종사하고 있습니다. 시장 성장은 기술 발전, 규제 프레임 워크, 환경 친화적이고 효율적인 에너지 솔루션에 대한 소비자 선호도의 변화와 같은 영향을 받고 있습니다.

주요 시장 성장 촉진요인

전기자동차(EV) 수요 증가

신재생에너지 저장의 진보

기술 혁신과 연구개발

주요 시장 과제

높은 제조 비용

제한된 원재료 가용성 및 공급망 제약

주요 시장 동향

고체 배터리의 상승

리튬 유황 배터리 확대

목차

제1장 개요

제2장 조사 방법

제3장 주요 요약

제4장 고객의 목소리

제5장 세계의 첨단 배터리 기술 시장 전망

  • 시장 규모와 예측
    • 금액별
  • 시장 점유율과 예측
    • 기술별(고체 배터리, 리튬 유황 배터리, 마그네슘 이온 배터리, 차세대 플로 배터리, 금속 공기 배터리)
    • 최종 사용자별(자동차, 가전, 산업, 에너지 저장)
    • 지역별(아시아태평양, 북미, 남미, 중동 및 아프리카, 유럽)
    • 기업별(2023년)
  • 시장 맵

제6장 북미의 첨단 배터리 기술 시장 전망

  • 시장 규모와 예측
    • 금액별
  • 시장 점유율 및 예측
    • 기술별
    • 최종 사용자별
    • 국가별
  • 북미: 국가별 분석
    • 미국
    • 캐나다
    • 멕시코

제7장 유럽의 첨단 배터리 기술 시장 전망

  • 시장 규모와 예측
    • 금액별
  • 시장 점유율 및 예측
    • 기술별
    • 최종 사용자별
    • 국가별
  • 유럽: 국가별 분석
    • 독일
    • 영국
    • 이탈리아
    • 프랑스
    • 스페인

제8장 아시아태평양의 첨단 배터리 기술 시장 전망

  • 시장 규모와 예측
    • 금액별
  • 시장 점유율 및 예측
    • 기술별
    • 최종 사용자별
    • 국가별
  • 아시아태평양: 국가별 분석
    • 중국
    • 인도
    • 일본
    • 한국
    • 호주

제9장 남미의 첨단 배터리 기술 시장 전망

  • 시장 규모와 예측
    • 금액별
  • 시장 점유율 및 예측
    • 기술별
    • 최종 사용자별
    • 국가별
  • 남미 : 국가별 분석
    • 브라질
    • 아르헨티나
    • 콜롬비아

제10장 중동 및 아프리카의 첨단 배터리 기술 시장 전망

  • 시장 규모와 예측
    • 금액별
  • 시장 점유율 및 예측
    • 기술별
    • 최종 사용자별
    • 국가별
  • 중동 및 아프리카: 국가별 분석
    • 남아프리카
    • 사우디아라비아
    • 아랍에미리트(UAE)
    • 쿠웨이트
    • 터키

제11장 시장 역학

  • 성장 촉진요인
  • 과제

제12장 시장 동향과 발전

제13장 기업 프로파일

  • Tesla Inc.
  • Panasonic Corporation
  • LG Energy Solution Ltd.
  • Samsung SDI Co., Ltd.
  • General Motors
  • Siemens AG
  • Toshiba Corporation
  • Hitachi Ltd.
  • Northvolt AB
  • Solid Power, Inc.
  • QuantumScape Battery, Inc
  • Farasis Energy Europe GmbH

제14장 전략적 제안

제15장 기업 소개와 면책사항

BJH 24.08.20

Global Advanced Battery Technology Market was valued at USD 80.67 billion in 2023 and is anticipated to project robust growth in the forecast period with a CAGR of 8.22% through 2029.

Market Overview
Forecast Period2026-2030
Market Size 2023USD 80.67 Billion
Market Size 2029USD 130.94 Billion
CAGR 2024-20298.22%
Fastest Growing SegmentEnergy Storage
Largest MarketAsia Pacific

The Advanced Battery Technology market encompasses the sector focused on the development, manufacturing, and application of next-generation battery technologies that surpass traditional energy storage solutions. This market includes innovations such as lithium-ion, solid-state, and flow batteries, designed to enhance energy density, improve safety, and extend battery life. Advanced batteries are pivotal in supporting various industries, including electric vehicles (EVs), renewable energy storage, and portable electronics. They are characterized by their superior performance attributes, including faster charging times, longer cycle life, and greater energy efficiency compared to conventional batteries. The market is driven by increasing demand for high-performance, sustainable energy storage solutions amid growing environmental concerns and the transition towards greener technologies. Key players in this market are engaged in continuous research and development to overcome existing limitations and capitalize on emerging opportunities. The market's growth is influenced by technological advancements, regulatory frameworks, and shifts in consumer preferences towards eco-friendly and high-efficiency energy solutions.

Key Market Drivers

Growing Demand for Electric Vehicles (EVs)

The surge in electric vehicle (EV) adoption is a significant driver of the global Advanced Battery Technology market. As governments worldwide implement stricter emissions regulations and provide incentives for EV purchases, the demand for high-performance batteries capable of supporting extended driving ranges and rapid charging is increasing. Modern EVs require batteries that offer higher energy density, longer cycle life, and improved safety features compared to traditional lead-acid or nickel-metal hydride batteries.

Advanced battery technologies, such as lithium-ion, solid-state, and lithium-sulfur batteries, are crucial in meeting these evolving requirements. For instance, lithium-ion batteries are favored for their high energy density and relatively low cost, making them a staple in many current EV models. However, as the automotive industry progresses, there is a growing need for batteries that can provide even greater performance, such as solid-state batteries, which promise to offer higher energy densities, enhanced safety, and better thermal stability.

The shift towards electric mobility is also driven by consumer preferences for sustainable transportation solutions and the increasing availability of EV models from various automakers. As the market for electric vehicles expands, so does the need for advanced batteries that can meet the demands of both high performance and long-term durability. Consequently, advancements in battery technology are not only facilitating the growth of the EV market but are also driving innovation and investment within the battery sector itself.

Advances in Renewable Energy Storage

The global push for renewable energy sources, such as solar and wind power, has significantly influenced the Advanced Battery Technology market. Renewable energy generation is often intermittent, with production varying based on weather conditions and time of day. To address this challenge and ensure a stable and reliable energy supply, there is a growing need for advanced energy storage solutions that can efficiently store and manage renewable energy.

Advanced batteries play a critical role in renewable energy storage systems by providing the necessary capacity to store excess energy generated during peak production periods and discharge it when production is low. Technologies like lithium-ion and flow batteries are particularly suited for this purpose due to their ability to offer high energy density and scalability. Flow batteries, for example, are known for their capacity to store large amounts of energy and provide long-duration discharge, making them ideal for grid-scale energy storage applications.

As governments and businesses invest in renewable energy infrastructure and seek to reduce reliance on fossil fuels, the demand for advanced battery technologies that can support large-scale energy storage solutions is expected to rise. This trend is further accelerated by advancements in battery chemistry and manufacturing processes, which are enhancing the performance and cost-effectiveness of energy storage systems. Consequently, the renewable energy sector is a key driver of growth in the advanced battery technology market, fueling innovation and expansion within the industry.

Technological Innovations and Research & Development

Technological advancements and ongoing research and development (R&D) are pivotal drivers of the global Advanced Battery Technology market. The continuous evolution of battery technologies is essential for meeting the increasing demands of various applications, including electric vehicles, consumer electronics, and renewable energy storage. Innovations in battery chemistry, materials science, and manufacturing processes are driving the development of next-generation batteries that offer improved performance, safety, and cost-efficiency.

Research into alternative battery technologies, such as solid-state batteries, lithium-sulfur batteries, and sodium-ion batteries, is at the forefront of this innovation. Solid-state batteries, for instance, are being developed to replace traditional liquid electrolytes with solid electrolytes, which can enhance energy density and safety. Lithium-sulfur batteries are being explored for their potential to provide higher energy capacities at lower costs compared to conventional lithium-ion batteries. These advancements are driven by a combination of academic research, industry collaboration, and investments from both private and public sectors.

Advancements in manufacturing technologies, such as automated production lines and improved quality control measures, are contributing to the scalability and affordability of advanced batteries. As new materials and production techniques are developed, the cost of advanced battery technologies is expected to decrease, making them more accessible to a wider range of applications and accelerating market growth.

The focus on R&D and technological innovation is crucial for addressing existing limitations in battery performance and developing solutions that can meet future energy storage needs. As a result, the continuous advancement of battery technologies is a major driver of growth in the global Advanced Battery Technology market, fostering a competitive and dynamic industry landscape.

Key Market Challenges

High Manufacturing Costs

One of the major challenges facing the global Advanced Battery Technology market is the high manufacturing costs associated with cutting-edge battery technologies. Advanced batteries, such as solid-state batteries, lithium-sulfur batteries, and flow batteries, often require specialized materials and complex production processes that contribute to their elevated costs.

For instance, solid-state batteries, which promise higher energy density and improved safety over traditional lithium-ion batteries, are still in the early stages of commercialization. The production of solid-state batteries involves the use of advanced materials, such as solid electrolytes and high-purity lithium, which are expensive and difficult to process. Additionally, the fabrication of these batteries requires precise and controlled manufacturing environments, which further increases production costs.

Lithium-sulfur batteries, while offering potentially higher energy densities at lower material costs compared to lithium-ion batteries, face challenges related to their manufacturing processes. The production of lithium-sulfur batteries involves the use of sulfur, which is relatively inexpensive, but the complex processes required to integrate sulfur into the battery structure and ensure stable performance are costly. Additionally, ensuring the long cycle life and stability of these batteries requires advanced engineering techniques, adding to the overall expense.

High manufacturing costs pose a significant barrier to the widespread adoption of advanced battery technologies. These costs are reflected in the final prices of products that utilize these batteries, such as electric vehicles and renewable energy storage systems. As a result, the high price point of advanced batteries can limit their accessibility to a broader market and slow down their adoption.

To overcome this challenge, ongoing research and development efforts are focused on optimizing manufacturing processes, reducing material costs, and scaling up production. Innovations in battery design and improvements in manufacturing efficiency are essential to making advanced battery technologies more cost-effective. As the industry evolves and production scales up, the hope is that these costs will decrease, making advanced batteries more affordable and accessible to a wider range of applications.

Limited Raw Material Availability and Supply Chain Constraints

Another significant challenge in the global Advanced Battery Technology market is the limited availability of key raw materials and associated supply chain constraints. Advanced batteries often rely on specific materials that are not only scarce but also concentrated in a few geographic regions, which can lead to supply bottlenecks and price volatility.

For example, lithium-ion batteries depend heavily on lithium, cobalt, and nickel, which are essential for their high energy density and performance. Lithium is primarily sourced from countries like Australia, Chile, and China, while cobalt is mainly mined in the Democratic Republic of the Congo. The concentration of these resources in a few regions can create vulnerabilities in the supply chain, making it susceptible to geopolitical tensions, trade disputes, and environmental regulations.

The extraction and processing of these raw materials can have significant environmental and social impacts, raising concerns about sustainability and ethical sourcing. For instance, cobalt mining has been associated with human rights issues and environmental degradation, which has led to increased scrutiny and pressure on companies to ensure responsible sourcing practices.

The limited availability of raw materials can also lead to fluctuating prices, which can impact the overall cost of advanced battery technologies. Price volatility for key materials can affect the economic viability of new battery technologies and create uncertainty for manufacturers and consumers alike.

Addressing these supply chain challenges requires a multifaceted approach, including efforts to diversify sources of raw materials, improve recycling processes, and develop alternative materials. Research into new battery chemistries that rely on more abundant and less problematic materials is also crucial. By enhancing supply chain resilience and reducing dependency on critical raw materials, the advanced battery technology market can better navigate these challenges and support the continued growth and adoption of innovative energy storage solutions.

Key Market Trends

Rise of Solid-State Batteries

A prominent trend in the global Advanced Battery Technology market is the growing interest in solid-state batteries. These batteries are gaining traction due to their potential to offer significant improvements over traditional lithium-ion batteries. Solid-state batteries utilize a solid electrolyte instead of the liquid or gel electrolytes found in conventional batteries, which enhances safety by reducing the risk of leaks and fires.

The benefits of solid-state batteries extend beyond safety. They also offer higher energy densities, which can translate into longer battery life and greater range for electric vehicles (EVs) and other portable devices. Additionally, solid-state batteries are expected to have longer cycle lives, meaning they can be charged and discharged more times before their performance degrades compared to conventional batteries.

Despite these advantages, solid-state batteries are still facing challenges related to manufacturing scalability and material costs. The production processes for solid-state batteries are complex and require advanced materials, which can drive up costs. However, ongoing research and development efforts are focused on overcoming these hurdles. As manufacturing techniques improve and economies of scale are achieved, solid-state batteries are expected to become more commercially viable and widespread.

The automotive industry, in particular, is showing strong interest in solid-state technology as a means to improve the performance and safety of electric vehicles. Major automakers and technology companies are investing heavily in the development of solid-state batteries, indicating a strong trend towards their future adoption.

Expansion of Lithium-Sulfur Batteries

Another key trend in the Advanced Battery Technology market is the expansion of lithium-sulfur (Li-S) batteries. Lithium-sulfur batteries are being increasingly recognized for their potential to offer higher energy densities and lower costs compared to traditional lithium-ion batteries. The use of sulfur, which is abundant and inexpensive, makes these batteries an attractive option for cost-effective energy storage.

Lithium-sulfur batteries have the potential to significantly improve the performance of various applications, including electric vehicles and grid energy storage. They are expected to offer higher specific energy, meaning they can store more energy per unit weight, which is particularly beneficial for lightweight and high-energy-density applications.

Despite their promising advantages, lithium-sulfur batteries face challenges related to cycle life and stability. Sulfur, while inexpensive, tends to suffer from issues like low conductivity and poor cycle stability. Researchers are actively working on solutions to enhance the performance and durability of these batteries, such as developing new cathode materials and optimizing the electrolyte composition.

As advancements continue and the technology matures, lithium-sulfur batteries are likely to become more prevalent in the market. Their potential to lower costs and improve energy storage performance makes them a significant trend in the battery technology landscape..

Segmental Insights

Technology Insights

The Lithium-Sulfur segment held the largest Market share in 2023. Lithium-sulfur (Li-S) batteries offer several compelling benefits that are driving increasing interest and investment. One of the primary advantages of Li-S batteries is their higher theoretical energy density. Sulfur, used in the cathode of these batteries, has a higher capacity for energy storage compared to conventional materials used in lithium-ion batteries. This translates to potentially higher specific energy and longer battery life, which is particularly attractive for applications like electric vehicles (EVs) and portable electronics where extended range and duration are crucial.

Another significant advantage of lithium-sulfur batteries is their lower material cost. Sulfur is abundant and inexpensive compared to cobalt and nickel, which are critical materials in lithium-ion batteries. This can potentially lead to reduced overall battery costs, making Li-S batteries a more economically attractive option as technology matures and scales.

Despite these advantages, lithium-sulfur batteries face challenges that have prevented them from dominating the market. These include issues related to cycle life, stability, and efficiency. Sulfur has a tendency to degrade quickly over repeated charge-discharge cycles, and ensuring stable performance has been a significant hurdle for researchers and manufacturers. Efforts are ongoing to address these issues through advancements in materials and battery design.

Regional Insights

Asia-Pacific region held the largest market share in 2023. Asia-Pacific, particularly China, Japan, and South Korea, is a major manufacturing hub for advanced batteries. These countries have established themselves as leaders in the production of lithium-ion batteries, which are critical for applications like electric vehicles (EVs) and consumer electronics. The region's extensive manufacturing infrastructure, skilled workforce, and advanced technological capabilities contribute to its dominance in the market.

Asia-Pacific is at the forefront of battery technology innovation. Major technology companies and research institutions in this region are heavily invested in developing next-generation batteries, such as solid-state and lithium-sulfur batteries. This focus on research and development drives technological advancements and positions the region as a leader in the evolution of battery technologies.

Governments in Asia-Pacific countries have implemented supportive policies and incentives to promote the adoption of advanced battery technologies. For example, China has introduced policies to encourage the development and use of electric vehicles, including subsidies and tax incentives. Similarly, Japan and South Korea offer support for research and development in battery technologies and renewable energy integration.

The rapid growth of the electric vehicle market and the expansion of renewable energy sources in Asia-Pacific drive significant demand for advanced battery technologies. Countries like China are leading in EV adoption, creating a strong market for advanced batteries. Additionally, the region's commitment to increasing renewable energy capacity further fuels the need for efficient energy storage solutions.

Companies in Asia-Pacific are actively forming strategic partnerships and investing in global battery technology ventures. These investments enhance their technological capabilities and market reach, consolidating the region's dominant position in the global battery market.

Key Market Players

Tesla Inc.

Panasonic Corporation

LG Energy Solution Ltd.

Samsung SDI Co., Ltd.

General Motors

Siemens AG

Toshiba Corporation

Hitachi Ltd.

Northvolt AB

Solid Power, Inc.

QuantumScape Battery, Inc

Farasis Energy Europe GmbH

Report Scope:

In this report, the Global Advanced Battery Technology Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Advanced Battery Technology Market, By End User:

    Automotive Consumer Electronics Industrial Energy Storage

Advanced Battery Technology Market, By Technology:

    Solid-State Batteries Lithium-Sulfur Batteries Magnesium-Ion Batteries Next-Generation Flow Batteries Metal-Air Batteries

Advanced Battery Technology Market, By Region:

    North America
    • United States
    • Canada
    • Mexico
    Europe
    • France
    • United Kingdom
    • Italy
    • Germany
    • Spain
    Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • South Korea
    South America
    • Brazil
    • Argentina
    • Colombia
    Middle East & Africa
    • South Africa
    • Saudi Arabia
    • UAE
    • Kuwait
    • Turkey

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Advanced Battery Technology Market.

Available Customizations:

Global Advanced Battery Technology Market report with the given Market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

Detailed analysis and profiling of additional Market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
  • 1.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Formulation of the Scope
  • 2.4. Assumptions and Limitations
  • 2.5. Sources of Research
    • 2.5.1. Secondary Research
    • 2.5.2. Primary Research
  • 2.6. Approach for the Market Study
    • 2.6.1. The Bottom-Up Approach
    • 2.6.2. The Top-Down Approach
  • 2.7. Methodology Followed for Calculation of Market Size & Market Shares
  • 2.8. Forecasting Methodology
    • 2.8.1. Data Triangulation & Validation

3. Executive Summary

4. Voice of Customer

5. Global Advanced Battery Technology Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Technology (Solid-State Batteries, Lithium-Sulfur Batteries, Magnesium-Ion Batteries, Next-Generation Flow Batteries, Metal-Air Batteries)
    • 5.2.2. By End User (Automotive, Consumer Electronics, Industrial, Energy Storage)
    • 5.2.3. By Region (Asia Pacific, North America, South America, Middle East &Africa, Europe)
    • 5.2.4. By Company (2023)
  • 5.3. Market Map

6. North America Advanced Battery Technology Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Technology
    • 6.2.2. By End User
    • 6.2.3. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Advanced Battery Technology Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Technology
        • 6.3.1.2.2. By End User
    • 6.3.2. Canada Advanced Battery Technology Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Technology
        • 6.3.2.2.2. By End User
    • 6.3.3. 'Mexico Advanced Battery Technology Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Technology
        • 6.3.3.2.2. By End User

7. Europe Advanced Battery Technology Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Technology
    • 7.2.2. By End User
    • 7.2.3. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. Germany Advanced Battery Technology Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Technology
        • 7.3.1.2.2. By End User
    • 7.3.2. United Kingdom Advanced Battery Technology Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Technology
        • 7.3.2.2.2. By End User
    • 7.3.3. Italy Advanced Battery Technology Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Technology
        • 7.3.3.2.2. By End User
    • 7.3.4. France Advanced Battery Technology Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Technology
        • 7.3.4.2.2. By End User
    • 7.3.5. Spain Advanced Battery Technology Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Technology
        • 7.3.5.2.2. By End User

8. Asia-Pacific Advanced Battery Technology Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Technology
    • 8.2.2. By End User
    • 8.2.3. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China Advanced Battery Technology Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Technology
        • 8.3.1.2.2. By End User
    • 8.3.2. India Advanced Battery Technology Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Technology
        • 8.3.2.2.2. By End User
    • 8.3.3. Japan Advanced Battery Technology Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Technology
        • 8.3.3.2.2. By End User
    • 8.3.4. South Korea Advanced Battery Technology Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Technology
        • 8.3.4.2.2. By End User
    • 8.3.5. Australia Advanced Battery Technology Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Technology
        • 8.3.5.2.2. By End User

9. South America Advanced Battery Technology Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Technology
    • 9.2.2. By End User
    • 9.2.3. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Advanced Battery Technology Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Technology
        • 9.3.1.2.2. By End User
    • 9.3.2. Argentina Advanced Battery Technology Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Technology
        • 9.3.2.2.2. By End User
    • 9.3.3. Colombia Advanced Battery Technology Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Technology
        • 9.3.3.2.2. By End User

10. Middle East and Africa Advanced Battery Technology Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Technology
    • 10.2.2. By End User
    • 10.2.3. By Country
  • 10.3. Middle East and Africa: Country Analysis
    • 10.3.1. South Africa Advanced Battery Technology Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Technology
        • 10.3.1.2.2. By End User
    • 10.3.2. Saudi Arabia Advanced Battery Technology Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Technology
        • 10.3.2.2.2. By End User
    • 10.3.3. UAE Advanced Battery Technology Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Technology
        • 10.3.3.2.2. By End User
    • 10.3.4. Kuwait Advanced Battery Technology Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Technology
        • 10.3.4.2.2. By End User
    • 10.3.5. Turkey Advanced Battery Technology Market Outlook
      • 10.3.5.1. Market Size & Forecast
        • 10.3.5.1.1. By Value
      • 10.3.5.2. Market Share & Forecast
        • 10.3.5.2.1. By Technology
        • 10.3.5.2.2. By End User

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

13. Company Profiles

  • 13.1. Tesla Inc.
    • 13.1.1. Business Overview
    • 13.1.2. Key Revenue and Financials
    • 13.1.3. Recent Developments
    • 13.1.4. Key Personnel/Key Contact Person
    • 13.1.5. Key Product/Services Offered
  • 13.2. Panasonic Corporation
    • 13.2.1. Business Overview
    • 13.2.2. Key Revenue and Financials
    • 13.2.3. Recent Developments
    • 13.2.4. Key Personnel/Key Contact Person
    • 13.2.5. Key Product/Services Offered
  • 13.3. LG Energy Solution Ltd.
    • 13.3.1. Business Overview
    • 13.3.2. Key Revenue and Financials
    • 13.3.3. Recent Developments
    • 13.3.4. Key Personnel/Key Contact Person
    • 13.3.5. Key Product/Services Offered
  • 13.4. Samsung SDI Co., Ltd.
    • 13.4.1. Business Overview
    • 13.4.2. Key Revenue and Financials
    • 13.4.3. Recent Developments
    • 13.4.4. Key Personnel/Key Contact Person
    • 13.4.5. Key Product/Services Offered
  • 13.5. General Motors
    • 13.5.1. Business Overview
    • 13.5.2. Key Revenue and Financials
    • 13.5.3. Recent Developments
    • 13.5.4. Key Personnel/Key Contact Person
    • 13.5.5. Key Product/Services Offered
  • 13.6. Siemens AG
    • 13.6.1. Business Overview
    • 13.6.2. Key Revenue and Financials
    • 13.6.3. Recent Developments
    • 13.6.4. Key Personnel/Key Contact Person
    • 13.6.5. Key Product/Services Offered
  • 13.7. Toshiba Corporation
    • 13.7.1. Business Overview
    • 13.7.2. Key Revenue and Financials
    • 13.7.3. Recent Developments
    • 13.7.4. Key Personnel/Key Contact Person
    • 13.7.5. Key Product/Services Offered
  • 13.8. Hitachi Ltd.
    • 13.8.1. Business Overview
    • 13.8.2. Key Revenue and Financials
    • 13.8.3. Recent Developments
    • 13.8.4. Key Personnel/Key Contact Person
    • 13.8.5. Key Product/Services Offered
  • 13.9. Northvolt AB
    • 13.9.1. Business Overview
    • 13.9.2. Key Revenue and Financials
    • 13.9.3. Recent Developments
    • 13.9.4. Key Personnel/Key Contact Person
    • 13.9.5. Key Product/Services Offered
  • 13.10. Solid Power, Inc.
    • 13.10.1. Business Overview
    • 13.10.2. Key Revenue and Financials
    • 13.10.3. Recent Developments
    • 13.10.4. Key Personnel/Key Contact Person
    • 13.10.5. Key Product/Services Offered
  • 13.11. QuantumScape Battery, Inc
    • 13.11.1. Business Overview
    • 13.11.2. Key Revenue and Financials
    • 13.11.3. Recent Developments
    • 13.11.4. Key Personnel/Key Contact Person
    • 13.11.5. Key Product/Services Offered
  • 13.12. Farasis Energy Europe GmbH
    • 13.12.1. Business Overview
    • 13.12.2. Key Revenue and Financials
    • 13.12.3. Recent Developments
    • 13.12.4. Key Personnel/Key Contact Person
    • 13.12.5. Key Product/Services Offered

14. Strategic Recommendations

15. About Us & Disclaimer

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제